Modern High Dynamic Range Imaging at the Time of Deep Learning Visualisation

Francesco Banterle and Alessandro Artusi

HDR Direct Visualisation - HDR Display

HDR Display: Modulating Backlight

Baseline Method for Backlight Display

HDR input image

L. Duan , K. Debattista, Z. Lei and A. Chalmers, "Subjective and Objective Evaluation of Local Dimming Algorithms for HDR Images", IEEE ACCESS, VOL. 8, MARCH 2020

Deep-learning Approach for BLD Backlights prediction same resolution of the monitor $\operatorname{Conv}(3,1) \rightarrow \operatorname{IN} \rightarrow \operatorname{R} \rightarrow \operatorname{Conv}(3,1) \rightarrow \operatorname{Bil} \rightarrow \operatorname{Conv}(1,1)$ Conv(3,1) \rightarrow IN \rightarrow R \rightarrow Conv(3,1) \rightarrow Sigmoid $Conv(7,2) \rightarrow IN \rightarrow R$ Bil→ Conv(1,1) RB-2→ RB-1 Max pooling \rightarrow RB-1 ... PSF (diffusion panel) 512 256 64 7 1 64 64 128 256 128 128 64 HDR Reconstruction RB-1 RB-2 **OPTIMIZATION** g Conv(3,1) Conv(3,2) DB LOSS IN IN * FUNCTION ReLU Conv(1,2) ReLU Conv(3,1) Conv(3,1) Predicted LED IN Simulation Backlight Recontrstructed Values Image Intesity IN IN Backlights finals + Transmittance of the LCD panel Diffusion panel output

Source: L. Duan, D. Marnerides, A. Chalmers, Z. Lei, and K. Debattista, "Deep Controllable Backlight Dimming for HDR Displays", IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 3, AUGUST 2022

HDR Conversion to SDR Content - Tone Mapping

32-bit Scene-referred HDR image

Tone Mapping

TMO

8-bit Tone Mapped Image

 $Y_{HDR} = w_1 R + w_2 G + w_3 B$

$$Y_{HDR} = w_1 R + w_2 G + w_3 B$$

 $Y_{HDR} = w_1 R + w_2 G + w_3 B$

$Y_{SDR} = F(mY_{HDR}^{\gamma})$

 $Y_{HDR} = w_1 R + w_2 G + w_3 B$

 $Y_{SDR} = F(mY_{HDR}^{\gamma})$

 $Y_{HDR} = w_1 R + w_2 G + w_3 B$

 $Y_{SDR} = F(mY_a^{\gamma})$ $Y_a = G_s(Y_{HDR})$

 $Y_{HDR} = w_1 R + w_2 G + w_3 B$

 $Y_{SDR} = F(mY_a^{\gamma})$ $Y_a = G_s(Y_{HDR})$

 $Y_{HDR} = w_1 R + w_2 G + w_3 B$

 $Y_{SDR} = F(mY_a^{\gamma})$ $Y_a = G_s(Y_{HDR})$

 $Y_{HDR} = w_1 R + w_2 G + w_3 B$

 $Y_{SDR} = F(mY_a^{\gamma})$ $Y_a = G_s(Y_{HDR})$

 $Y_{HDR} = w_1 R + w_2 G + w_3 B$

sRGB: $w_1 = 0.2126$ $w_2 = 0.7152$ $w_3 = 0.0722$

 $Y_a = G_s(Y_{HDR})$

Aims/Goals

Aims/Goals

- **Quality optimisation**
 - To best reproduce the characteristics of the LDR image (Cite:VHF 2021)
 - Learning-based self-supervised TMO (Cite:WSC 2022)
 - To mimic the original HDR content under a limited range [0-255] (DeepTMO Cite:RSV 2020) \bullet
 - Fusing stack of n differently exposed LDR images (DeepFuse Cite:DF2017)
 - Optimising color mapping using HSV (TMNet Cite:ZWZW 2020)
- **Performances optimisation**
 - Parameters free TMO (TMO-net Cite: PKO 2021)
 - Real-time DL based TMO (Cite:ZZWW 2022)

Architectures

Architectures - Generative Adversarial Network

Scene-referred HDR image

Legend:

- G = Generator
- D = Discriminator
- Y = Ground truth SDR

X = HDR input

TMO image

Architectures - Generative Adversarial Network Ref: VHF-2021

Architectures - Generator U-net modified Ref: PKO-2021

- Attention module
 - Channel and pixels-wise;
 - Ensuring that the generator
 - Global/local contrast;
 - Color consistency;
 - Eliminate under/overexposure (image synthesis)

Architectures - Cycle-GAN Approach Ref: ZZWW-2020-2022

N. Zhang, C. Wang, Y. Zhao and R. Wang, "Deep tone mapping network in HSV color space," 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, NSW, Australia, 2019, pp. 1-4, doi: 10.1109/VCIP47243.2019.8965992.

