Modern High Dynamic Range Imaging at the Time of Deep Learning

Francesco Banterle and Alessandro Artusi

Introduction

- Acquisition is tedious:
 - Images alignment.
 - Ghosts removal.

• What can we do without bracketing or modified/expensive hardware?

Introduction

- Acquisition is tedious:
 - Images alignment.
 - Ghosts removal.

• What can we do without bracketing or modified/expensive hardware?

Introduction

- Acquisition is tedious:
 - Images alignment.
 - Ghosts removal.

• What can we do without bracketing or modified/expensive hardware?

The Problem

Image

Histogram of the red dotted line

The Problem

ITMO

SDR Image

The Linearization Dilemma

The Linarization Dilemma

- One of the first step to decide is how we linearize the input SDR image.
- Many methods uses a standard $\gamma = 2$ or $\gamma = 2.2$:
 - Eilertsen et al. 2017, Marnerides et al. 2018, etc.
- Note that many modern cameras encode images using common CRF such as sRGB, PQ, and HLG.

- Here, we have **two possibilities** to solve the problem:
 - Approach 1: Given an input image, we generate directly a HDR image

SDR Image

recover. If the tone mapper is invertible, we can obtain a radiance map.

SDR Image

Tone Mapped HDR Image

• This approach may also compute a tone mapped version of the radiance map to

- Another possibility is:
 - different exposure times.

SDR Image

- The bread and butter of most iTMO are:
 - FCN.
 - U-Net [Eilertsen et al 2017].
 - Residual Blocks [Kim et al. 2019].
- They are simple models that generally works.

Input SDR

Output HDR

End2End

- Activation function:
 - LeakyReLU/GeLU in the encoder part.
 - ReLU in the decoder part.
 - The last layer:
 - Sigmoid: tone mapped results or single exposures.

- Endo et al. 2017 employs a classic U-Net with a twist:
 - Encoder has 2D convolutions.
 - Decoders has 3D convolutions:
 - Generate in a single network all exposures.
 - Limitations: the number of exposures are limited.

UP NETWORK

Input SDR

Output Exposures

DOWN NETWORK

Input SDR

Output Exposures

- Marnerides et al. 2018 proposed a multi-branch architecture to overcome U-Net limits (i.e., blocking artifacts):
 - Local features;
 - Medium features;
 - Global features.

INPUT

GLOBAL BRANCH

- Kinoshita and Kiya 2019 paired the global branch with U-Net to solve similar issues of Marnerides et al. 2018
- This network is trained on tone mapped images.

INPUT

GLOBAL BRANCH

Which Architecture? Feature Masking

- Santos et al. 2020 introduces masking:
 - defined using over-exposed pixels.

INPUT SDR

• We can see inverse tone mapping as an inpainting problem, where our mask is

MASK

Which Architecture? Feature Masking

• Santos et al. 2020 apply the mask at each convolution step:

INPUT SDR

Which Architecture? Feature Masking

• Liu et al. 2020 has a network that recovers the inverse camera pipeline:

Dequantization Net

Hallucination Net Refinement Net

Which Architecture? Frequencies Separation

- The novelty:
 - A network for each frequency:
 - aware filter:
 - Bilateral Filter, Guided Filter, WLS, etc.
 - computed as: $I_d = I/I_h$.
 - 2021 using WLS instead of the bilateral filter.

Adopted a classic end2end encoding paired with a GAN, so nothing special right now...

• Base image or I_h : is the output of filtering the input image, I, filtered using an edge-

• Detail image or I_d : is an image encoding the high-frequency details, and it is

A similar work with more refinement networks was proposed by Zhang and Aydın

Which Architecture? Frequencies Separation - Wang et al. 2019

Base Layer Reconstruction

Merge Network

Which Architecture? Frequencies Separation - Zhang and Aydın 2021

Base Layer Reconstruction

Refinement

Datasets

HDR Image Datasets

- There are few datasets of real HDR images.
- These datasets are typically uncalibrated:
 - This means that luminance values are relative; i.e., they do not have absolute values in cd/m^2 .
 - Colors may not match the real colors.
- They are stored in different formats without the use of a standard. Typically, using the Radiance (.hdr) or OpenEXR (.exr) format files.

• Proper HDR images/videos (≥ 18 -stop) are scarce on the Internet.

