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Introduction
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• Ghosts removal. 

• What can we do without 
bracketing or modified/expensive 
hardware?
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Dequantization Linearization Hallucination



The Full Pipeline

Dequantization Linearization Hallucination

8-bit unsigned



The Full Pipeline

Dequantization Linearization Hallucination

32-bit floating point



The Full Pipeline

Dequantization Linearization Hallucination



The Full Pipeline

Dequantization Linearization Hallucination



The Full Pipeline

Dequantization Linearization Hallucination



The Full Pipeline

Dequantization Linearization Hallucination
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The Linarization Dilemma
• One of the first step to decide is how we linearize the input 

SDR image. 

• Many methods uses a standard  or : 

• Eilertsen et al. 2017, Marnerides et al. 2018, etc. 
• Note that many modern cameras encode images using 

common CRF such as sRGB, PQ, and HLG.

γ = 2 γ = 2.2
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Architectures
• Here, we have two possibilities to solve the problem: 

• Approach 1: Given an input image, we generate directly a HDR image 

SDR Image HDR Image



Architectures
• This approach may also compute a tone mapped version of the radiance map to 

recover. If the tone mapper is invertible, we can obtain a radiance map.

SDR Image Tone Mapped HDR Image HDR Image



Architectures
• Another possibility is: 

• Approach 2: Given an input SDR image, we generate a stack of  SDR images at 
different exposure times.

n

-2-stop -1-stop +1-stop +2-stop

SDR Image HDR Image



Which Architecture?
• The bread and butter of most 

iTMO are: 
• FCN. 
• U-Net [Eilertsen et al 2017]. 
• Residual Blocks [Kim et al. 

2019]. 
• They are simple models that 

generally works.

End2End
Input SDR Output HDR



Which Architecture?
• Activation function: 

• LeakyReLU/GeLU in the encoder part. 
• ReLU in the decoder part. 
• The last layer: 

• Sigmoid: tone mapped results or single exposures.



Which Architecture?
• Endo et al. 2017 employs a 

classic U-Net with a twist: 

• Encoder has 2D 
convolutions. 

• Decoders has 3D 
convolutions: 

• Generate in a single 
network all exposures. 

• Limitations: the number 
of exposures are 
limited.
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Which Architecture?
• Marnerides et al. 2018 

proposed a multi-branch 
architecture to overcome U-
Net limits (i.e., blocking 
artifacts): 

• Local features; 

• Medium features; 

• Global features.
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Which Architecture?
• Kinoshita and Kiya 2019 

paired the global branch with 
U-Net to solve similar issues 
of Marnerides et al. 2018 

• This network is trained on 
tone mapped images.
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Which Architecture? Feature Masking
• Santos et al. 2020 introduces masking: 

• We can see inverse tone mapping as an inpainting problem, where our mask is 
defined using over-exposed pixels.

INPUT SDR MASK



Which Architecture? Feature Masking
• Santos et al. 2020 apply the mask at each convolution step:

INPUT SDR

MASK

×

W
EIG

H
TS

M
ASK U

PDATE
C

O
N

VO
LU

TIO
N

×
W

EIG
H

TS
M

ASK U
PDATE

C
O

N
VO

LU
TIO

N

…

×

C
O

N
VO

LU
TIO

N

O
U

TPU
T



Which Architecture? Feature Masking
• Liu et al. 2020 has a network that recovers the inverse camera pipeline:

Dequantization Net

CRF Net

APPLY ICRF
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Which Architecture? Frequencies Separation
• Adopted a classic end2end encoding paired with a GAN, so nothing special right now… 

The novelty: 

• A network for each frequency: 

• Base image or : is the output of filtering the input image, , filtered using an edge-
aware filter: 

• Bilateral Filter, Guided Filter, WLS, etc. 

• Detail image or : is an image encoding the high-frequency details, and it is 
computed as: . 