ZHANG N., ZHAO Y., WANG C., WANG R.: A real-time semi-supervised deep tone mapping network. IEEE Trans. Multim. 24 (2022), 2815–2827. URL: https://doi.org/10.1109/TMM.2021.3089019, doi:10.1109/TMM.2021.3089019. 2

Tone mapped

Architectures - Multi-Scale Generator Ref: RSV-2020

Architectures - Convolutional Neural Network Ref: DF-2017

K. R. Prabhakar, V. S. Srikar and R. V. Babu, "DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 4724-4732

Architectures - DeepFuse CNN Ref: DF-2017

Architectures - Autoencoder Ref: WCS-2022

Training

Generative Adversarial Approach

The Loss Function- General Approach

$Loss = L_{adv} + \sum_{i=1,..n} L_i$ Adversarial Loss: •Image appearance matching

Other Loss functions:

- To preserve the content and structure
- Pixel-wise loss
- Perceptual loss, feature matching, gradient, etc.

Architectures - Generative Adversarial Network Ref: VHF-2021

The Loss Function Ref: VHF-2021

- Vinker et al. 2021 do not train the generator (N) to conceive new images from scratch:
 - Removing biases in Y_c with respect to regular SDR images.
 - Discriminator, 3 applied at different image scale (\downarrow^k bicubic downscaling $\times 2^k$)

$$L_{D} = \sum_{k \in 0,1,2} \left(\mathbb{E}_{Y_{LDR}} \left[D_{k} (\downarrow^{k} Y_{L}) - 1 \right]^{2} + \mathbb{E}_{Y_{HDR}} \left[D_{k} (\downarrow^{k} N(Y_{c})) \right]^{2} \right)$$

• D_{l} is used to improve the ability of the generator (N) to match the natural appearance:

$$L_{natural} = \sum_{k \in 0.1.2} \left(\mathbb{E}_{Y_{HDR}} \left[D_k (\downarrow^k N(Y_c) - 1) \right]^2 \right)$$

Architectures - Generative Adversarial Network Ref: VHF-2021

The Loss Function Ref: VHF-2021

- Vinker et al. 2021 proposed to preserve the content and structure:
 - Measure based on Pearson correlation on two images I and J:

Loss function:

 $\rho(I,J) = \frac{1}{n_p} \sum_{p_I,p_J} \frac{cov(p_I,p_J)}{\sigma(p_I)\sigma(p_j)} \quad p_I, p_J = 5 \times 5 \text{ pixels}$

 $L_{struct} = \sum \rho \left(\downarrow^k Y_c, \downarrow^k N(Y_c) \right)$

The Loss Function Ref: PKO-2021

Panetta et al. 2021: min-max adversarial loss:

$$Loss = L_{adv} + \lambda_1$$

Perceptual loss:

•
$$L_{VGG} = \sum_{i=1}^{N} \frac{1}{M_i} \left[||F^{(i)}(Y) - F^{(i)}(G)| \right]$$

• Feature matching loss:

•
$$L_{FM} = \mathbb{E}_{X,Y} \sum_{i=1}^{T} \frac{1}{N_i} \left[|| D^{(i)}(Y) - D \right]$$

$_{1}L_{FM} + \lambda_{2}L_{VGG} + \lambda_{3}L_{GPL}$

 $F^{(i)}$ *i*-th layer of the VGG19 network $G(X)) ||_1|$ M_i *i*-th element of the layer

 $N^{(i)}(G(X)) | |_1 \int_{0}^{T} S = 0$ the number of layer N_i is number of elements in each layer $D^{(i)}$ is the i-th layer feature extractor of the discriminator

The Loss Function Ref: PKO-2021

• Gradient profile loss - preserve edge information between the ground truth and synthetic SDR images:

$$L_{GPL}(Y,\hat{Y}) = \sum_{c} \left(\frac{1}{H} trace \left(\nabla G(\hat{Y})_{c} \cdot \nabla \hat{Y}_{c}^{\tau} \right) + \frac{1}{W} trace \left(\nabla G(\hat{Y})_{c}^{\tau} \cdot \nabla Y_{c} \right) \right)$$

 $(\cdot)^{\tau}$ is the transpose operator Y, \hat{Y} are the ground truth and the synthetic SDR images H, W are height and width of the image

