3D from Photographs:
Automatic Matching

of Images

Francesco Banterle, Ph.D.
francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it

3D from Photographs

Automatic
Vateting o Calibration
Images
Surface Dense
Reconstruction Matching

3D model

3D from Photographs

Automatic
Matching of
Images

Camera
Calibration

Surface
Reconstruction

Dense
Matching

3D model

Problem

I'he Matching

INg feature across two

d correspond

1N

Oor maore VIiews

e Weneedtof

The Matching Problem

e Why?

* 3D Reconstruction.

* Image Registration.
* Visual Tracking.

* Object Recognition.

* elcC.

The Matching Problem:
Automatic Panorama Generation

Input
Photographs

The Matching Problem:
Automatic Panorama Generation

Input
Photographs

The Matching Problem:
Automatic Panorama Generation

Input
Photographs

Panorama

Extraction of Features

Features

e A feature is a piece of the input image that is
relevant for solving a given task.

* Features can be global or local.

e \WWe will focus on local features that are more robust
to occlusions and variations.

Extraction of Local Features

 We can extract different kind of features:
* Flat regions or Blobs
* Edges

e Corners

Harris Corner Detector

e [et’s consider a window W centered
in (x,y):

* how do pixels change from a
window in (x, y) to another one

with a shift d = (u, v)?

* Let's compare each pixel before
and after moving W by
d = (u,v) using the sum of
squared differenced (SSD).

E()C, y) — Z (I(xk u, yk V) T I(xka yk)>2

xkayke W(xay)

What a Corners iIs

Flat Region: Edge: Corner:
Nno change no change significant change
in all directions. along the edge. in all directions.

Harris Corner Detector:
Small Motion Assumption

e Let's apply a first-order approximation, which
provides good results for small motions:

ol ol U
Ix+u,y+v)=Ix,y)+— u+—-vallxy +[[[]- []
Ox oy v

Harris Corner Detector:
Small Motion Assumption

| 2
1 =]

Harris Corner Detector:
Small Motion Assumption

Ex,y) ~ Z (Ix(xka)’k)zuz + 2L(x, yi) L, (O yiuv + L, yk)2v2+> =
XY kE W(.X Y)

E(x,y) ~ < Z L(x;, yk)2> u” + 2< Z IO YOI (% yk)>uv + (Z 1%, Yk)2> V24 =

xkayke W(xay) xk7yk€ W(xay) xk’yke W(xay)

= Au? + 2Buv + Cv?

A = Z Ix(yk’ xk)z B = Z Ix(yk’ xk)ly(yk, .xk)
XY EW(X,Y) X EW(X,Y)

C=) ILoex)?

xkayke W(X,y)

Harris Corner Detector:
Small Motion Assumption

* The surface at (x,y) can be locally approximate by a quadratic

form:
u
A%

E(x,y) ~ Au?+2Buv + Cv* =~ [u v]- 4 B]

B C|
A=) LOex)

XY ke W(X Y)

B — Z Ix(yk9 xk)ly(yk9 xk)
xk’yke W(.X,y)

C= Y LOx)

'xk’yke W()C,y)

Harris Corner Detector:
Small Motion Assumption

* E(x,y) can be rewritten as:

L) L% YL (e)
E(X,y)% Z [I/t V]- k> Vk k2k y\eo Jk k}t]:
XY, EW(x,y) _Ix(xk’ Y k)Iy(xka Y k) Iy (xka Y k)

_ . U

[

i I)%(xka yk) Ix(xka yk)l (xka yk)_
M=) o
X Vi E W(x,y) _Ix(xk’ yk)ly(xka yk) Iy (xka yk)

Harris Corner Detector:
Small Motion Assumption

* E(x,y) can be rewritten as:

ROy Lo ydLyd|
T . i

2
XY, EW(x,y) _Ix(xk’ Y k)Iy(xka y k) Iy (xk’ yk)

- U Ellipse Equation:
=|[u v]-M-[v] E(uv) = k

E(x,y) ~

I)%(xka yk) Ix(xka yk)Iy(xka yk)_

)

xk’yke W(x’y)

L0 YLy L0)

Harris Corner Detector:
Second Moment Matrix

e M reveals information about the distribution of
gradients around a pixel.

* The eigenvectors of M identify the directions of
fastest and slowest change.