• A similar work with more refinement networks was proposed by Zhang and Aydın 
2021 using WLS instead of the bilateral filter.

Ib I

Id
Id = I/Ib



Which Architecture? Frequencies Separation - Wang et al. 2019

Base Layer Reconstruction

Detail Layer Reconstruction

Merge Network

GF

/

Input SDR

Details

SDR 
Base

Rec 
Base

Rec 
Details

Residual Blocks

U-Net

Output HDR



Which Architecture? Frequencies Separation - Zhang and Aydın 2021
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Datasets



HDR Image Datasets
• Proper HDR images/videos ( -stop) are scarce on the Internet. 
• There are few datasets of real HDR images. 
• These datasets are typically uncalibrated: 

• This means that luminance values are relative; i.e., they do not 
have absolute values in . 

• Colors may not match the real colors. 
• They are stored in different formats without the use of a standard. 

Typically, using the Radiance (.hdr) or OpenEXR (.exr) format files.

≥ 18

cd/m2



HDR Image Datasets
Dataset Name #Images #Resolution Calibrated Website

HDR Survey 108 5MPix Scene-referred http://markfairchild.org/
HDR.html

HDR Eye 47 2MPix (full-HD) Display-referred

Stanford HDR Dataset 88 0.32Mpix Scene-referred
https://qualinet.github.io/databases/image/

high_dynamic_range_imaging_dataset_of_na
tural_scenes/

Laval HDR Indoor 2100 2MPix (2:1 ratio) Relative values http://indoor.hdrdb.com/

Laval HDR Outdoor 205 2Mpix (2:1 ratio) Relative values http://outdoor.hdrdb.com/ 

Akyuz HDR Images 10 5MPix Relative values https://user.ceng.metu.edu.tr/~akyuz/
hdrdisp_eval/hdrdisp_project.html

Debevec HDR Images 21 0.3-2Mpix Relative values https://
www.pauldebevec.com/

MPI HDR Images 7 3MPix Scene-referred https://resources.mpi-
inf.mpg.de/hdr/gallery.html 

Classic HDR Images 10 <1Mpix Relative values https://www.cs.huji.ac.il/
w~danix/hdr/results.html

Funt HDR Dataset 105 3Mpix Scene-referred https://www2.cs.sfu.ca/
~colour/data/funt_hdr/

http://markfairchild.org/HDR.html
https://qualinet.github.io/databases/image/high_dynamic_range_imaging_dataset_of_natural_scenes/
http://indoor.hdrdb.com/
http://outdoor.hdrdb.com/
https://user.ceng.metu.edu.tr/~akyuz/hdrdisp_eval/hdrdisp_project.html
https://www.pauldebevec.com/
https://resources.mpi-inf.mpg.de/hdr/gallery.html
https://www.cs.huji.ac.il/w~danix/hdr/results.html
https://www2.cs.sfu.ca/~colour/data/funt_hdr/


HDR Video Datasets
Dataset 
Name #Videos #Resolution Length FPS Color 

Space Format Website

Stuttgart 
HDR Dataset 33 1920×1080 13s-100s 24/25 REC709 Floating 

Point

https://
www.hdm-

stuttgart.de/
vmlab/projects/

hdr
UBC HDR 

Video 
Dataset 

10 2048×1080 7s-10s 30 REC709 Floating 
Point

http://
dml.ece.ubc.ca/
data/DML-HDR/

LIVE HDR Video 
Quality 

Assessment 
Database

31 (310 at 
different bit-

rates)
0.32Mpix 3s-10s 50/60 BT2020 HDR10

https://
live.ece.utexas.edu/
research/LIVEHDR/

LIVEHDR_index.html

MPI HDR 
Video 

Dataset
2 0.3Mpix 24s-34s 24 REC709 Floating 

Point

https://
resources.mpi-
inf.mpg.de/hdr/

video/

EBU HDR 
Video 

Dataset
10 3996×2160 10s-31s 50 BT2100 HLG

https://
tech.ebu.ch/

testsequences

https://www.hdm-stuttgart.de/vmlab/projects/hdr
http://dml.ece.ubc.ca/data/DML-HDR/
https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
https://resources.mpi-inf.mpg.de/hdr/video/
https://tech.ebu.ch/testsequences


HDR Content Datasets
• Are these tables complete? 

