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Why Do We Need Metrics?

• In HDR/SDR Imaging, we need to determine and to understand what is 
happening during different steps of the pipeline:


• Acquisition: we want to understand if there are artifacts due to acquisition 
or single image reconstruction;


• Compression: we want small file size at maintaining high-quality;


• Tone mapping: we want to adapt content for different display while 
keeping quality as it was “scene-referred”.
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Reference Metrics: Current Limitations

• These models are very complex:


• Difficult to port to GPUs with ease.


• They are computationally expensive; e.g., minutes of computations for a full 
HD image.


• Do we need a distortion map?


• For most tasks we just need a single value!



DIQM: Deep Image Quality Metric
• A general and simple architecture meant for distilling reference-based metrics 

(e.g., HDR-VDP, DRIIM, etc.) into a CNN architecture.
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DIQM: Datasets

TRAINING SET VALIDATION SET TEST SET TOTAL

HDR-C 
(HDR-VDP 2.2) 12,768 1,596 1,638 16,002

SDR-D 
(HDR-VDP 2.2) 11,536 1,441 1,441 14,418



DIQM: SDR-D Dataset
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DIQM: SDR-D Dataset

REFERENCE SDR IMAGE QUANTIZATION DISTORTION SIN GRATE DISTORTION



DIQM: HDR-C Dataset
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DIQM:  Loss and Encoding

• Loss is a classic MSE; it works well for predicting quantitative values.


• Encoding:


• SDR Images: linear scaling to fit the range 


• HDR Images: 

[0,1]

log10(x + 1)



DIQM: Results Test Set
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DIQM: Timings Results



DIQM: Conclusions

• There two main results:


• We can distill metrics into a CNN with reasonable quality;


• The CNN can be simple; no need of overly complex models:


• The CNN runs real-time at inference time;


• Small weights.



Visibility Distortion Maps CNN-based
• Several applications (imaging and computer graphics) are requiring a visual 

difference map


• Traditional objective metrics can not be used, e.g., single numeric value


• Existing visibility metrics produce a visual difference map, but they are inaccurate


• Lack of large image collections with good coverage of possible distortion


• A large dataset of image pairs (ground truth, distorted) is collected, e.g., user 
marking indicate wether the distortion is visible


• A CNN is used and trained on this large dataset



Visibility Distortion Maps CNN-based
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Visibility Distortion Map: Conclusions

• There main results:


• A statistical model has been proposed to fit the large data collected and 
used as loss function


• Existing visibility metrics can be improved through the usage of a CNN 
based method, which it is trained using the collected dataset and using as 
loss function the proposed statical model



Going No-Reference
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NoR-VDPNet(++): Architecture
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NoRVDPNet(++): HDR-VDP2.2/TMQI Datasets

TRAINING SET VALIDATION SET TEST SET TOTAL

HDR-C 
(HDR-VDP2.2) 49.602 6.216 6.216 62.034

SDR-D 
(HDR-VDP2.2) 80.244 10.025 10.044 100.313

TMO 
(TMQI) 106.290 13.320 13.320 132.930

ITMO 
(HDR-VDP2.2) 106.290 13.320 13.320 132.930



NoRVDPNet(++): TMO Dataset

Drago et al. 2003 Durand and Dorsey 2002 Reinhard et al. 2002

18 tone mapping operators from the HDR-Toolbox: https://github.com/banterle/HDR_Toolbox/ 

https://github.com/banterle/HDR_Toolbox/


NoRVDPNet(++): ITMO Dataset

Input SDR Image Eilertsen et al. 2017

(tonemapped)

Santos et al. 20202

(tonemapped)

6 inverse tone mapping operators 4 available in the HDR-Toolbox: https://github.com/banterle/HDR_Toolbox/ 

https://github.com/banterle/HDR_Toolbox/


NoR-VDPNet(++): Loss and Encoding

• Loss is a classic MSE; it works well for predicting quantitative values:


• Encoding:


• SDR Images: linear scaling to fit the range 


• HDR Images: 
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Results: HDR-C Test Set
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Results: SDR-D Test Set

NoRVDPNet NoRVDPNet++
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Results: ITMOS Test Set

NoRVDPNet NoRVDPNet++
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Results: TMOS Test Set

NoRVDPNet NoRVDPNet++
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Timings
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NoR-VDPNet(++): Conclusions
• We can go from reference to no-reference;


• When we model several distortions we have a larger error 
than a single distortion;


• Layer normalization increases quality;


• This scheme works for TMQI-I (SSIM-based);


• Still real-time performance.



HDR NR-IQA 



HDR NR-IQA Principle

Perceptual resistance

Difference Mean Opinion Score
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• Data driven 
method
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HDR NR-IQA Training - Phase 1
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HDR NR-IQA Training - Phase 2 
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HDR NR-IQA: Conclusions

• Computational performances are not real-time, but it can 
be still optimized.


• It outperforms other NR-IQA methods.


• It is comparable to HDR FR-IQA:


• without the need of a reference image.



Applications



Applications: TMO Optimization Task
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Applications: Optimized TMO

TMO without optimized parameters TMO with optimized parameters

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset



Application: Optimized TMO

(a) Q̂ = 0.903 /Q = 0.885 (b) Q̂ = 0.906/Q = 0.930 (c) Q̂ = 0.933 /Q = 0.914 (d) Q̂ = 0.918/Q = 0.903

(e) Q̂ = 0.902/Q = 0.889 (f) Q̂ = 0.841/Q = 0.771 (g) Q̂ = 0.951/Q = 0.831 (h) Q̂ = 0.875/Q = 0.909

(i) Q̂ = 0.951/Q = 0.967 (j) Q̂ = 0.958/Q = 0.974 (k) Q̂ = 0.967/Q = 0.976 (l) Q̂ = 0.997/Q = 0.979

Fig. 7: The results of our tone mapping app that maximises the TMQI. We report the maximized predicted TMQI, Q̂, and the real value, Q.
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Applications: JPEG-XT Compression Task
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Applications: Results JPEG-XT Compression

Reinhard et al.’s TMO

optimized with NoRVDPNet
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Applications: Photo Selection



Applications: Photo Selection



Future Directions



Future Directions

• Going in the temporal domain.


• Extend approaches to perceptual uniform domains.


• Mix perceptual experiments results and metrics. 



Please contact us at:

a.artusi@cyens.org.cy   francesco.banterle@isti.cnr.it


or visit us:

https://deepacamera.org.cy   http://vcg.isti.cnr.it 

Thank you for your attention!
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