Modern High Dynamic Range Imaging at the Time of Deep Learning

Deep HDR Metrics for Images

Why Do We Need Metrics?

- In HDR/SDR Imaging, we need to determine and to understand what is happening during different steps of the pipeline:
 - Acquisition: we want to understand if there are artifacts due to acquisition or single image reconstruction;
 - Compression: we want small file size at maintaining high-quality;
 - **Tone mapping**: we want to adapt content for different display while keeping quality as it was "scene-referred".

Reference Metrics

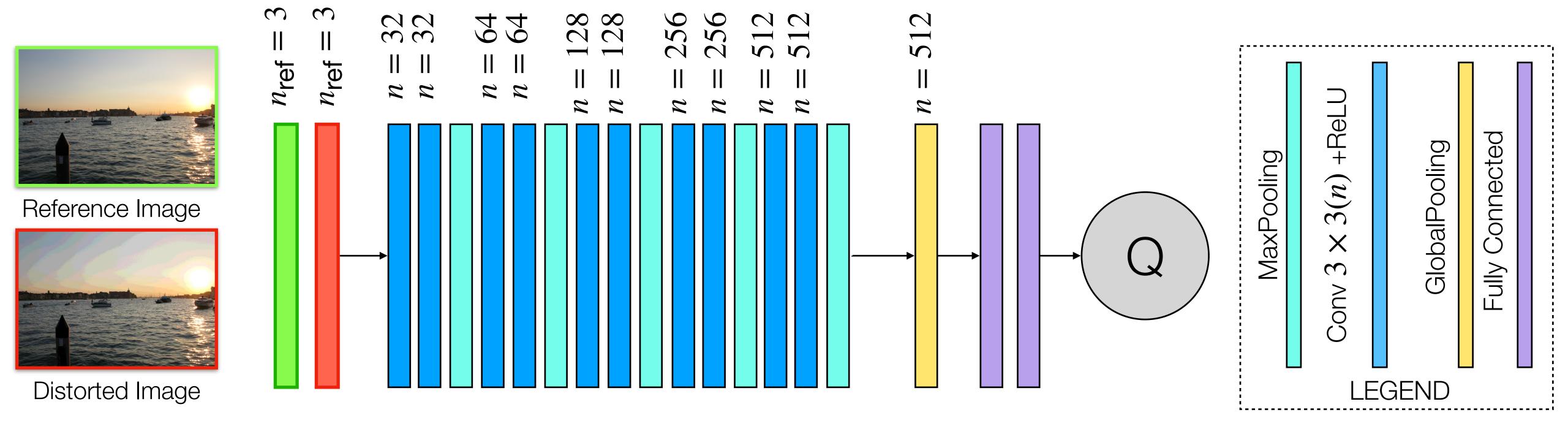


Reference Metrics: Current Limitations

- These models are very complex:
 - Difficult to port to GPUs with ease.
- They are computationally expensive; e.g., minutes of computations for a full HD image.
- Do we need a distortion map?
 - For most tasks we just need a single value!

DIQM: Deep Image Quality Metric

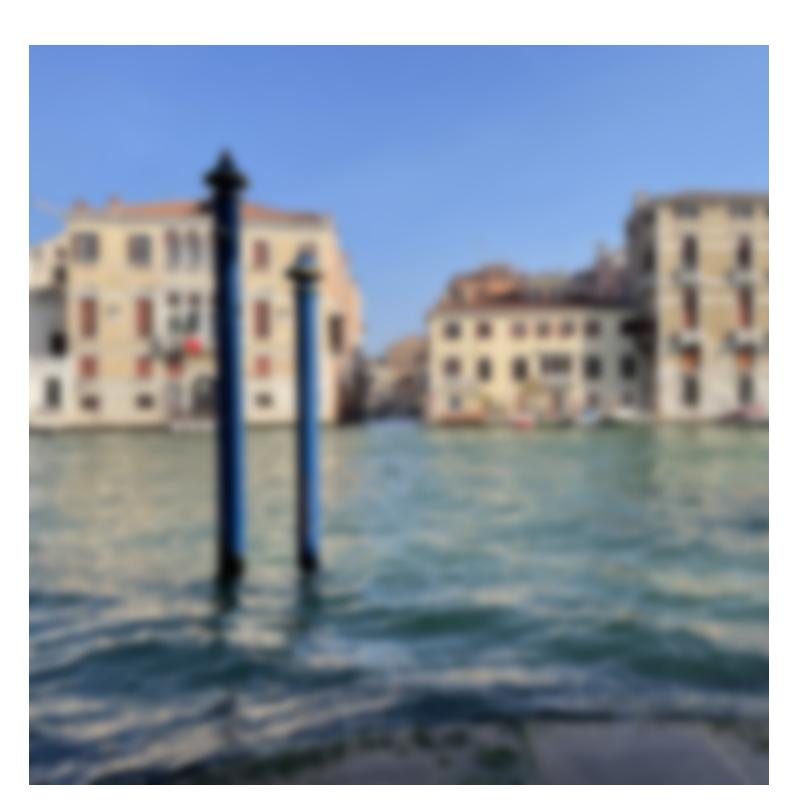
 A general and simple architecture meant for distilling reference-based metrics (e.g., HDR-VDP, DRIIM, etc.) into a CNN architecture.



DIQM: Datasets

	TRAINING SET	VALIDATION SET	TEST SET	TOTAL
HDR-C (HDR-VDP 2.2)	12,768	1,596	1,638	16,002
SDR-D (HDR-VDP 2.2)	11,536	1,441	1,441	14,418