• No, they are not. 
• There are more datasets, but it can happen they may be not be 

available for some time. For example: 
• LiU HDR Video Dataset: high-quality dataset that is not currently 

available on the web. 
• MPEG HDR Video Dataset: not freely available. 
• …



Augmentation Strategies
• Classic flips and rotations; 

• Cropping from high-resolution images; 

• Channel swapping [Kalantari et al. 2017]: 
• RGB channels are randomly swapped;



Creating Images for Training
• The training dataset: 

• <Input SDR, Output HDR> 

• How do we compute the input? 

 

•  is the virtual exposure value. 

•  is the camera response function where the simplest to be used is: 

Z = f(E ⋅ δt)

δt

f(x)

f(x) = x
1

2.2



Creating Images for Training
• Many methods employs a random function from Grossberg and Nayar 2003 dataset of CRFs: 

• Eilertsen et al. 2017 showed that meaningful CRF can be modeled as: 

f(x) = (1 + σ) ⋅
xn

xn + σ
n ∼ 𝒩(0.9,0.1) σ ∼ 𝒩(0.6,0.1)



Creating Images for Training
•  is an important value to be picked up: 

• Its range is  

• Automatic exposure: 

•  

• We pick the  that maximizes the well-exposed pixels in the range : 

• We do not want too dark images. 

• We do not want too bright images.

δt

[1/Imin,1/Imax]

δt =
1

4Imean

δt [0.05,0.95]



Creating Images for Training
• We may perform a random augmentation: 

  

• In this case, we need to skip extremely bright and dark images: 

• These are difficult cases. 

• We need a minimum of well-exposed pixels in order to draw something of 
meaningful from our methods: 

• 50-75% of well-exposed pixels: 

• Half/Quarter of the image totally white or totally black.

δt ∼ [1/Imin,1/Imax]



Selecting Patches
• Eilertsen et al. 2017: 

• For each HDR, 10 patches are selected at  using random cropping. 

• Lee et al. uses random crops at  

• Endo et al. 2017: 

• Images are downsampled at . 

• Marnerides et al. 2018: 

• Random crop with Gaussian distribution (center image) at . 

• Santos et al. 2020: 

• Selection of patches with texture; i.e., mean gradient of the detail layer over 0.85 (bilateral separation).

320 × 320

256 × 256

512 × 512

384 × 384



Training



The Loss Function
• Eilertsen et al. 2017: 

• MSE in the log domain. 

• We have a loss function for the luminance and the reflectance component: 

• Equal weight in the paper for both losses. 

• Marnerides et al. 2018: 

• L1 + Cosine Loss (for colors in under-exposed areas): 

 , 

where  is the reference image and  is the results of the network. 

ℒcos( ̂I, I) = 1 −
1
N ∑

i,j

̂I(i, j) ⋅ I(i, j)
∥ ̂I(i, j)∥2 ⋅ ∥I(i, j)∥2

I ̂I



The Loss Function
• Lee et al. 2018 employs as content loss  and classic GAN loss: 

  

  

 

• Wang et al. 2019, Santos et al. 2020, Liu et al. 2020 uses a perceptual loss (VGG network) together 
with : 

  

• Liu et al. 2020 has a complex loss where the main contribution is the reconstruction loss ( )  TV loss 
and a CRF loss (MSE)

L1

ℒGAN(D) =
1
2

𝔼x,y[(D(y, x) − 1)2] +
1
2

𝔼x,z[(D(G(y, z), x))2]

ℒGAN(G) = 𝔼x,z[(D(G(y, z), x) − 1)2]

ℒL1
(G) = 𝔼x,y,z[∥y − G(x, z)∥1]

L1

ℒP(I, ̂I) = ∥ψ(I) − ψ( ̂I)∥2

L1



HDR Videos



What’s about video?
• There are many papers treating videos: 

• In many cases, these works on a single frame: 
• There is no temporal coherence mechanisms in place: 
• Not working on multiple frames at the same time; 
• No temporal loss;



What’s about video?
• Why are these considered videos methods? 