Direction of the fastest change

Direction of
the slowest change

Harris Corner Detector:
Second Moment Matrix

Eigenvalues and eigenvectors of M define shift directions with the smallest
and largest change in E:

e x... = direction of largest increase in E

* \... = amount of increase in direction x,,,,
e x.... = direction of smallest increase in E

e \... = amount of increase in direction x,,.,

Classification

Ao

Flat Region

Harris Corner Detector:
Cornerness Measure

* Instead of directly computing the eigenvalues, we use a measure
that determines the * " of a pixel (i.e., how close to be
a corner is):

5 Det(M)
R = Det(M) — kTr(M)~ or R =
Tr(M)

where:
* Det(M) — /11/12
. Te(M) = 4, + 4,

+ k€ 1[0.04,0.06]

Harris Corner Detector:
Cornerness Measure

« Note that for 2 X 2 matrix M, we can compute the
trace and the determinant as:

o Tr(M) — /11 + /12 — mll + m22

» DetM) = 414y = myymy; — mypmy

Harris Corner Detector:
Cornerness Measure

D)

put Image R

Harris Corner Detector:
Pruning Corners

* We have to find pixels with large corner response,
R, 1.e., R > To.

e Jypically, To in [0,1] depends on the number of
points we want to extract; a default value is 0.01.

IS Corner Detector

Harr

Thresholding

.

i

.\

.
:
£

R after thresholding

Harris Corner Detector:
Pruning Corners

* At this point, we need to suppress/remove values that
are not maxima.

R A

1A

Harris Corner Detector:
Pruning Corners

* At this point, we need to suppress/remove values that are
not maxima, but they are over the threshold (yellow pixels).

R A

Harris Corner Detector:
Pruning Corners

* We set a radius (in pixel) for suppressing non-maxima;
e.g., 3-5.

 We apply to R a maximum filter; it is similar to a median
filter, but it computes the maximum instead of the
median. After this we obtain a filtered image called Rmax.

* A pixel at position (x, y) is a local maximum it and only if:

Rmax(z,y) = R(z,y) AN R(z,y) > To

Harris Corner Detector:
Pruning Corners Example 1

The current pixel that we are evaluating Is the central one!
To=35

Harris Corner Detector:
Pruning Corners Example 1

The maximum is 100!

Harris Corner Detector:
Pruning Corners Example 1

20 < 100 so it has to be suppressed; I.e., set to 0!

Harris Corner Detector:
Pruning Corners Example 2

The current pixel that we are evaluating Is the central one!
To=35

Harris Corner Detector:
Pruning Corners Example 2

The maximum is 100!

Harris Corner Detector:
Pruning Corners Example 2

100 == 100 so it has to be kept!

Harris Corner Detector:
Non-Maximal Suppression

R after thresholding Non-Maximal Suppression

Harris Corner Detector:
Non-Maximal Suppression

Harris Corner Detector:
Non-Maximal Suppression

Harris Corner Detector:
Non-Maximal Suppression

Harris Corner:
Advantages

e Jranslational invariance: - -
e Rotation invariance: - -

* Only derivatives are employed:

e Intensity shift invariance: I'=1+b

* |ntensity scale invariance: I'=1-a

Harris Corner:
Disadvantage

e Not scale invariant!

o

—

All points are It IS now
classified as edges a corner!

The same feature In
different images can have
different size!

The Scale Problem

Near Object Far Object

Scale Invariant:
Stable Corners

R R

AN

Original 1/2 scale

Scale Invariant:
Stable Corners

R R

A soldl
/‘@ate corner

X

Original 1/2 scale

Scale Invariant:
Unstable Corners
R

M

Original 1/2 scale

Scale Invariant:
Unstable Corners

R R

BAD!
fé@rs ay@grge!

X > X

Original 1/2 scale

Scale Invariant:
A Multi-Scale Approach

* Depending on the content of the image:
e \We need to detect the scale of corner.

* We need to use its scale to vary the size of the
window W tor computing corners!

Scale Invariant:
The Signature Function

e A signature function, s, IS a function giving us an
idea of the local content of the image, I, around a
point with coordinates (x, y) at a given scale o.

 An example of signature function is the Difference
of Gaussians (DoG):

s, x,y,0) = [1 ® G(o)|(x,y) = [/ & G(o - 2)](x,y)

where G is a Gaussian kernel.