DIQM: SDR-D Dataset



REFERENCE SDR IMAGE

BLUR DISTORTION

NOISE DISTORTION

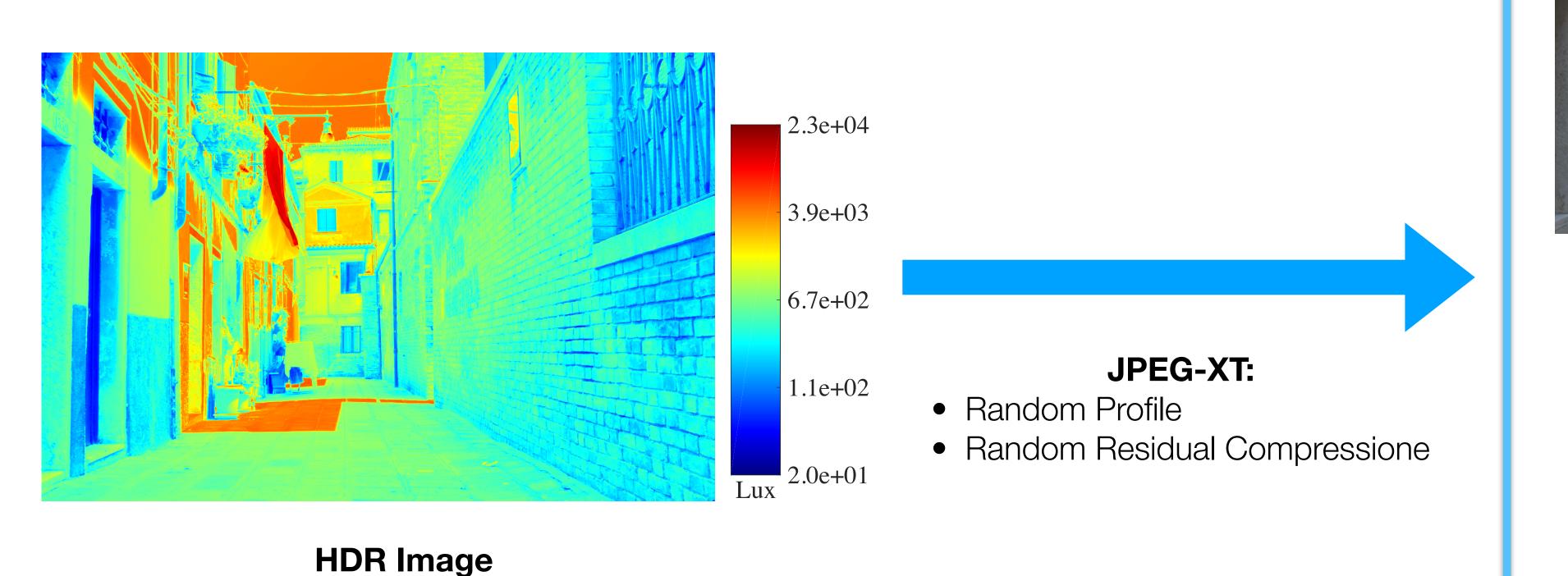
DIQM: SDR-D Dataset

REFERENCE SDR IMAGE

QUANTIZATION DISTORTION

SIN GRATE DISTORTION

DIQM: HDR-C Dataset



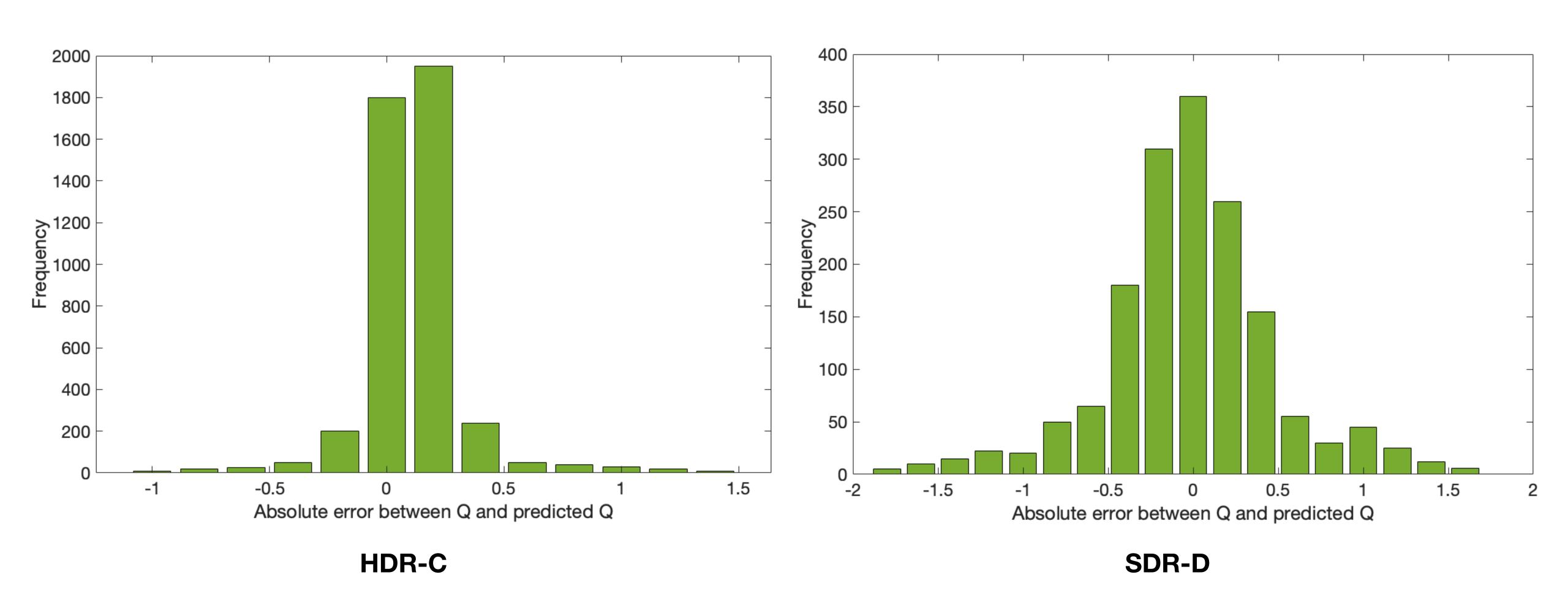
8-bit Layer

METADATA

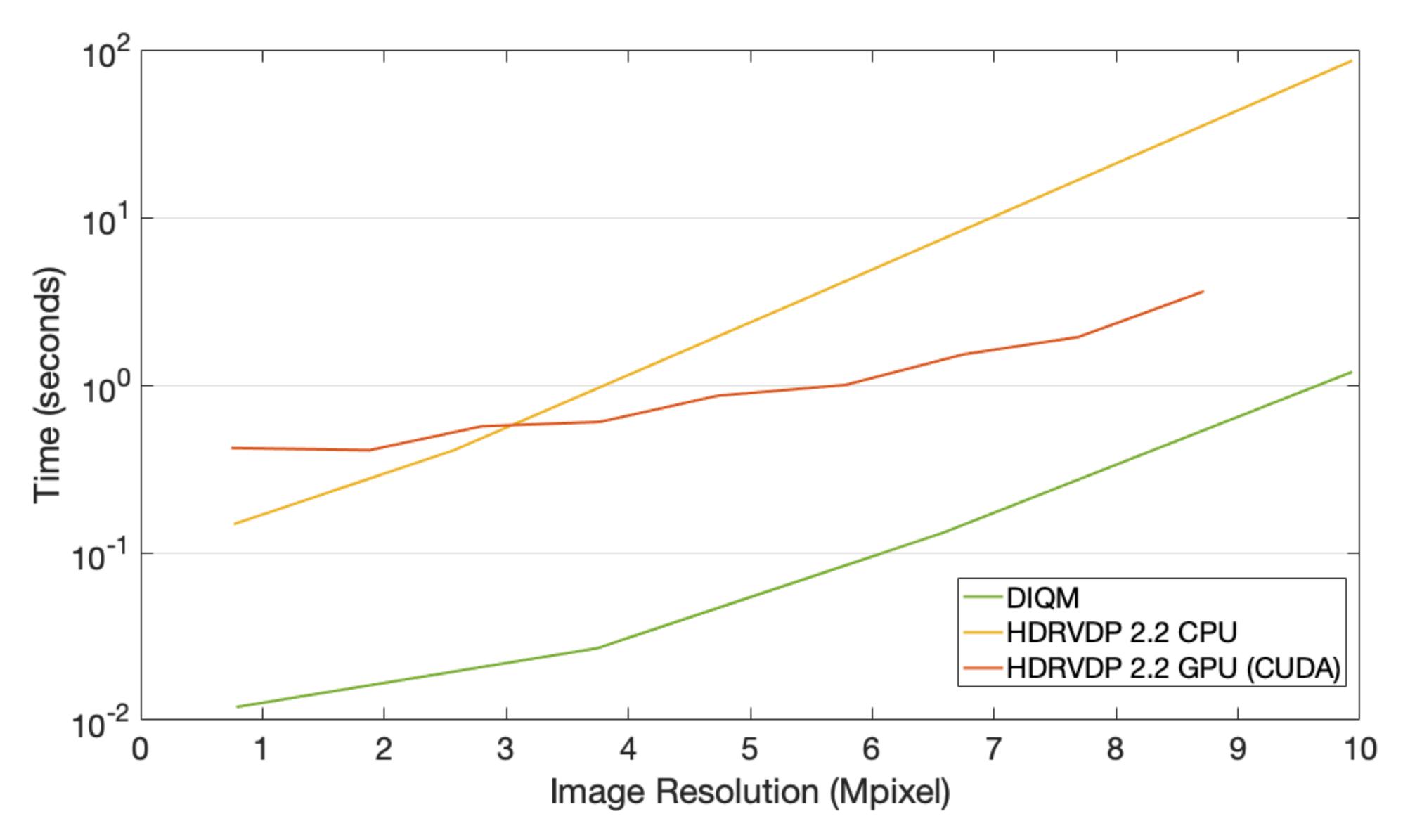
DIQM: Loss and Encoding

- Loss is a classic MSE; it works well for predicting quantitative values.
- Encoding:
 - SDR Images: linear scaling to fit the range [0,1]
 - HDR Images: $log_{10}(x + 1)$

DIQM: Results Test Set



DIQM: Timings Results



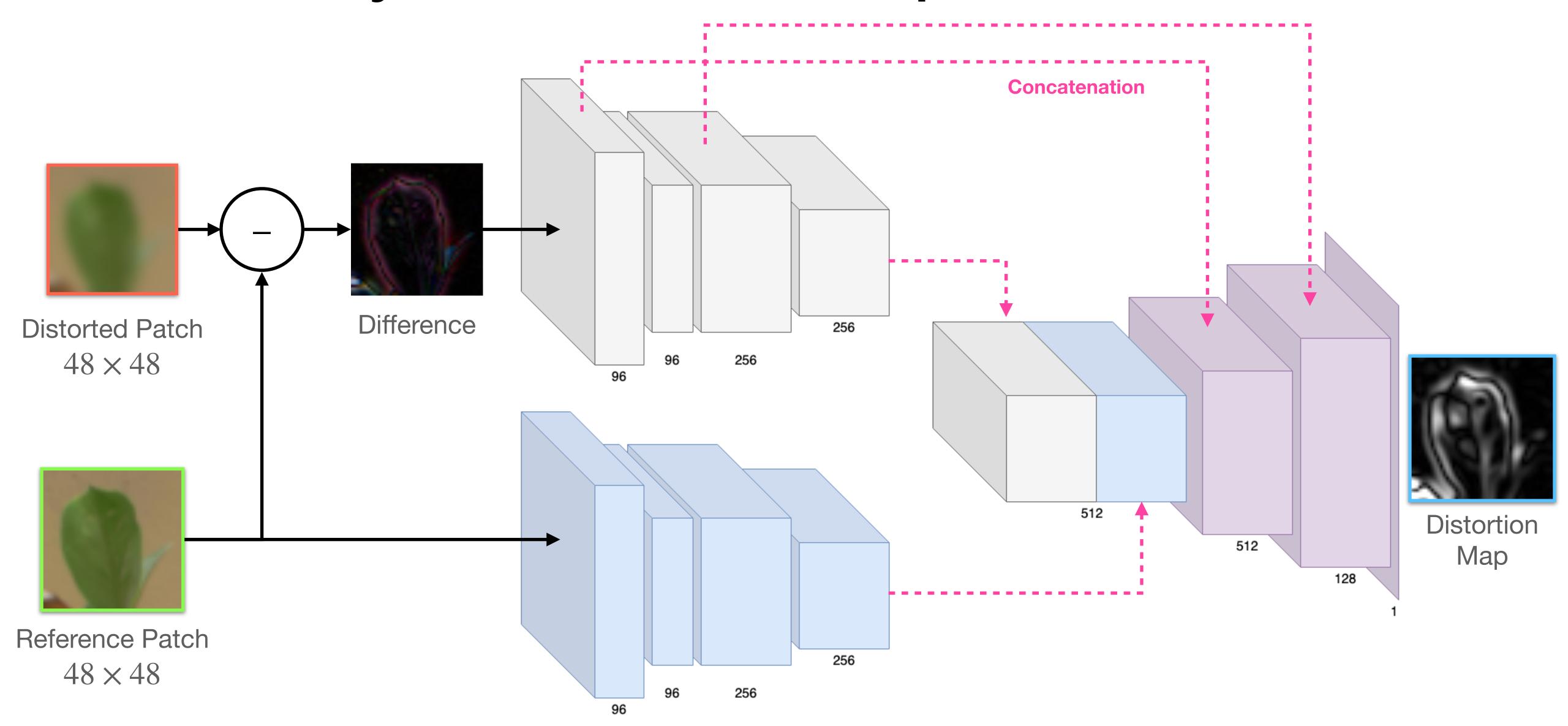
DIQM: Conclusions

- There two main results:
 - We can distill metrics into a CNN with reasonable quality;
 - The CNN can be simple; no need of overly complex models:
 - The CNN runs real-time at inference time;
 - Small weights.

Visibility Distortion Maps CNN-based

- Several applications (imaging and computer graphics) are requiring a visual difference map
 - Traditional objective metrics can not be used, e.g., single numeric value
 - Existing visibility metrics produce a visual difference map, but they are inaccurate
 - Lack of large image collections with good coverage of possible distortion
 - A large dataset of image pairs (ground truth, distorted) is collected, e.g., user marking indicate wether the distortion is visible
 - A CNN is used and trained on this large dataset

Visibility Distortion Maps CNN-based

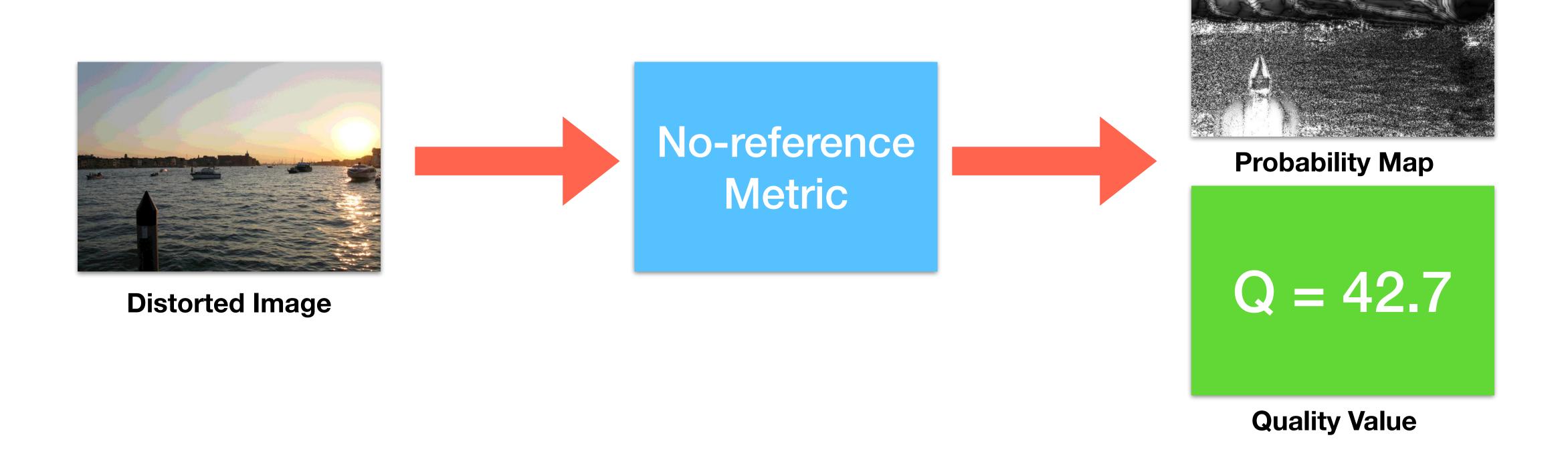


Visibility Distortion Map: Conclusions

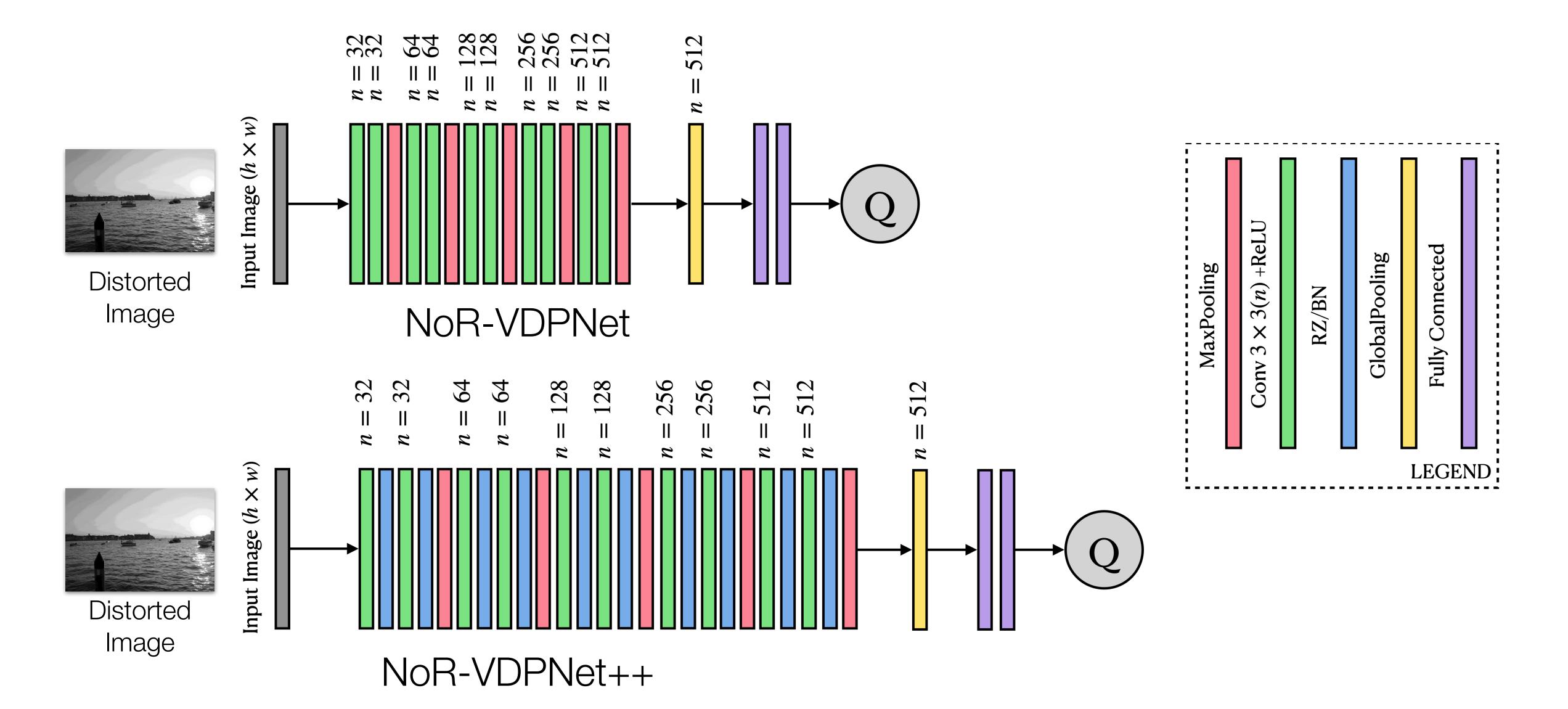
- There main results:
 - A statistical model has been proposed to fit the large data collected and used as loss function
 - Existing visibility metrics can be improved through the usage of a CNN based method, which it is trained using the collected dataset and using as loss function the proposed statical model

