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Introduction

e HDR reconstruction from multiple-
exXposures:

e [f we don't place the camera on
a stable tripod the camera
moves!

o [f we have wind or people, there
will be movement!

o All this means, we will have
artifacts!
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Introduction: Camera Movement

e \What if we capture a stack of exposure images free-hand without a tripod’?
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Introduction: Camera Movement

o [vpically, If we have ONLY camera movement, we can
manage the merge:

e \\Ve have only a single global movement.

e [here are several robust algorithm to deal with such situations:
e Greg Ward's MTB method.

* [omaszewska and Mantiuk's momograpny algorithm.

e (Gallo’'s Multiple Homographies.



Introduction: Dynamic Scene

o \What If we capture a stack of exposure images on a tripod in a dynamic scene’
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Introduction: Dynamic Scene
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Introduction: Dynamic Scene
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Introduction: Dynamic Scene
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Introduction: Dynamic Scene
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Introduction: Camera Movement

o [ypically, If when the moving people/objects are small they can
pe fixed easilly.

e [here are several robust algorithm to deal with such situations:
e \Vlasks: Pece and Katuz 2010
e (Grandaos et al. 2013
e PatchMatch-based: Sen et al./Hu et al. 2014




Datasets




Capturing Data: Kalantari’s Data

0-stop

+2-stop

«t Dynamic Stack



Capturing Data: Kalantari’s Data

Video Courtesy of Jan Frohlich - Stuttgart HDR Video Dataset Dynam |C StaCk Stat|C StaCk
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Images

e For each SDR image [;, we know:

e The CRF, f( - ); i.e, we know its inverse g( - ) =f_1( ).
SO; - 1
K. A2

l

, | Ne exposure time 1, =

o 11: Shutter speed.

o A Aperture value

e SO, SO value.
e K € [30.6,13.4]: a constant depending on the camera.



Images

o Typically, we work with “calibrated” SDR image H;:

H, = 8y
f.

l

L
2.2

e N many works, the CRF is assumed to be f(x) = x

e [herefore, we have:



Images: Patches and Augmentations

o All methods are trained on patches of different size: 40 X 40,
256 X 256,512 x 512

* Patches may e create with or without overlap.

e \\/e have different augmentations:

e Rotation, Flips, etc.

e Swapping color channels [Kalantari et al. 2017]



Preprocessing

e [he problem can be "simplified” by using classic approacn for a
first alignment:

e Homography alignment introduced by Wu et al. 2018;
e Optical flow alignment introduced by Kalantar et al. 2017 .

e [Nis initial alignment reduces blur.

o [ypically, It matches the packgrouna well;

e | ocal mismatches are left.



HDR Image Datasets

Dataset Name #lmages #Resolution Calibrated Website

https://
cseweb.ucsd.edu/

Kalantari Dataset /4 1.5MPix Uncalibrated . .
~viscomp/projects/
SIG1/7HDR/
https://
Tursun Dataset 17 0.6Mpix Uncalibrated User.ceng.metu.edu.t

r/~akyuz/files/
eg2016/index.html



https://cseweb.ucsd.edu/~viscomp/projects/SIG17HDR/
https://user.ceng.metu.edu.tr/~akyuz/files/eg2016/index.html

HDR Video Datasets

Dataset #Videos |#Resolution| Length FPS Color Format Website
Name Space
- https://
Stuttgart oating www.hdm-
HDR Dataset 33 1920x1080 | 13s-100s 24/25 REC709 Point stuttgart.de/
vmlab/projects/
UBC HDR Floating http://
Video 10 2048%x1080 /s-10s 30 REC709 Point dml.ece.ubc.ca/
Dataset oin data/DML-HDR/
LIVE cl)-lDII:?tVideo 31 (310 at https://
all - : . I live.ece.utexas.edu/
Acsesament | different bit- | 0.32Mpix 3s-10s 50/60 BT2020 HDR10 | liccediexas.ccu
Database rates) LIVEHDR _index.html
MPI HDR _ https:// |
Video 2 0.3Mpix | 24s-34s 24 REC709 F'F‘,’a.t'rt‘g [esources.MpL:
Dataset omn "~ video/
EBU HDR https://
Video 10 3996x2160 10s-31s 50 BT2100 HLG tech.ebu.ch/
Dataset testsequences



https://www.hdm-stuttgart.de/vmlab/projects/hdr
http://dml.ece.ubc.ca/data/DML-HDR/
https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
https://resources.mpi-inf.mpg.de/hdr/video/
https://tech.ebu.ch/testsequences

End2End Architectures



Kalantari et al. 2017

o Kalantari et al. 2077 proposed a simple

solution:

e Optical Flow for the main alignment
petween exposures;

e An end?2end (a

layers except a sigmoic

—~CN) wi

tn

for the last layer:

SellU in all

e Convolution varies in kemel size from

arge to small:

e /X7 55 3%x3 andl x 1

100

100

50 No



Kalantari et al. 2017

o Kalantar et al. 20717 noted that the simple solution nave some
SSUES:

e [t |s difficult to train; we need a huge dataset!
e [t does not fix alignment artifacts.
* [Nne solution Is to use the network to:

e Compute Weights.