Scale Invariant:
The Signature Function

B LS o b et ot Lt o e

e

Scale Invariant:
The Approach

We need to find the right scale for resizing W for each
image!

Scale Invariant:
The Approach

* The signature function, s, can give us an idea of the
content of the image.

* Therefore, we need to find a maximum point of s for
pixel of an input image!

Scale Invariant:
The Approach

Let's build s at the red point!

Scale Invariant:
The Approach

1 2 4 8

This Is our start!

lant:
le Invaria
Sca

h
rOacC
APP

The

> O

lant:
rran
lnva h
S%ae‘eApproaC
|

> O

lant:
rran
lnva h
S%ae‘eApproaC
|

> O

Scale Invariant:
The Approach

lant:
rran
lnva h
S%ae‘eApproaC
|

> O

Scale Invariant:
The Approach

1 2 4 8
Which is o for which s is the maximum®

I[tiso=4

Scale Invariant:
The Approach

> O

Scale Invariant:
The Approach

1 2 4 8 1 2 4 8

Extraction of Features

e (3eneral overview:

* We compute the scale tfor each pixel using the
sigma value at which we have the maximum
value of the signature function.

* We compute the Harris Corner using the scale to
increase the size of the local window; 1.e., the
scale of the window will be multiplied by the
sigma value.

~eature Descriptors

~eature Descriptors

 Once we found our features (i.e., corners), we need
to describe in a meaningtful and possibly unigue

way.
e Why”

 We want compare corners between images In
order to find correspondences between

images.

Feature Descriptors

SURT

A patch, P, is a sub-image
centered in a given point
0 — (xPa yP)

Feature Descriptors

SURT

A patch, P, is a sub-image
centered in a given point
0 — (xPa yP)

~eature Descriptors

 There are many local features descriptors in
iterature:

 BRIEF/ORB descriptor.
* SIFT descriptor.

 SURF descriptor.

* elC.

~eature Descriptors

e (Good properties that we want are invariance to:
* |llumination changes.

e Rotation.

BRIEF Descriptor

* [he descriptor creates a vector of n binary values:

BRIEF(P) =b=10,1,0,0,...,1]"

* [For efficiency, it is encoded as a number:

Np — zn: Qi_lbi
I=1

BRIEF Descriptor

e (Given a patch, P, of size § X .S an element of
b={by,...,b,} Is defined as

1 1t P(p;) < P(q,),

0 otherwise

b(q;, P;) = {

where p; and q; are two random points in P.

BRIEF Descriptor: Example

BRIEF Descriptor: Example

BRIEF Descriptor: Test

e |Let's say we have two descriptor b! and b2. How do we
check if they are describing the same corner?

e We count the number of different bits in the two vectors
(Hamming distance):

Dy(b',b?) =) =xor(b), b})
i=1

* [hisis a very computationally efficient distance function.

BRIEF Descriptor: Test

A XOR B

NOT (A XOR B)

[(NOT A) AND B] OR
[(NOT B) AND A]

0 0 0 1
0 1 1 0
1 0 1 0

BRIEF Descriptor: Point-Set

* The optimal number of points’ couple (i.e., the size of the
descriptor; n) IS

* This value was computed from experiments testing
different lengths: 16, 32, 64, 128, 256, and 512.

* Points can be generated in different ways:

e Uniform distribution in the patch

S? S?2
. p;~11d. G| 0,—) and q; ~1.1.d. G| 0,—
25 25

BRIEF Descriptor: Point-Set

* Points are pre-computed, only once, generating a set:

A_ |Pos Pl ... Pn
qo, d1, --- dn
e Thissetis used for the extraction of all descriptors in

all photos!

 |f this is not done, we cannot do comparisons because we
are comparing different tests (e.g., comparing apples and
oranges):

 We need to keep

BRIEF Descriptor

 Advantages:
o Computationally fast.
* |nvariant to illumination changes.
 Compact!
o Patent free.
« Disadvantage:
* Rotation is an issue:

e [he method can handle rotations up to 10-15 degrees only.

BRIEF Descriptor

 Advantages:

o Computationally fast.

Invariant to illumination changes.
 Compact!
« Patent free.

« Disadvantage:

e Rotation Is an issue:

e [he method can handle rotations up to 10-15 degrees only.

BRIEF Descriptor

 Advantages:

o Computationally fast.

Invariant to illumination changes.

 Compact!

Patent free.