Going No-Reference

No-Reference Metrics



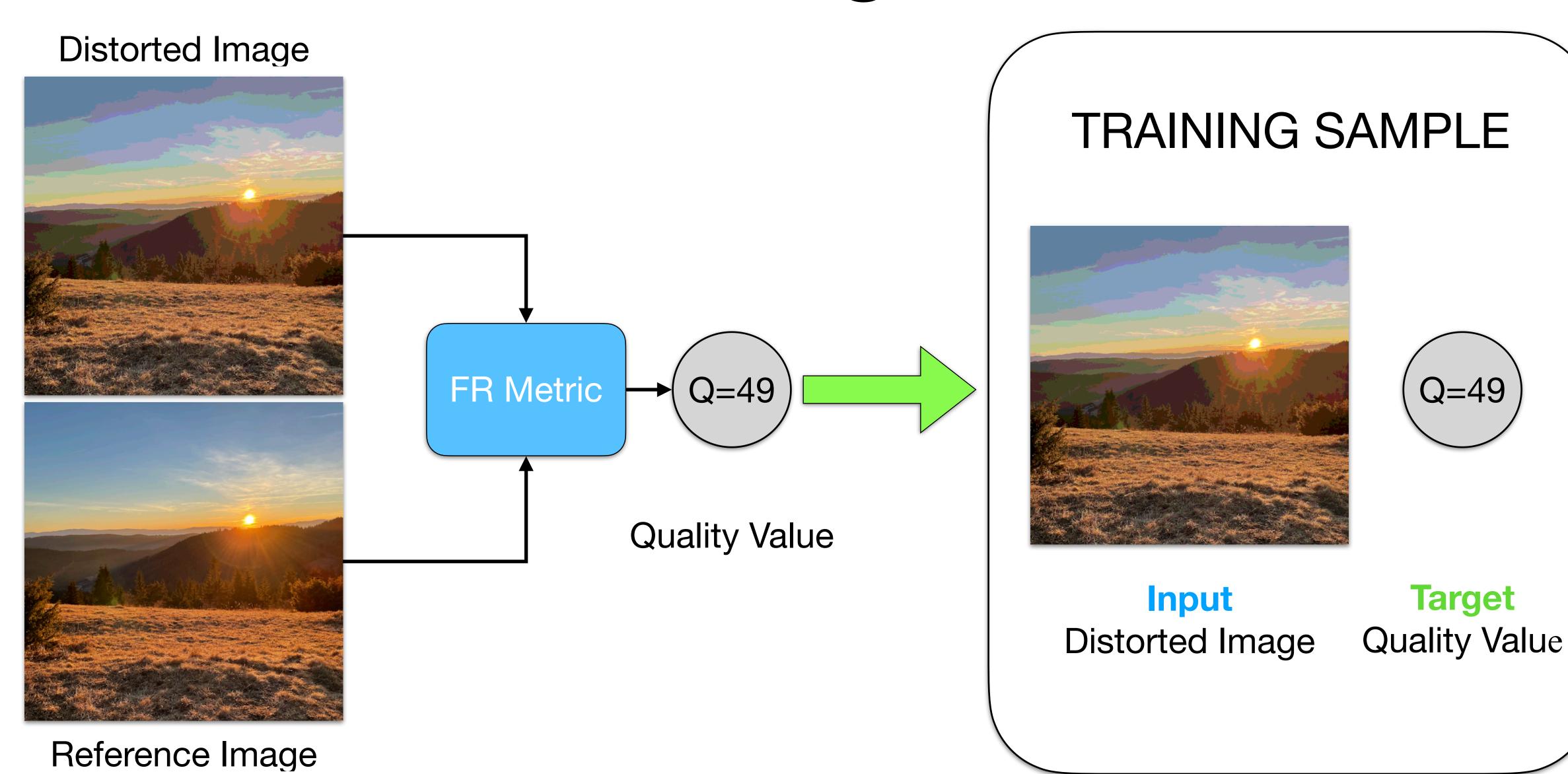
NoR-VDPNet(++): Architecture



Training Set

Q=49

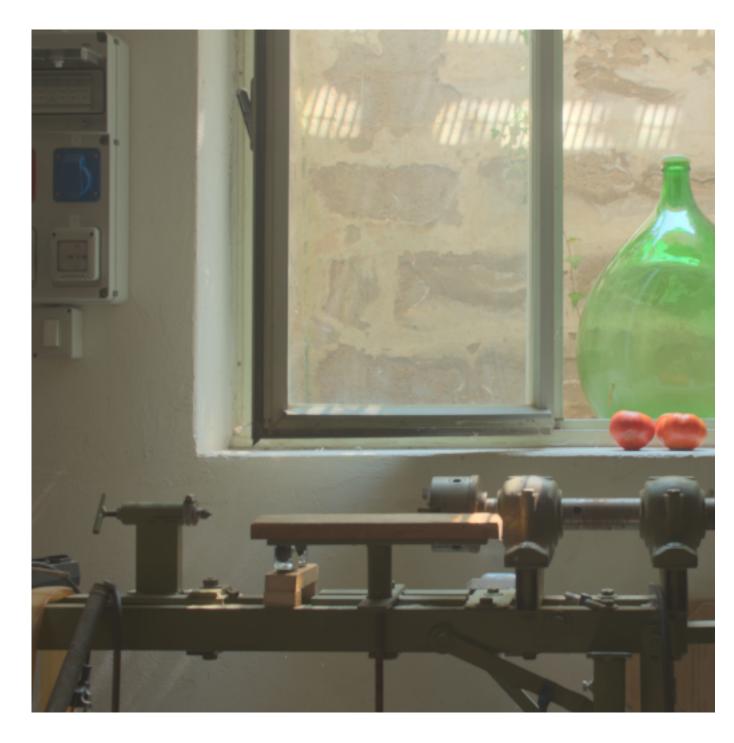
Target



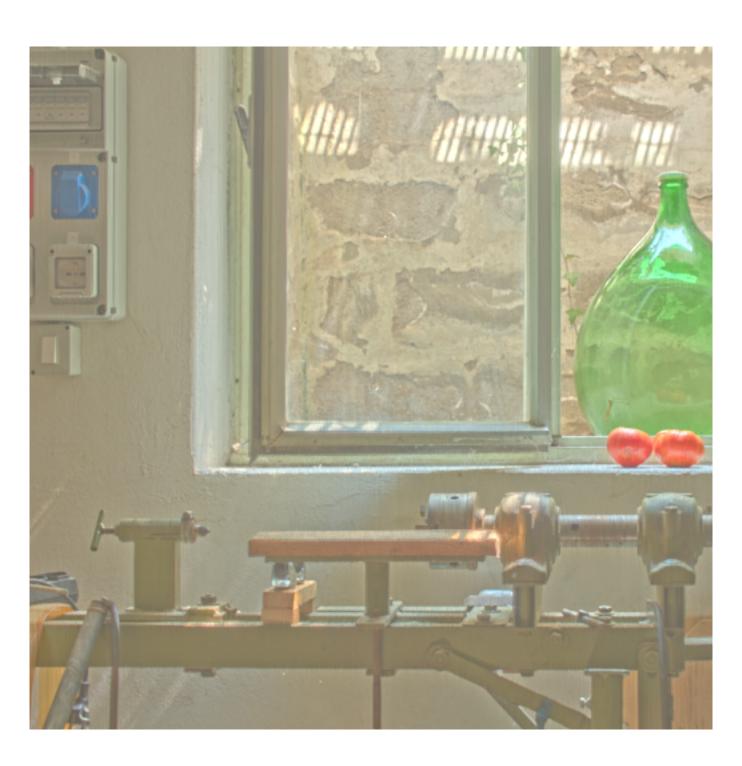
NoRVDPNet(++): HDR-VDP2.2/TMQI Datasets

	TRAINING SET	VALIDATION SET	TEST SET	TOTAL
HDR-C (HDR-VDP2.2)	49.602	6.216	6.216	62.034
SDR-D (HDR-VDP2.2)	80.244	10.025	10.044	100.313
TMO (TMQI)	106.290	13.320	13.320	132.930
ITMO (HDR-VDP2.2)	106.290	13.320	13.320	132.930