• They use HDR10/HDR10+ video datasets with wide gamut 
(e.g., RECO2020 or REC2100 color space). 

• They output directly PQ/HLG values. 
• They work on YUV input values.



What’s about video? Video Stabilization
• Eilertsen et al. 2019 showed how to make imaging method temporal 

coherent: colorization, inverse tone mapping etc. 
• The key is the introduction of a new loss: 

   

where . 
• Given that it is difficult to have good video dataset, the idea is to 

approximate a “video movement” by a small Euclidian Transformation 
, which can be: a translation, a rotation, and a scaling.

ℒ(I, ̂I) = ℒrec(I, ̂I) ⋅ (1 − α) + αℒreg(I, ̂I)

α ∈ [0.85,0.95]

T



What’s about video?
• If our network is  and its input  we can define the regularization as: 

   

•  is a random transformation: 

• Translation  pixels; 

• Rotation ; 

• Scaling ;

f( ⋅ ) Iin

ℒreg(I, ̂I) = ℒreg(I, f(Iin)) = (f(T(Iin)) − T(I)) − (f(Iin) − I) 2

T( ⋅ )

[−2,2]2

±1∘

[0.97,1.03]

The difference between

ground-truth and the 
network results after ; 
i.e., the “next frame”

T

The difference between

ground-truth and the 
network results.



Evaluation



Evaluation
• Main metrics recommended for evaluations are [Hanji et al. 2022]: 

• If we have a reference: 
• HDR-VDP 2.2, HDR-VDP 3.0.6, PU-VSI, and PU21-PSNR. 

• If we do not have a reference: 
• PU21-PIQE. 

• To focus evaluation on the generated content, we should remove 
influence of the CRF. A possibility is to estimate the CRF using the 
reference (if available).



Future Directions



The Status
• Currently, 2-3 new methods appears every month on arXiv! 
• Many works just get old or new datasets and they train the 

latest architecture on them: 
• Diffusion networks; 
• Transformers; 
• etc.



Promising Approaches
• The main limitations of doing HDR and especially inverse tone 

mapping is that datasets are very small: 
• There are a small amount of images achieving 20-stops. 
• The few datasets may disappear due to maintenance! 



Promising Approaches
• On the other hand there are large datasets available online of 

SDR image that could be used to copy well-exposed data in 
over-exposed areas: 
• Banterle et al. 2021: unsupervised generation of HDR videos 

from SDR videos. 
• Wang et al. 2022: unsupervised generation of HDR images 

from SDR images. 



Dark SDR Images
• Very dark images without over-exposed areas do not process 

the image: 
• There is no recover of the dark areas. 

• When we have large over-exposed (e.g., 25% of over-
exposed pixels) areas is a challenging case.



Dark SDR Images: Well-exposed Example

SDR Input 4% over-exposed pixels



Dark SDR Images: Well-exposed Example

Ground Truth -1-stop Eilertsen et al. 2017 -1-stop



Dark SDR Images: Well-exposed Example

Ground Truth -1-stop Santos et al. 2020 -1-stop



Dark SDR Images: Over-exposed Example

SDR Input 25% over-exposed pixels



Dark SDR Images: Over-exposed Example

Ground Truth -1-stop Eilertsen et al. 2017 -1-stop



Dark SDR Images: Over-exposed Example

Ground Truth -1-stop Santos et al. 2020 -1-stop



Questions?