HDR Image Datasets

Dataset Name	#Images	#Resolution	Calibrated	Website	
HDR Survey	108	5MPix	Scene-referred	http://markfairchild.org/ HDR.html	
HDR Eye	47	2MPix (full-HD)	Display-referred		
Stanford HDR Dataset	88	0.32Mpix	Scene-referred	https://qualinet.github.io/databases/image/ high dynamic range imaging dataset of na tural scenes/	
Laval HDR Indoor	2100	2MPix (2:1 ratio)	Relative values	http://indoor.hdrdb.com/	
Laval HDR Outdoor	205	2Mpix (2:1 ratio)	Relative values	http://outdoor.hdrdb.com/	
Akyuz HDR Images	10	5MPix	Relative values	https://user.ceng.metu.edu.tr/~akyuz/ hdrdisp_eval/hdrdisp_project.html	
Debevec HDR Images	21	0.3-2Mpix	Relative values	<u>https://</u> <u>www.pauldebevec.com/</u>	
MPI HDR Images	7	3MPix	Scene-referred	<u>https://resources.mpi-</u> inf.mpg.de/hdr/gallery.html	
Classic HDR Images	10	<1Mpix	Relative values	<u>https://www.cs.huji.ac.il/</u> w~danix/hdr/results.html	
Funt HDR Dataset	105	3Mpix	Scene-referred	https://www2.cs.sfu.ca/ ~colour/data/funt_hdr/	

HDR Video Datasets

Dataset Name	#Videos	#Resolution	Length	FPS	Color Space	Format	Website
Stuttgart HDR Dataset	33	1920×1080	13s-100s	24/25	REC709	Floating Point	<u>https://</u> <u>www.hdm-</u> <u>stuttgart.de/</u> <u>vmlab/projects/</u>
UBC HDR Video Dataset	10	2048×1080	7s-10s	30	REC709	Floating Point	<u>http://</u> <u>dml.ece.ubc.ca/</u> <u>data/DML-HDR/</u>
LIVE HDR Video Quality Assessment Database	31 (310 at different bit- rates)	0.32Mpix	3s-10s	50/60	BT2020	HDR10	<u>https://</u> live.ece.utexas.edu/ <u>research/LIVEHDR/</u> LIVEHDR_index.html
MPI HDR Video Dataset	2	0.3Mpix	24s-34s	24	REC709	Floating Point	<u>https://</u> <u>resources.mpi-</u> <u>inf.mpg.de/hdr/</u> <u>video/</u>
EBU HDR Video Dataset	10	3996×2160	10s-31s	50	BT2100	HLG	<u>https://</u> <u>tech.ebu.ch/</u> <u>testsequences</u>

HDR Content Datasets

- Are these tables complete?
 - No, they are not.

. . .

- There are more datasets, but it can happen they may be not be available for some time. For example:
 - LiU HDR Video Dataset: high-quality dataset that is not currently available on the web.
 - MPEG HDR Video Dataset: not freely available.

Augmentation Strategies Classic flips and rotations;

Cropping from high-resolution images;

• Channel swapping [Kalantari et al. 2017]: • RGB channels are randomly swapped;

- The training dataset:
 - <Input SDR, Output HDR>
- How do we compute the input?

- δt is the virtual exposure value.
- f(x) is the camera response function where the simplest to be used is:

$Z = f(E \cdot \delta t)$

$$f(x) = x^{\frac{1}{2.2}}$$

- Many methods employs a random function from Grossberg and Nayar 2003 dataset of CRFs:
 - Eilertsen et al. 2017 showed that meaningful CRF can be modeled as:

- δt is an important value to be picked up:
 - Its range is $[1/I_{min}, 1/I_{max}]$
- Automatic exposure:

•
$$\delta t = \frac{1}{4I_{\text{mean}}}$$

- - We do not want too dark images.
 - We do not want too bright images.

• We pick the δt that maximizes the well-exposed pixels in the range [0.05,0.95]:

• We may perform a random augmentation:

- In this case, we need to skip extremely bright and dark images:
 - These are difficult cases.
 - meaningful from our methods:
 - 50-75% of well-exposed pixels:
 - Half/Quarter of the image totally white or totally black.

 $\delta t \sim [1/I_{\min}, 1/I_{\max}]$

• We need a minimum of well-exposed pixels in order to draw something of

Selecting Patches

- Eilertsen et al. 2017:
 - For each HDR, 10 patches are selected at 320×320 using random cropping.
 - Lee et al. uses random crops at 256×256
- Endo et al. 2017:
 - Images are downsampled at 512×512 .
- Marnerides et al. 2018:
 - Random crop with Gaussian distribution (center image) at 384×384 .
- Santos et al. 2020:

• Selection of patches with texture; i.e., mean gradient of the detail layer over 0.85 (bilateral separation).

Training

The Loss Function

- Eilertsen et al. 2017:
 - MSE in the log domain.
 - We have a loss function for the luminance and the reflectance component:
 - Equal weight in the paper for both losses.
- Marnerides et al. 2018:
 - L1 + Cosine Loss (for colors in under-exposed areas):

$$\mathscr{L}_{\cos}(\hat{I}, I) = 1 - \frac{1}{N}$$

where I is the reference image and \hat{I} is the results of the network.