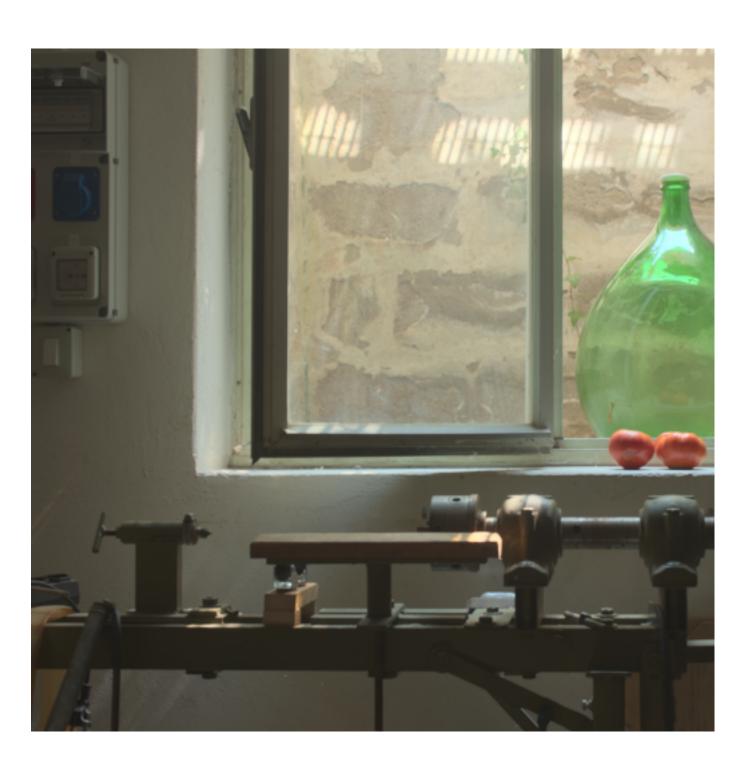
NoRVDPNet(++): TMO Dataset



Drago et al. 2003

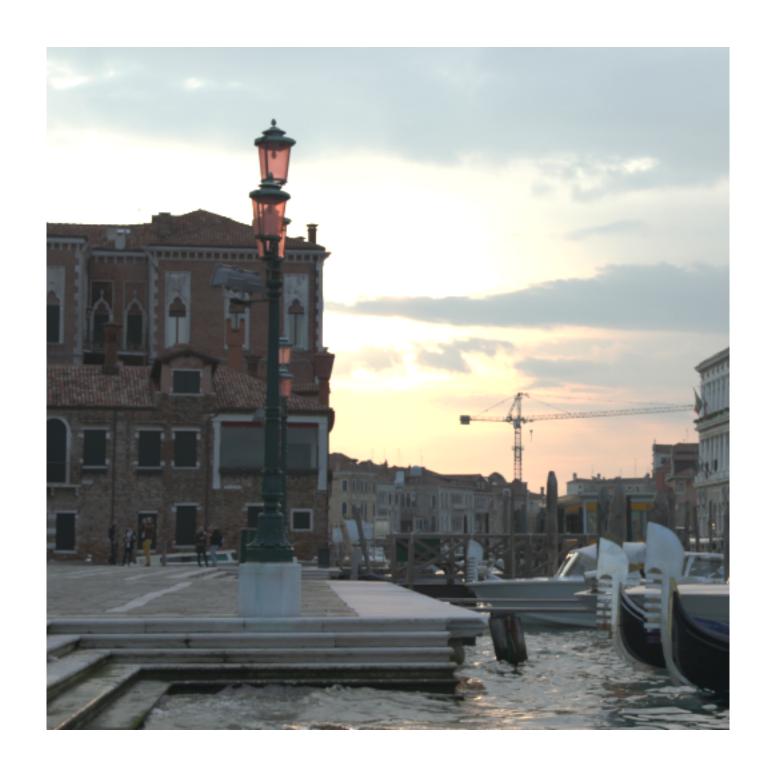


Durand and Dorsey 2002

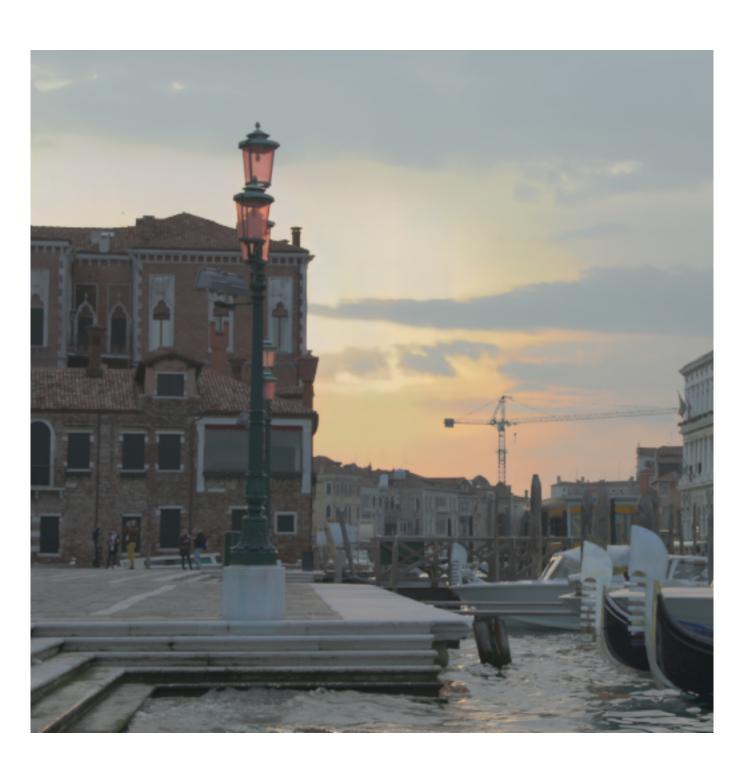


Reinhard et al. 2002

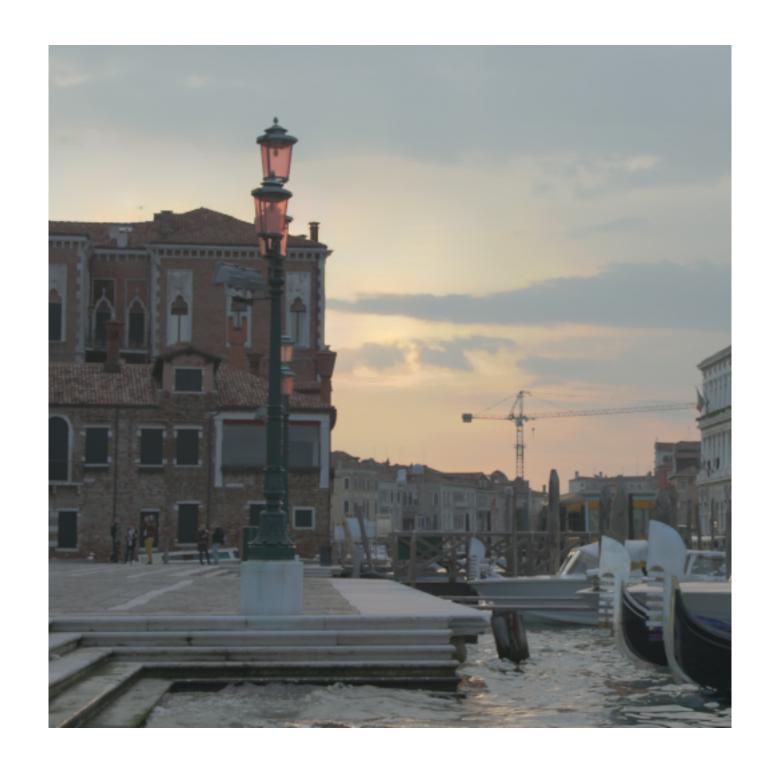
NoRVDPNet(++): ITMO Dataset



Input SDR Image



Eilertsen et al. 2017 (tonemapped)



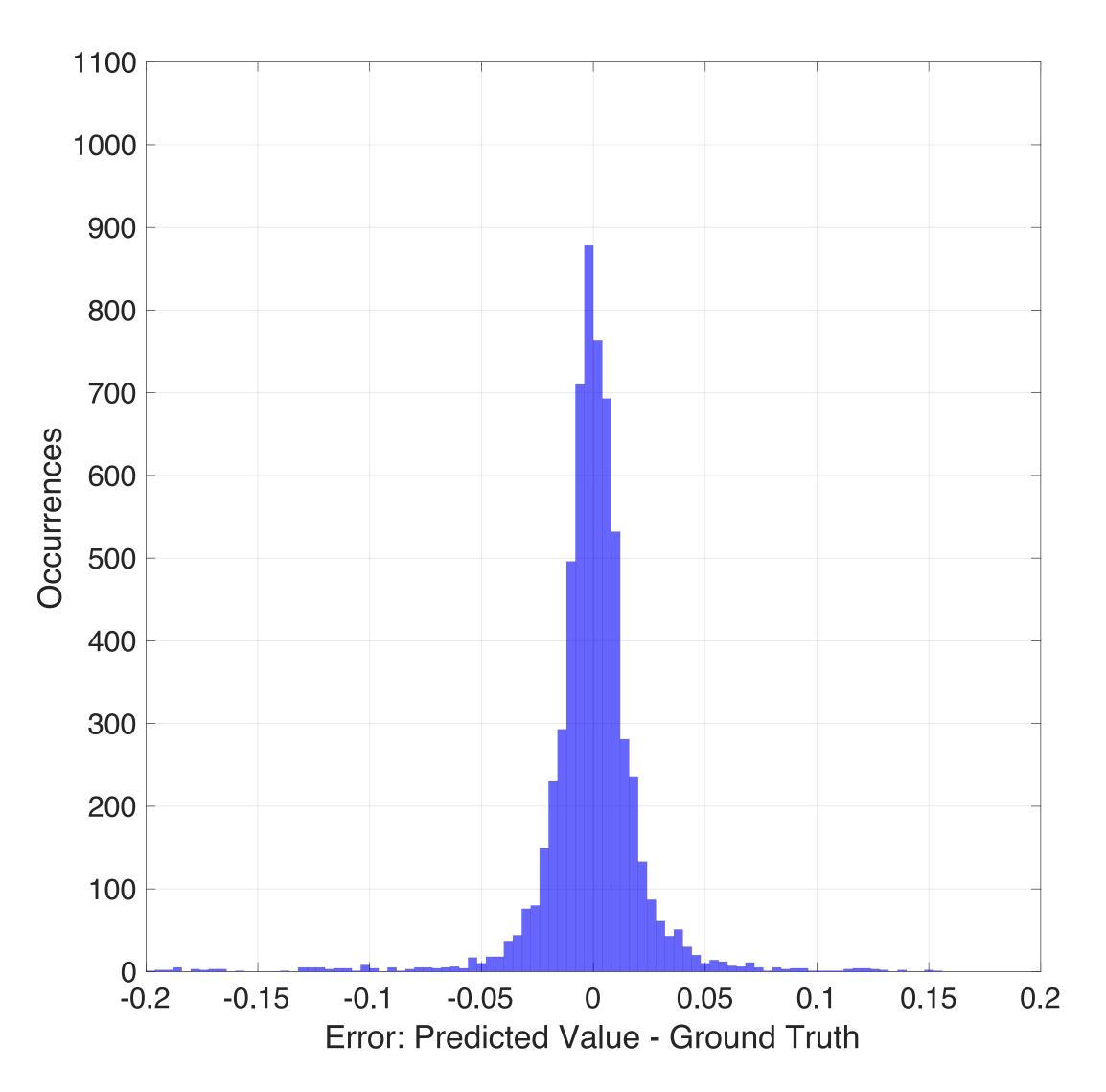
Santos et al. 20202 (tonemapped)

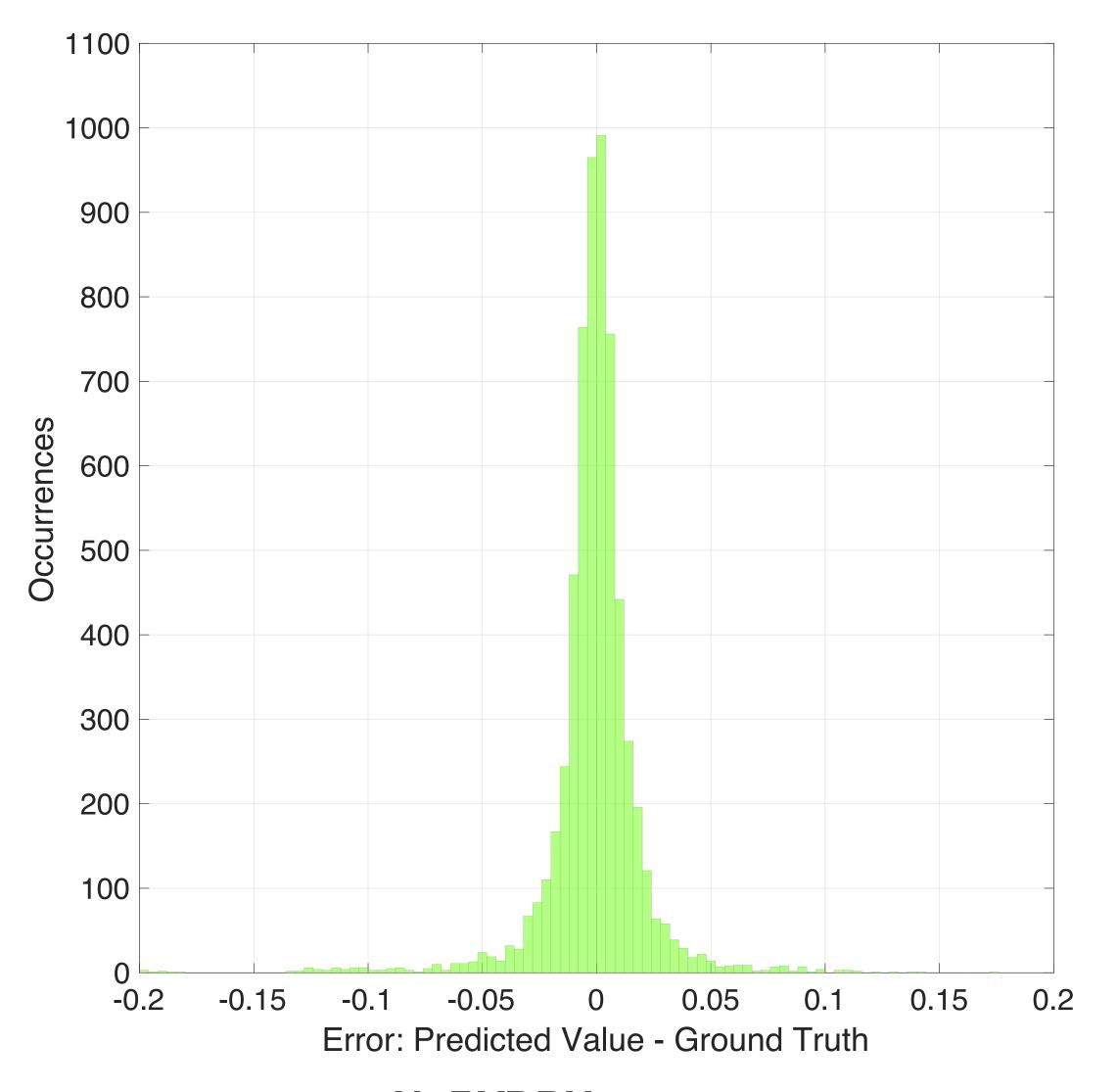
6 inverse tone mapping operators 4 available in the HDR-Toolbox: https://github.com/banterle/HDR_Toolbox/