« Disadvantage:

e Rotation Is an issue:

e [he method can handle rotations up to 10-15 degrees only.

BRIEF Descriptor

 Advantages:

o Computationally fast.

Invariant to illumination changes.

 Compact!

Patent free.

« Disadvantage:

e Rotation Is an issue:

e [he method can handle rotations up to 10-15 degrees only.

ORB Descriptor

e The descriptor is a modified version of BRIEF and it
can handle rotations!

* The first step of the algorithm is to compute the
orientation of the current patch P.

* ldea: we determine the image’s “center of mass’,
and we compute the angle between this “center of
mass’ and the center of the patch. This is a hint for
the orientation of the patch.

ORB Descriptor:
Patch Orientation

* We compute the patch orientation using Rosin moments of a
patch:

Mep= Y, xYPP(x,y)
x,yeP

* From this, we define the centroid, C, as

o Mo,1

Moo Moo
* Now, we can create a vector from corner’s center, O, to the
centroid, C. This allows us to calculate the angle of rotation.

ORB Descriptor:
Patch Orientation

ORB Descriptor:
Patch Orientation

* From this vector, the orientation of the patch can be
computed simply as

0 = atan2(my 1, m, ()

* From this, we can rotate the patch P, but this
operation is very computationally expensive:

 We need to rotate each single point in the patch!

ORB Descriptor

ORB Descriptor:
Patch Orientation

* Instead of rotating the whole patch, we can rotate
only the points stored in 4 as:

where Ry Is a 2D rotation matrix:

R, = [cos 0 —sin (9]

sin@ cosO

* NOTE: we need to rotate less points!

ORB Descriptor

 Advantages:
o Computationally fast.
* |nvariant to illumination changes.
 Compact!
* |nvariant to rotation.
e Patent free.
« Disadvantage:

e Not robust as SIFT.

SIFT Descriptor

* |tis the state-of-the-art descriptor.

* |t was introduced Iin 1999, but it Is still the king.

SIFT Descriptor:
Patch Orientation

* The first step is to compute the orientation of P.

* We compute the horizontal (Px) and vertical (Py)
gradients of the P.

* For each pixel at coordinates (i, j) in the patch we
compute its orientation and magnitude:

m(i, §) = /Peli,§) + P, (i, j)?

0(.3) = atan2(P,(i,5). Pali. 7))

SIFT Descriptor:
Patch Orientation

* A histogram, H, of directions is created for each
orientation taking into account its magnitude.

 We repeat this process for all gradients in the
patch!

e Note that H Is initialized as a vector of zeros.

SIFT Descriptor:
Patch Orientation

* Let's say, we have a histogram H with 18 bins (b = 18).
e This means each bin has a size (k) in degree of 20°:

« k=360/b=360/18

 Now, we have to insert a gradient, m =10 and 8 = 45°, from our patch in H
we need to process a gradient in the patch.

e First, we compute the index of the bin to update:
, 0 45
Il=|—]| = | —
k 20

 [hen, we update H as
HGi)=H(G)+m=HG)+ 10

SIFT Descriptor:
Patch Orientation

* Finally, we get this (an example with 8 bins; i.e., 8 directions):

—><—/"\\/

« [he patch orientation, a, is given by the highest peak:

* |f we have two equal peaks, we take the as winner the first
one in histogram.

SIFT Descriptor:
Patch Orientation

* Finally, we get this (an example with 8 bins; i.e., 8 directions):

—><—/"\\/

« [he patch orientation, a, is given by the highest peak:

* |f we have two equal peaks, we take the as winner the first
one in histogram.

SIFT Descriptor

o Once we have a, we can rotate all gradients in the
patch using It.

e This ensures to be invariant to rotations!

—

Rotation

SIFT Descriptor

 Why do we rotate the gradients? It is
computationally faster:

* |ntheory, we should rotate the patch and then
recompute the gradients.

* [his is computationally expensive!

SIFT Descriptor

e At this point, we divide the patch into 4x4 blocks.

For each block, we compute a new histogram of
directions.

* The final SIFT descriptor is the concatenation
(flattening) of all these histograms.