The Loss Function Ref: RSV-2020

• Rana et al. 2020: min-max adversarial loss:

$$Loss = \sum L_{ad}$$

• Perceptual loss (same as PKO 2021):

$$L_{VGG} = \sum_{i=1}^{N} \frac{1}{M_i} \left[||F^{(i)}(y) - F^{(i)}(G(x))| \right]$$

• Feature matching loss (same as PKO 2021):

$$L_{FM} = \mathbb{E}_{X,Y} \sum_{i=1}^{T} \frac{1}{N_i} \left[|| D^{(i)}(y) - D^{(i)}(y)| \right]$$

$_{dv} + \beta \sum L_{FM} + \lambda L_{VGG}$

;))||₁|

 $F^{(i)}$ *i*-th layer of the VGG19 network M_i *i*-th element of the layer

 $G(x)) | |_1 |$

T is the number of layer N_i is number of elements in each layer $D^{(i)}$ is the *i*-th layer feature extractor of the discriminator

Architectures - Cycle-GAN Approach Ref: ZZWW-2020-2022

N. Zhang, C. Wang, Y. Zhao and R. Wang, "Deep tone mapping network in HSV color space," 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, NSW, Australia, 2019, pp. 1-4, doi: 10.1109/VCIP47243.2019.8965992.

ZHANG N., ZHAO Y., WANG C., WANG R.: A real-time semi-supervised deep tone mapping network. IEEE Trans. Multim. 24 (2022), 2815–2827. URL: https://doi.org/10.1109/TMM.2021.3089019, doi:10.1109/TMM.2021.3089019. 2

Tone mapped

The Loss Function Ref: ZZWW-2022

• Zhang et al. 2020: classic cycle loss and min-max adversarial loss for both luminance and saturation

 $Loss = \lambda L_{pixel} + L_{adv_f} + L_{adv_b} + \beta (L_{cycle_f} + L_{cycle_b})$

Perceptual pixel loss L1 norm for both luminance and saturation:

 $L_{pixel} = \mathbb{E}(x, y) | |G(x) - y||_1$

Others Loss Functions

Architectures - DeepFuse CNN Ref: DF-2017

$$F_1, F_2 \in \Re^{h \times w \times 32}$$

The Loss Function Ref: DF-2017

Loss = 1 -

• Score(p): takes into account the contrast and the desired structure, the luminance is discharged (local luminance comparison in the patches is not significant):

$$Score(p) = \frac{2\sigma_{\tilde{y}y_f} + C}{\sigma_{\tilde{y}}^2 + \sigma_{y_f}^2 + C'}$$

• Prabhakar et al. 2017: based on SSIM objective metric (which it gives a score)

$$-\frac{1}{N}\sum_{p\in P}Score(p)$$

N number of pixels in the image *P* number of pixels in the patch \tilde{y} estimated patch y_f fused patch $\sigma_{ ilde{y}}\,\sigma_{y_f}$ variance $\sigma_{ ilde{y},y_f}$ covariance

Architectures - Autoencoder Ref: WCS-2022

The Loss Function Ref: WCS-2022 • Wang et al. 2022: L1 norm based masked features contrast maps feature magnitude at pixel p Feature contrast gaussian filtered feature value for patch P centre at pixel p $G(I_{TM})) \mid \mid_1$ $f(VGG(I)) = \frac{M_s}{1 + M_n}$ Feature contrast neighborhood-masking Pre-processing HDR input image to transform it into VGG features space, i.e., VGG is trained using SDR images Feature contrast self-masking Compression $M_{s} = sign(C) |C|^{\alpha}$ power factor

$$Loss = \left[f(VGG(I_{\mu})) - f(VGG(I_{\mu})) \right]$$

$$I_{\mu} = \frac{\log(1 + \mu I_{HDR})}{\log(1 + \mu)}$$

$$I_{HDR} = 0.5 \times \frac{I_{src}}{mean(I_{src})}$$

Future Directions

Color Rendition

color ratio of the high dynamic range input image:

- However, several color mapping techniques have been developed:
 - The main aim is to minimize the hue distortion
 - Color gamut mapping
 - Color retargeting: based on optimal saturation parameter

• It is based on a simple concept of keeping into the tone mapped image the original

Computational and memory management costs

- Complex models
 - Complex architectures
 - High number of parameters
 - High memory management costs
- Reduces their applicability where we need fast response
- Natural question

How to reduce the model complexity while retaining similar quality performance?

Thank you for your attention! Any Question?