NoR-VDPNet(++): Loss and Encoding

- Loss is a classic MSE; it works well for predicting quantitative values:
- Encoding:
 - SDR Images: linear scaling to fit the range [0,1]
 - HDR Images: $log_{10}(x + 1)$

Results: HDR-C Test Set

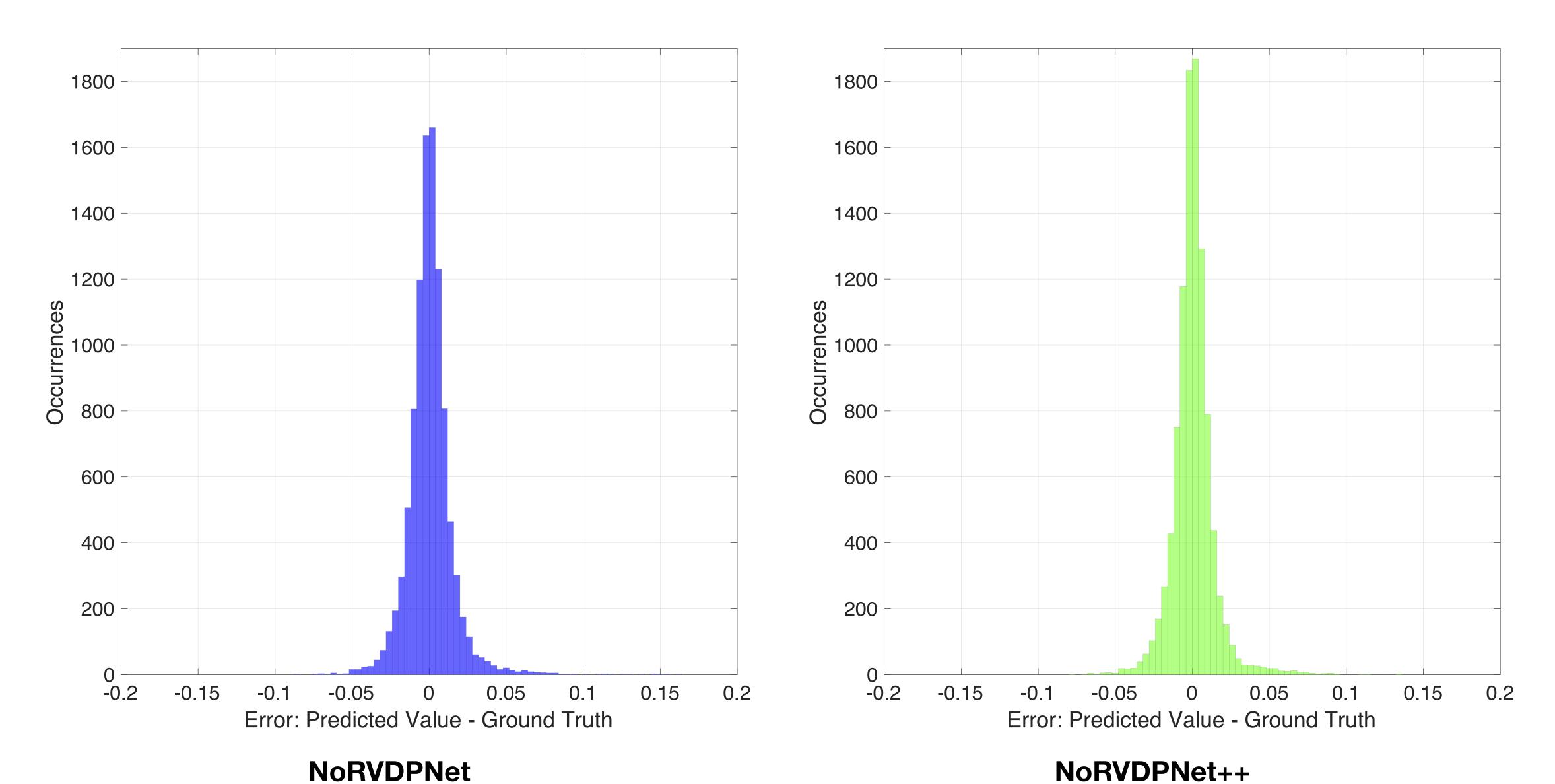




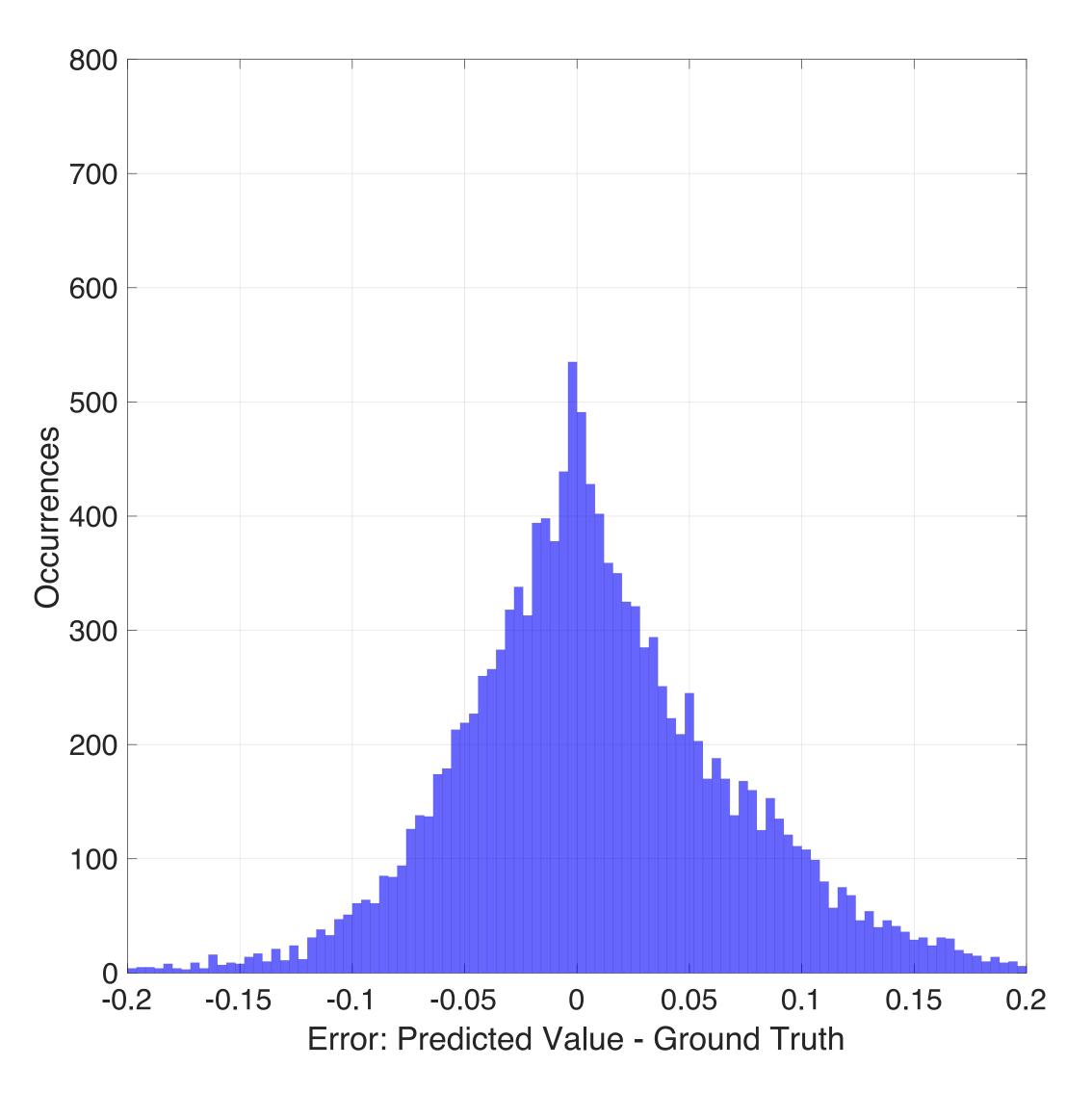
NoRVDPNet

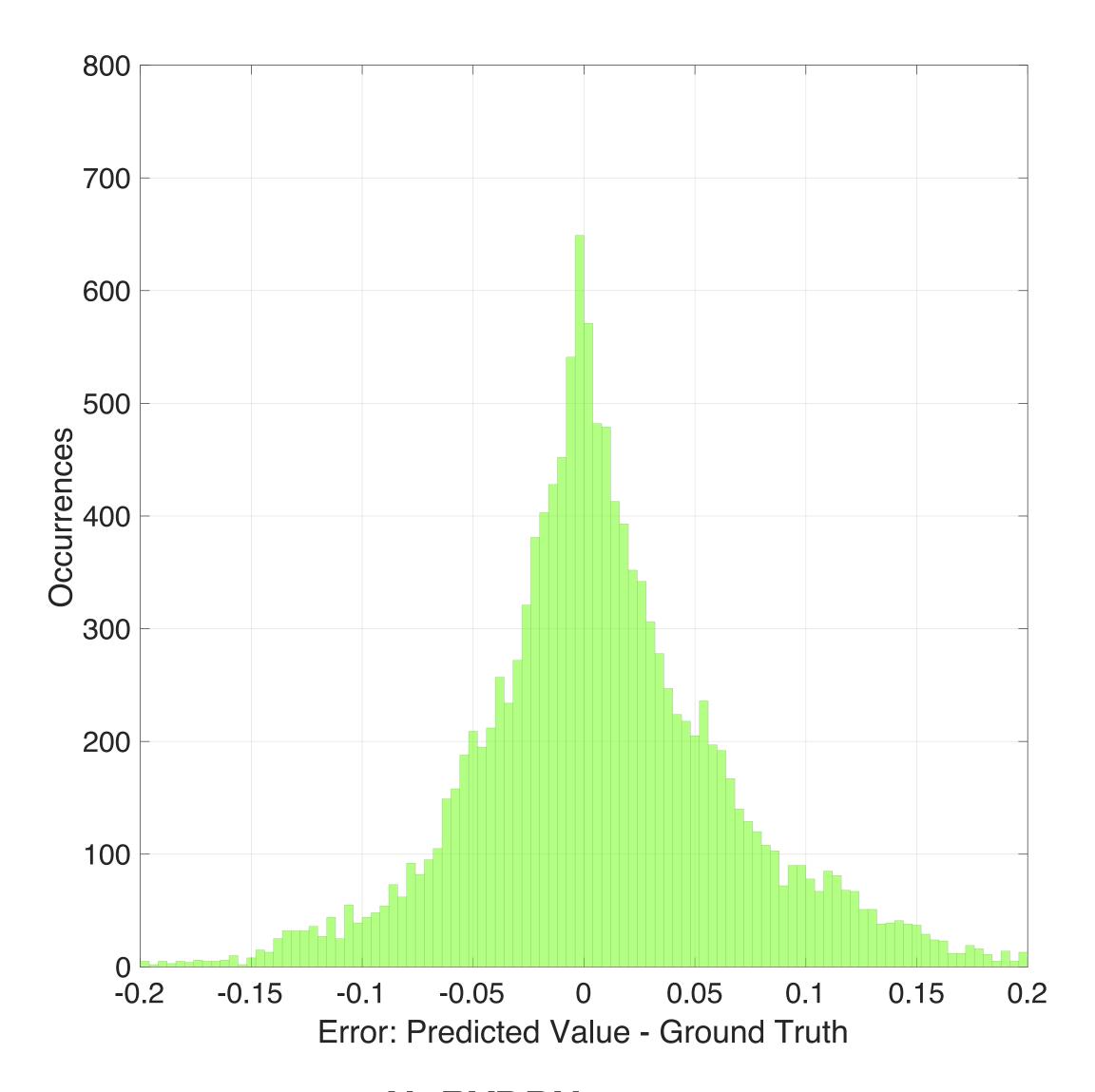
NoRVDPNet++

Results: SDR-D Test Set



Results: ITMOS Test Set

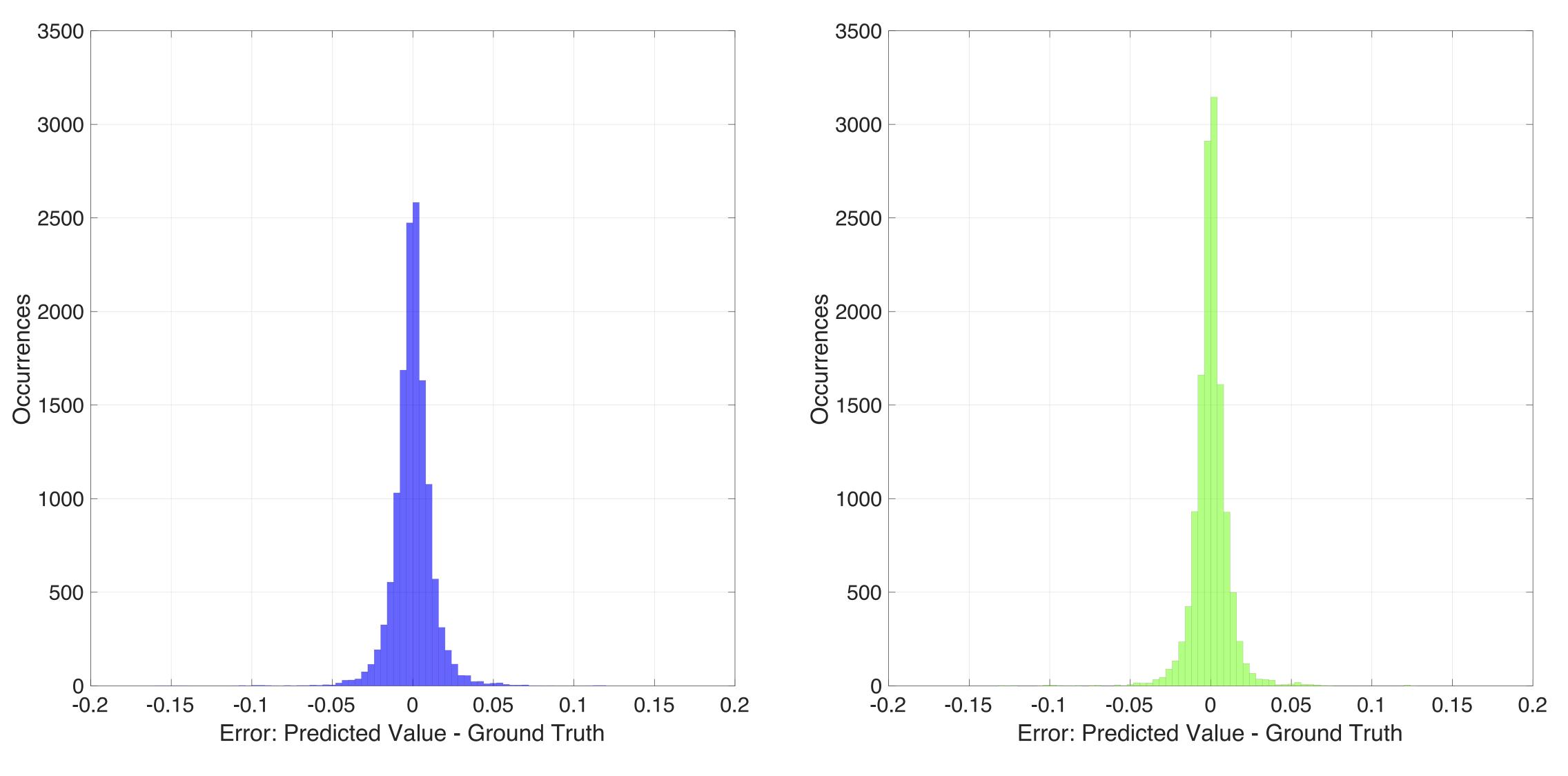