LMK HUMNA
MK UNNG
Nk ANARN
NN LEANM
P =N EAE3CE
NEVE MNER

LA
AR NN

SIFT Descriptor:
Example with 2x2 Blocks

Patch and its gradients

SIFT Descriptor:
Example with 2x2 Blocks

FIESAEN V"
NANN 27255

N AEAEE
Al BRI E N
HME
M PN
SEHEE
NSk
MR
K &S =l

—
N
e
\
>
7
N
*

Patch and its gradients

We compute the histogram for the first block in violet

SIFT Descriptor:
Example with 2x2 Blocks

FIESAEN V"
NANN 27255

N AN
Al B RN
 HME
M PN
SEHEE
NSk
MR
K &S =l

—
N
e
\
>
7
N
*

Patch and its gradients

We compute the histogram for the second block in red

SIFT Descriptor:
Example with 2x2 Blocks

FIESAEN V"
NANN 27255

N AEAEE
Al BRI
HME
M PN
SEHEE
NSk
MR
K S =l

—
N
e
\
>
7
N
*

Patch and its gradients

We compute the histogram for the third block in orange

SIFT Descriptor:
Example with 2x2 Blocks

Bkl
KAl
i
e
-1

Patch and its gradients

We compute the histogram for the fourth block in yellow

SIFT Descriptor:
Example with 2x2 Blocks

The final descriptor is the concatenation of the histogram of all blocks.

Note that this can be encoded as a vector; in this example the vector has size equal
{o:

4x8 = 32
4 because we have 2x2 Blocks
8 because we have 8 direction for each histogram.

SIFT Descriptor: Test

e We test the differences as distance between
histograms:

D(h',h?) = \ Z(h% — h?)?

* The lower the closer:

* This is the opposite compared to BRIEF/ORB.

SIFT Descriptor

e Advantages:
* |nvariant to illumination changes.
* |nvariant to rotation.
* Disadvantages:
o Slower than BRIEF/ORB.
 More memory than binary methods.

e Patented! It Is patent-free from 12th of Aprile 2020!

Matching Images

Matching:
An Image Against Another One

* Input: two descriptor lists (
), desci and desco, respectively of

image 1 and L.

* Output: a vector with indices of matches for each
lIst:

* The output is called Mz if we match /1 against I

* The output is called My if we match > against I

Matching:
How the Output is Encoded Example 1

* Let's say we have 4 descriptors in desc;
* |et's say we have 3 descriptors in desc:

* Let's say that we want to match I against I, this
means that we want to compute Mija.

Matching: Example 1

o -
d

d;
desc; = descy, = |d3
d} 2
d

dy_

Mi2=[|

Matching: Example 1

g
i
d;
desc, = descy, = |d3
ds
ds
dy_ o
We find out that the first descriptor of dese; matches with

the second descriptor of desc:.

Mi2=[|

Matching: Example 1

ik
i
d;
desc, = descy, = #pd>
ds
ds
dy_ o
We find out that the first descriptor of dese; matches with

the second descriptor of desc:.

Mi2=[2,]

Matching: Example 1

o N
a7

ds
desc; = descy = |d3
d :
d3

i

We find out that the second descriptor of dese; matches with
the third descriptor of desc:.

Mi2=[2,]

Matching: Example 1

o N
a7

ds
desc; = descy = |d3
d :
d3

i

We find out that the second descriptor of dese; matches with
the third descriptor of desc:.

Mi2=(2, 3,]

Matching: Example 1

o N
a7

ds
desc; = descy = |d3
d :
d3

d

We find out that the third descriptor of dese1 matches with
the first descriptor of desc:.

Mi2=(2, 3,]

Matching: Example 1

ki C72”
a7
ds
desc; = descy = |d3
d :
d3
d

We find out that the third descriptor of dese1 matches with
the first descriptor of desc:.

Mi2=[2, 3, 1,]

Matching: Example 1

g
i
d;
desc, = descy =vd>
ds
ds
% o
We find out that the fourth descriptor of desci matches with

the second descriptor of desc:.

Mi2=(2, 3, 1, 2]

Matching: Example 1

g
i
d;
desc, = descy =vd>
ds
ds
% o
We find out that the fourth descriptor of desci matches with

the second descriptor of desc:.