 $\frac{1}{N} \sum_{\substack{i \ i \ i}} \frac{\hat{I}(i,j) \cdot I(i,j)}{\|\hat{I}(i,j)\|_2 \cdot \|I(i,j)\|_2},$

The Loss Function

• Lee et al. 2018 employs as content loss L_1 and classic GAN loss:

$$\mathscr{L}_{\text{GAN}}(D) = \frac{1}{2} \mathbb{E}_{x,y}[(D(y,x) - 1)^2] + \frac{1}{2} \mathbb{E}_{x,z}[(D(G(y,z),x))^2]$$
$$\mathscr{L}_{\text{GAN}}(G) = \mathbb{E}_{x,z}[(D(G(y,z),x) - 1)^2]$$

$$= \frac{1}{2} \mathbb{E}_{x,y}[(D(y,x)-1)^2] + \frac{1}{2} \mathbb{E}_{x,z}[(D(G(y,z),x))^2]$$

$$\mathscr{L}_{GAN}(G) = \mathbb{E}_{x,z}[(D(G(y,z),x)-1)^2]$$

- with L_1 :

and a CRF loss (MSE)

 $\mathscr{L}_{L_1}(G) = \mathbb{E}_{x,y,z}[\|y - G(x,z)\|_1]$

• Wang et al. 2019, Santos et al. 2020, Liu et al. 2020 uses a perceptual loss (VGG network) together

$\mathscr{L}_{P}(I,\hat{I}) = \|\psi(I) - \psi(\hat{I})\|_{2}$

Liu et al. 2020 has a complex loss where the main contribution is the reconstruction loss (L_1) TV loss

HDR Videos

What's about video?

- There are many papers treating videos:
 - In many cases, these works on a single frame:
 - - No temporal loss;

• There is no temporal coherence mechanisms in place:

Not working on multiple frames at the same time;

What's about video?

- Why are these considered videos methods?
 - (e.g., RECO2020 or REC2100 color space).
 - They output directly PQ/HLG values.
 - They work on YUV input values.

They use HDR10/HDR10+ video datasets with wide gamut

What's about video? Video Stabilization

- coherent: colorization, inverse tone mapping etc.
- The key is the introduction of a new loss:

where $\alpha \in [0.85, 0.95]$.

T, which can be: a translation, a rotation, and a scaling.

• Eilertsen et al. 2019 showed how to make imaging method temporal

 $\mathscr{L}(I,\hat{I}) = \mathscr{L}_{\text{rec}}(I,\hat{I}) \cdot (1-\alpha) + \alpha \mathscr{L}_{\text{reg}}(I,\hat{I})$

 Given that it is difficult to have good video dataset, the idea is to approximate a "video movement" by a small Euclidian Transformation

What's about video?

• If our network is $f(\cdot)$ and its input I_{in} we can define the regularization as:

$$\mathscr{L}_{\mathrm{reg}}(I,\hat{I}) = \mathscr{L}_{\mathrm{reg}}(I,f(I_{in})) =$$

• $T(\cdot)$ is a random transformation:

- Translation $[-2,2]^2$ pixels;
- Rotation $\pm 1^\circ$;
- Scaling [0.97,1.03];

$$\left(f(T(I_{in})) - T(I)\right)$$

The difference between ground-truth and the network results after T; i.e., the "next frame"

The difference between ground-truth and the network results.

Evaluation

Evaluation

- - If we have a reference:
 - If we do not have a reference:
 - PU21-PIQE.
- reference (if available).

Main metrics recommended for evaluations are [Hanji et al. 2022]:

HDR-VDP 2.2, HDR-VDP 3.0.6, PU-VSI, and PU21-PSNR.

To focus evaluation on the generated content, we should remove influence of the CRF. A possibility is to estimate the CRF using the

Future Directions

The Status

- Currently, 2-3 new methods appears every month on arXiv!
- latest architecture on them:
 - Diffusion networks;
 - Transformers;

• etc.

Many works just get old or new datasets and they train the

Promising Approaches

- mapping is that datasets are very small:

 - The few datasets may disappear due to maintenance!

The main limitations of doing HDR and especially inverse tone

There are a small amount of images achieving 20-stops.

Promising Approaches

- over-exposed areas:
 - from SDR videos.
 - from SDR images.

 On the other hand there are large datasets available online of SDR image that could be used to copy well-exposed data in

• Banterle et al. 2021: unsupervised generation of HDR videos

• Wang et al. 2022: unsupervised generation of HDR images

Dark SDR Images

- the image:
 - There is no recover of the dark areas.
 - When we have large over-exposed (e.g., 25% of overexposed pixels) areas is a challenging case.

Very dark images without over-exposed areas do not process

Dark SDR Images: Well-exposed Example

SDR Input 4% over-exposed pixels

Dark SDR Images: Well-exposed Example

Ground Truth -1-stop

Eilertsen et al. 2017 -1-stop

Dark SDR Images: Well-exposed Example

Ground Truth -1-stop

Santos et al. 2020 -1-stop

Dark SDR Images: Over-exposed Example

SDR Input 25% over-exposed pixels

Dark SDR Images: Over-exposed Example

Ground Truth -1-stop

Eilertsen et al. 2017 -1-stop

Dark SDR Images: Over-exposed Example

Ground Truth -1-stop

Santos et al. 2020 -1-stop

Questions?