NoRVDPNet

NoRVDPNet++

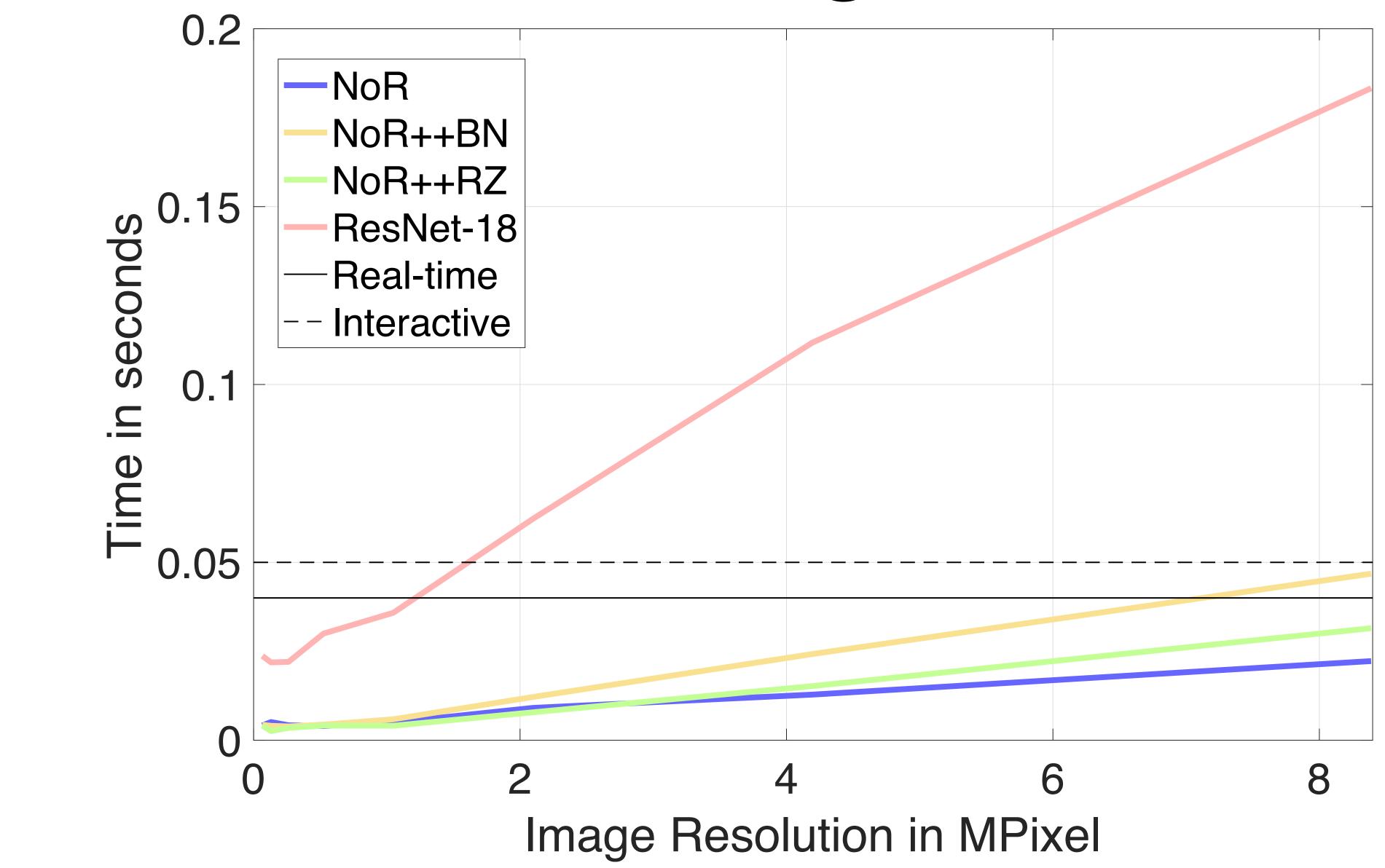
Results: TMOS Test Set



NoRVDPNet

NoRVDPNet++

Timings

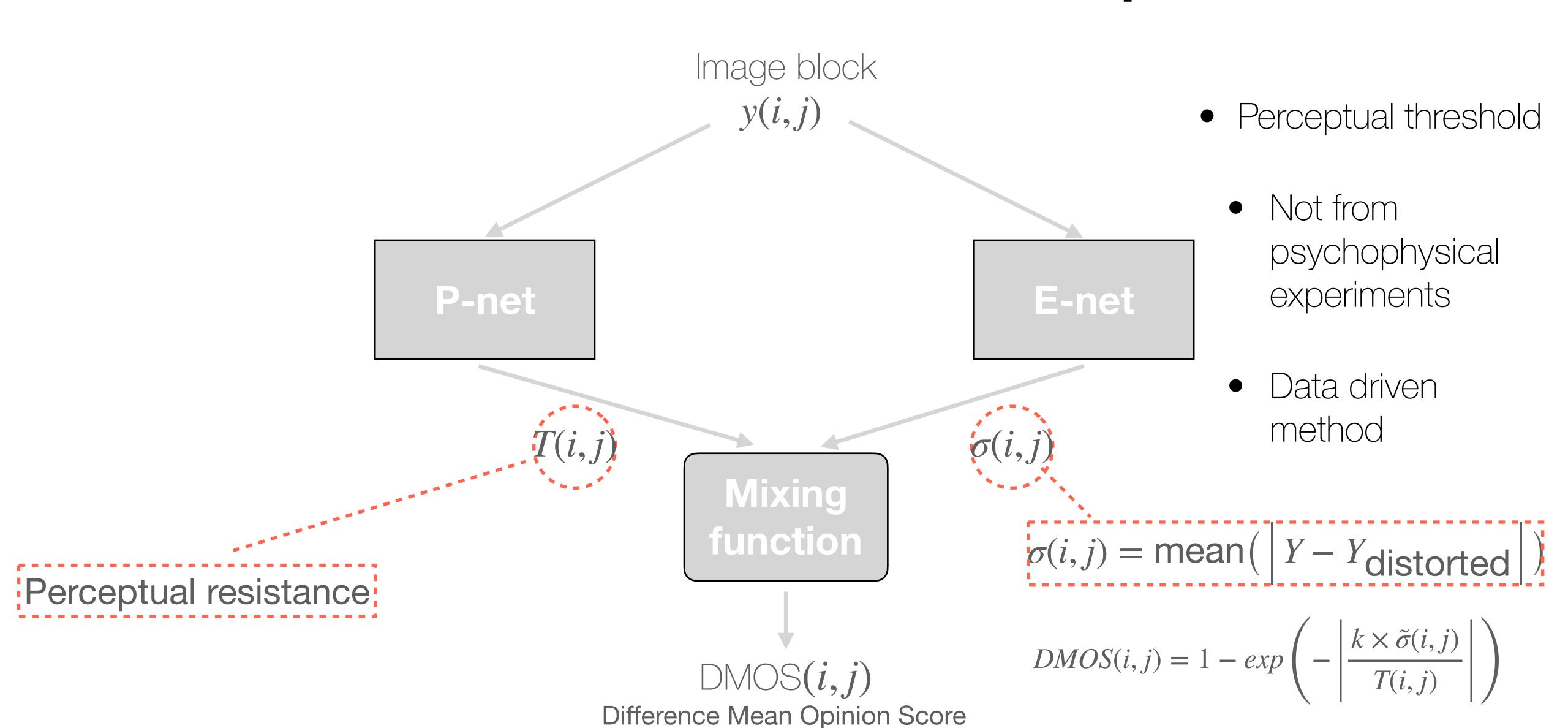


NoR-VDPNet(++): Conclusions

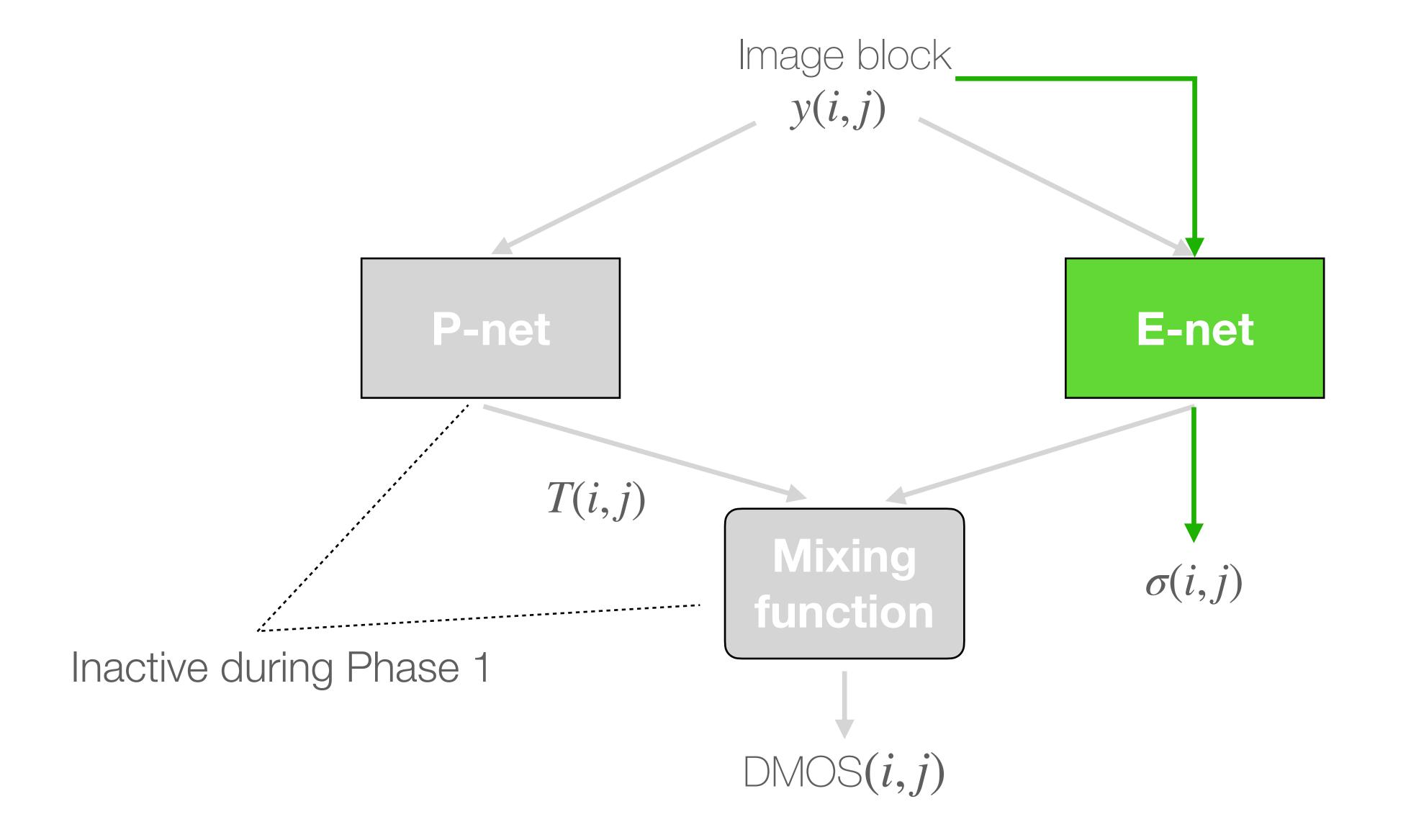
- We can go from reference to no-reference;
- When we model several distortions we have a larger error than a single distortion;
- Layer normalization increases quality;
- This scheme works for TMQI-I (SSIM-based);