Mi2=[2, 3, 1, 2]

Matching:
How the Output is Encoded Example 2

e Let’'s say we have 3 descriptors in desc;
* |et's say we have 2 descriptors in desca

* Let's say that we match 11 against Iz, obtaining M.
Then, we match > against 11 obtaining Mo,

\Yi
atc
N

|

Ng: &

X
a
m
Dle
2

d — C
e |
S
C 1_
| 1
dl
_dé"
e
S
7 —

M
12 —
=[1
N
2]
M
21 —

= [3

2]

Matching: Example 2

 From this example, we can notice that:

* The matching operator is NOT an invertible
function:

* [herefore, Mi2 and Mz can be very different!

« Why” Let’s see it!

Matching: Example 2

Matching: Example 2

g 7
R
I b
When we match 11 against I, we have three matches. This is because we
need to match the star with something in the other image no matter

what.

Matching: Example 2

*

% *
* *

1 g

When we match 1> against 1, we do not have a match
between the star in 1 and the red/orange one in > because the
other red/orange star in I is closer than the star!

Matching:
Brute Force Algorithm

* A simple method to find a matched descriptor in
desc: for each descriptor in desc:

* For each descriptor in desei, we test it against all
descriptors in descz, and we keep as matched
one (in terms of distance; either

Hamming or Euclidean).

Matching:
Brute Force Algorithm

descriptor d!; in dese::
matched(i) = -1;
matched_dist =
descriptor d?; in desca:
Closer(D(d!;, d?j), matched_dist)
matched(i) = ;;

D(,) is a distance function; it can
matched_dist = D(d!;, d?)); be Hamming, Euclidean, etc.

Matching:
Brute Force Algorithm

descriptor d!; in dese::
matched(i) = -1;
matched_dist =
descriptor d?; in desca:
Closer(D(d!;, d?j), matched_dist)
matched(i) = J;

D(,) is a distance function; it can
matched_dist = D(d!;, d?)); be Hamming, Euclidean, etc.

Matching:
Brute Force Algorithm

~or each descriptor d!; in desc:
matched(i) = -1;
matched_dist =|BOTTOIM;
~or each descriptor d?; in desca:
it Closer(D(d!;, d?)), matched_dist)
matched(i) = ;;
matched_dist = D(d!;, d?));

endif

BOTTOM = +Inf for SIFT
BOTTOM = O for BRIEF/ORB

D(,) is a distance function; it can
be Hamming, Euclidean, etc.

Matching:
Brute Force Algorithm

 Advantage:

e |tis (i.e., it takes a lot of time!) and finds the
|

e Disadvantage:

e [his method is very slow:

e |et's say we have n descriptors in desc2and z In desca.
In the worst case, we need to compare roughly »?
descriptors. This becomes an issue when we have
more than 100 descriptors per image!

Matching:
Improving Efficiency

« How can we improve (approximating results)?

. - the Idea Is to group similar descriptors in
k groups or buckets that have a constant size.

Matching:
Improving Efficiency

e \We create k bucket.

 Each iNn desc2 Of 12 IS assigned to a bucket
using a function £, called hash function. This is defined
as:
f — [1,k] (positive integer numbers!)

 This means that fgenerates a number in [1, k] given a
descriptor.

* For example, an 1 for BRIEF/ORB, where the descriptor
IS a 256-bit number, is the modulo operation.

Matching:
Improving Efficiency

Matching:

Improving Efficiency
d?;

Matching:
Improving Efficiency

Matching:

Improving Efficiency
d?>

Matching:
Improving Efficiency

AWERY

Matching:

Improving Efficiency
d?3

AUERW

Matching:
Improving Efficiency

AWERW

elcC.

Matching:
Improving Efficiency

 Now, we have all descriptors of I, into buckets.

* Jo find a match for a descriptor d'; of I1, we apply f

to dl;. In this way, we obtain a bucket number, let’s
call it r.

* Finally, we run the brute force method between d!;
and all the descriptors that are in r.

Matching:
Improving Efficiency

dl

AWERW

Matching:
Improving Efficiency

\zzf/\ / \ /

Matching:
Improving Efficiency

dl @
d?1

We run brute-force: we compare d'1 with descriptor in the bucket.

Matching:
Improving Efficiency

e |tis faster, we run the brute force method for a subset of
descriptors.

* Disadvantages:
* |tis not exact, it is an
* \We test only a sub-set of descriptors.

e |f fis not well crafted, we may have distant (i.e., not
similar) descriptors in the same bucket.

- Example

Matching

Matching

 Once we have know matches between images, we
can understand which images are near each
others;:

e This is important for the triangulation of points,
and the camera calibration step.

that’s all folks!