- Still real-time performance.

HDR NR-IQA

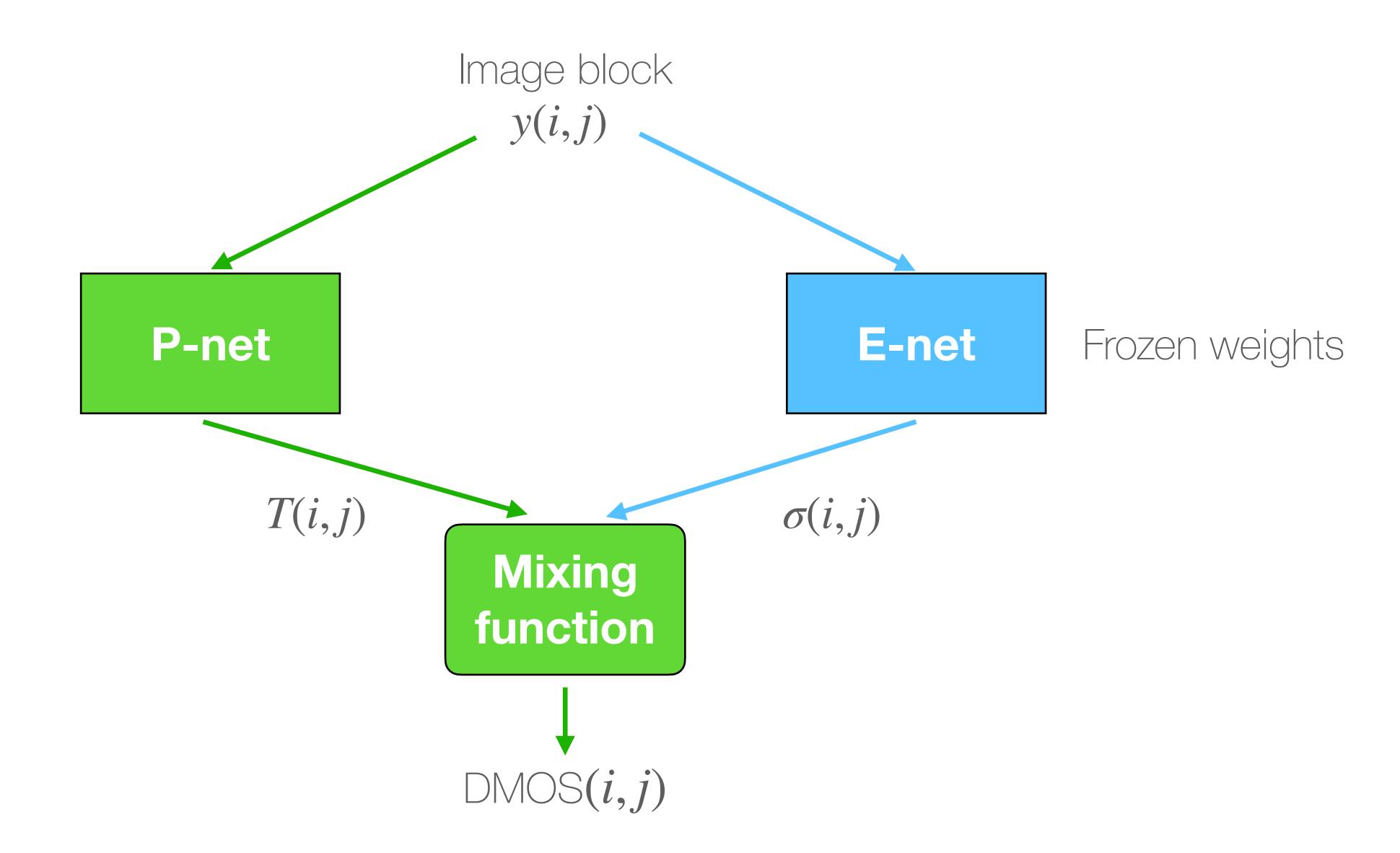
HDR NR-IQA Principle



HDR NR-IQA Training - Phase 1



HDR NR-IQA Training - Phase 2

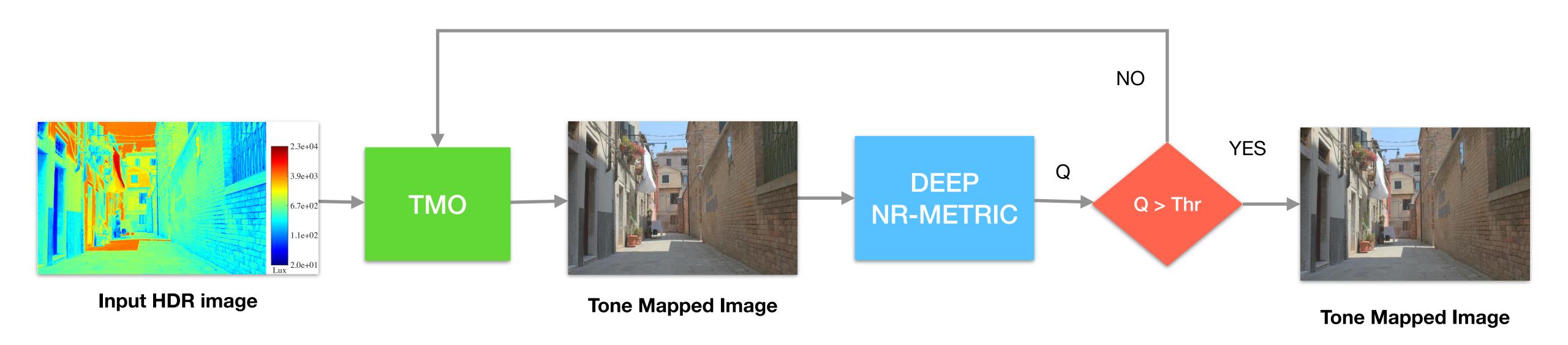


HDR NR-IQA: Conclusions

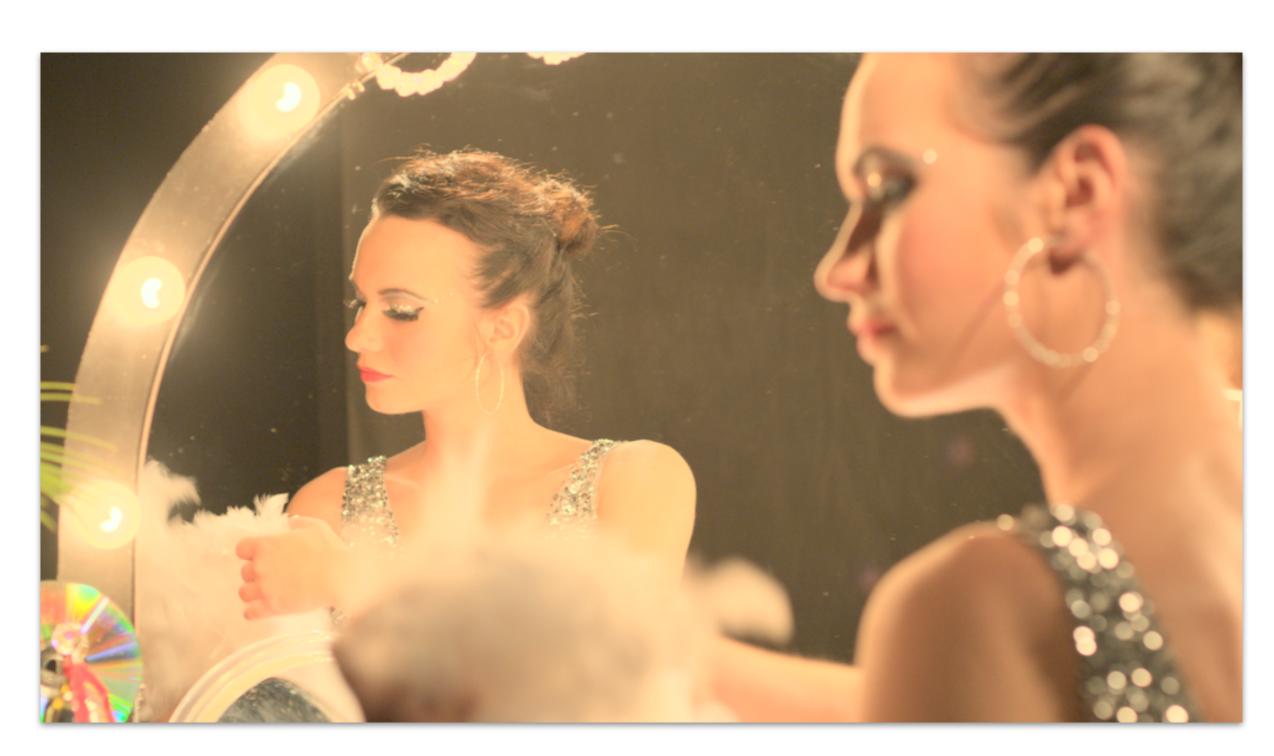
- Computational performances are not real-time, but it can be still optimized.
- It outperforms other NR-IQA methods.
- It is comparable to HDR FR-IQA:
 - without the need of a reference image.

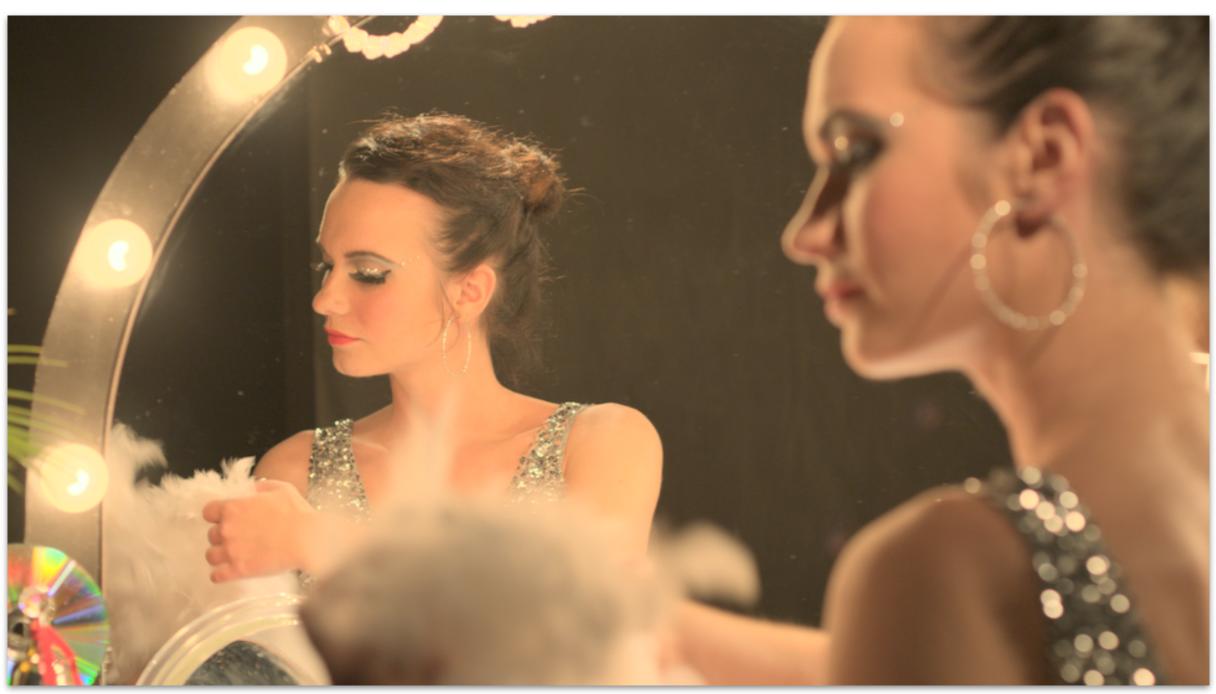
Applications

Applications: TMO Optimization Task



Applications: Optimized TMO





TMO without optimized parameters

TMO with optimized parameters

Application: Optimized TMO

(b) $\hat{Q} = 0.906/Q = 0.930$

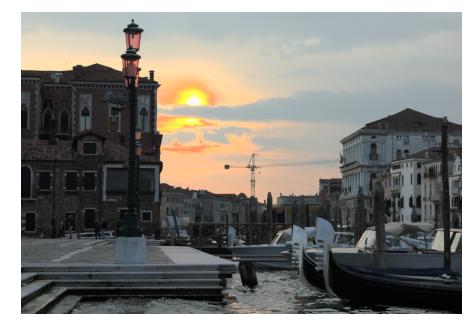
(c) $\hat{Q} = 0.933 / Q = 0.914$

(d) $\hat{Q} = 0.918/Q = 0.903$

(e) $\hat{Q} = 0.902/Q = 0.889$

(f) $\hat{Q} = 0.841/Q = 0.771$

(g) $\hat{Q} = 0.951/Q = 0.831$

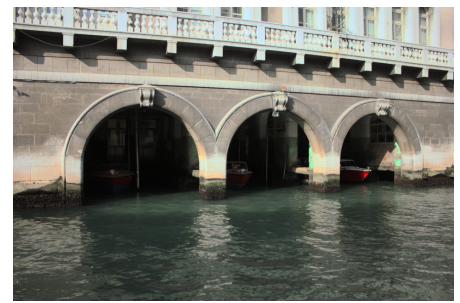


(h) $\hat{Q} = 0.875/Q = 0.909$

(i) $\hat{Q} = 0.951/Q = 0.967$

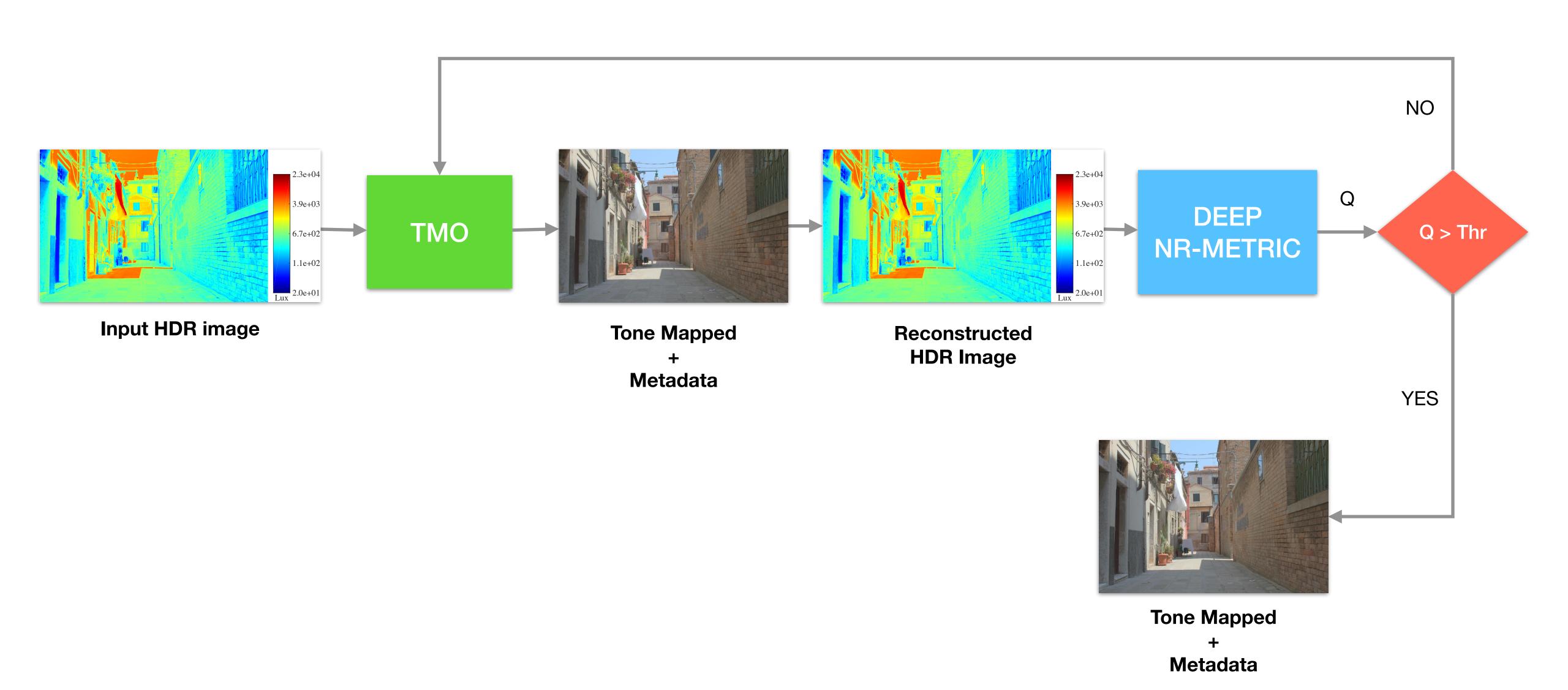
(j) $\hat{Q} = 0.958/Q = 0.974$

(k) $\hat{Q} = 0.967/Q = 0.976$



(1) $\hat{Q} = 0.997/Q = 0.979$

Applications: JPEG-XT Compression Task



Applications: Results JPEG-XT Compression

Reinhard et al.'s TMO optimized with NoRVDPNet

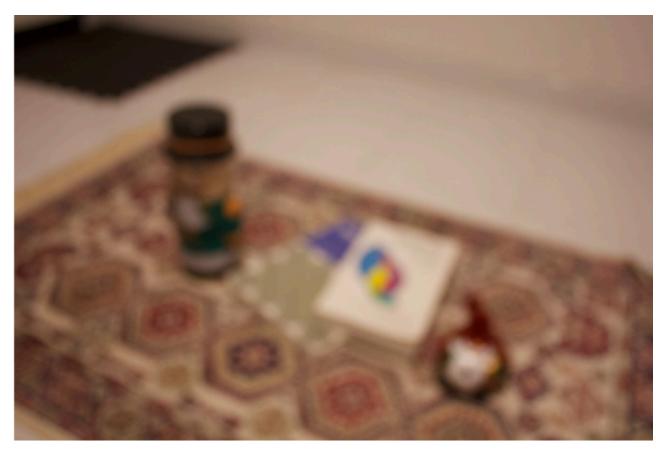
Tone Mapped HDR image for JPEG-XT

Input HDR image

Applications: Photo Selection

Q = 86.99

Q = 86.92



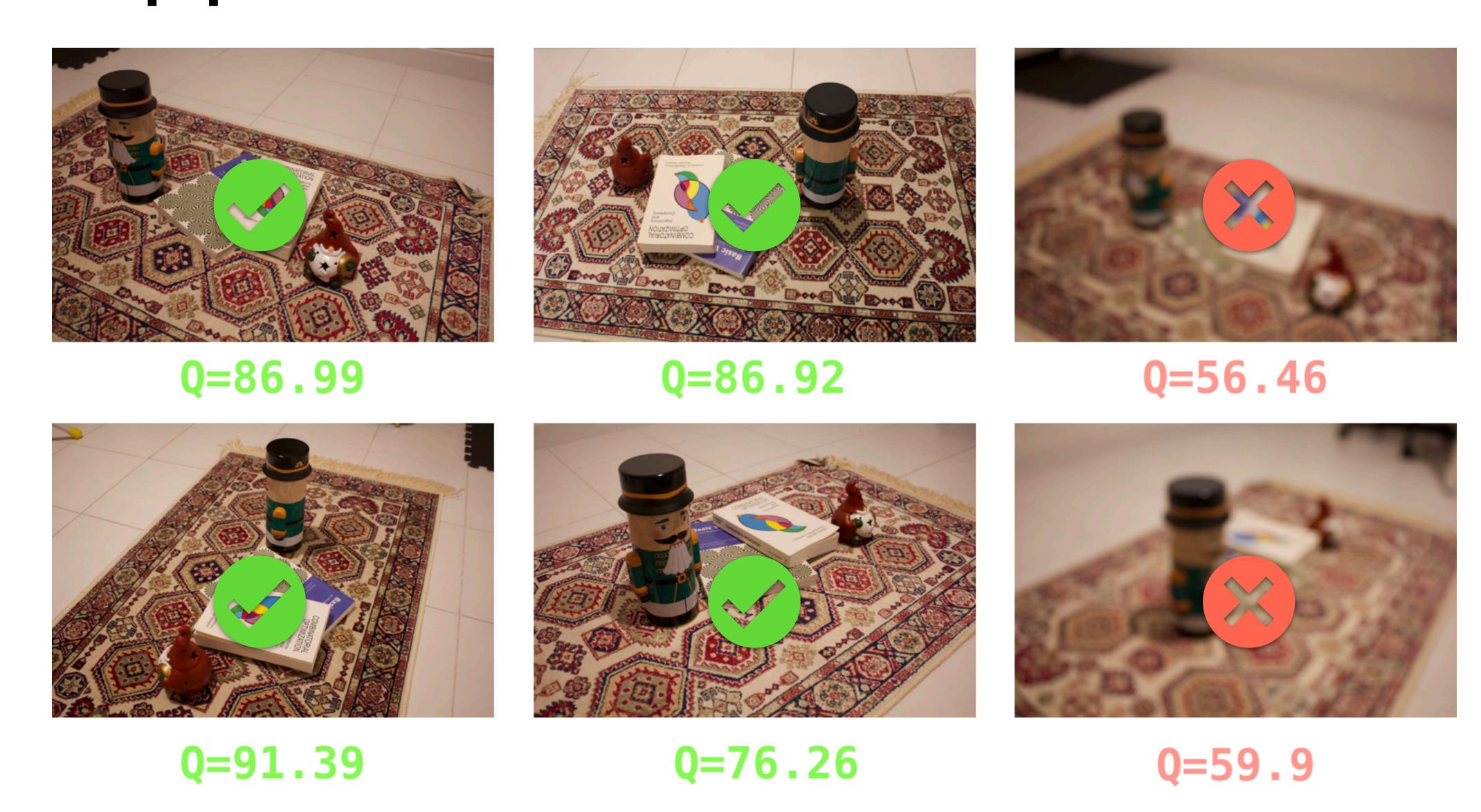
Q = 56.46

Q = 91.39

Q = 59.9

Q = 76.26

Applications: Photo Selection



Future Directions

Future Directions

- Going in the temporal domain.
- Extend approaches to perceptual uniform domains.
- Mix perceptual experiments results and metrics.

Thank you for your attention!

Please contact us at:

<u>a.artusi@cyens.org.cy</u> <u>francesco.banterle@isti.cnr.it</u> or visit us:

https://deepacamera.org.cy http://vcg.isti.cnr.it

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 739578 and No. 820434, and from the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy.

This project is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (POST-DOC/0916/0034).