* Refine Images.



Kalantari et al. 2017

e \\Neight Estimator:

e [Ne shown architectureAis used to compute the per-pixel weights, a, to obtain the
estimated HDR image H:

Zi“i -

Ziai

H =

e Refined Images:
e [Ne network also refines the alignment obtaining new iImproved images ﬁi:
Zi a; - 1

Ziai

H =



Kalantari et al. 2017

100 100 50

Video Courtesy of Jan Fréhlich - Stuttgart HDR Video Dataset



Encoder-Decoder - Wu et al. 2018

Merged HDR Image

Video Courtesy of Jan Frdhlich - Stuttgart HDR Video Dataset



Attention HDR - Yan et al. 2019

e Yan et al. 2019 Introduces two DIocKs:
o Attention Module:
e [Nhe attention is computed on low level features.

e [he attention Is applied to features of Images that are not
the reference.

e Residual Dense Blocks [Zhang et al. 2018| with dilateo
convolutions to have a larger receptive field.




2019

Attention HDR - Yan et al
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Attention HDR - Yan et al. 2019

Reference

Attention Module

128 64 64




Attention HDR - Yan et al. 2019

Dilated Residual Dense Blo kDRDB




Attention HDR - Yan et al. 2019

Dilated Residual Dense Block DRDB

/ Dilated Convolutions
— + e




ADNet - Liu et al. 2021

U et g

WO ImMa

2027, similarly to

N DIOCKS:

Pu et al. 2020, proposed for NT

— 2027 a network based on

o Attention computed using the reference, similar to Yan et al. 2019,

* Pyramid, Cascade and Deformable (

PCD) module by Wang et al. 2019:

e PCD Is applied at the feature level of the gamma-corrected images.

e [Nis Mmodule uses deformable convolutions

CLASSIC CONV DEFORMABLE CONV

OFFSET



ADNet - PCD - Liu et al. 2021

Aligned FEATURE I,
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GAN Architectures



HDRGAN - Niu et al. 2021: Generator

L, L, L;




HDRGAN - Niu et al. 2021: Training

GENERATOR

DISCRIMINATOR Z Adversial




UPHDR-GAN - Li et al. 2022: Generator
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UPHDR-GAN - Li et al. 2022: Training
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| 0ss Functions



Loss Function in the pu-Law Domain

o Kalantar et al. 2017 introduced a L2 loss function in a tone-mapped domain:
grec(la I) = ||z(I) — T(I)Hz

where 7( - ) is a differentiable tone mapping function based on the p-law:

log(1 + ul
T(]):M 1 = 5000

log(1 + u)

o Note that there are variants of £~ Where we have L1 instead of L2.

e [Nis |loss function Is N Most HDR works tor reconstruction ano
nverse tone mapping.




GAN Loss

e QOur goal Is:

arg min max £ (G, D)
G D

e Typically a GAN |oss is defined as:
Z(G,D) = 0, ZcaN(G, D) + 0, Zo(G)
where:

o« ZoaN(G, D) is the adversial loss.
o 7 oc(G) is the content/reconstruction loss.

e ; and a, are weights for balancing the two losses.



GAN Loss: HDRGAN

e Niu et al. 2021 has a GAN scheme with a content/reconstruction 10ss:

PLroc = ngn(uf(ﬁo — H||, + ||7(H,) — ﬁm)

e And a GAN loss based on the sphere generative adverbial loss |Park and Kwon 2019,
where the Discriminator output an n-dimensional vector  which is projected on

peS”

Lean = minmax ) E[d/(N,D@)] — ) Ey o d/(N,D(G(X;, X, X3))]
G D

r r

where d (p, p’) is the distance on the hypersphere, and N = [0,...,0,1] € R"



GAN Loss: UPHDR-GAN

o | et al. 2022 has a GAN scheme with a content/
reconstruction l0ss:

Frec = Evop [”VGG(G(x)) — VGG(x2)||1]

e [he GAN |oss Is defined as:

ZLCGAN =

_Y"’Pdata(”[l()g D(y)] +

e ol1og 1 = DIGON] +

e 10€(1 = D(O))]




Loss Function in the pu-Law Domain
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HDR Videos




HDR Videos: Temporally Varying Exposure Time

Stream

Video Courtesy of Jan Fréhlich - Stuttgart HDR Video Dataset



Video Strategies: Kalantari and Ramamoorthi 2019

e A b-scale pyramid for computing a multi-scale optical flow
using a CNN for each scale a simple FCN:

OPTICAL FLOW

——

RESIDUAL OPTICAL FLOW

——_—




Video Strategies: Kalantari and Ramamoorthi 2019

e Similar to the previous work by Kalantari et al. 2017, there Is a
merger (encoder-decoder).

e [0 enforce temporal coherency and reduce artifacts the
merger uses neighoors frames at previous and next time.
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Strategies: Chen et al. 2021
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Video Strategies: Chen et al. 2021

Features
Extractor

Features Deformable

Extractor Al ignment
Multi-scale

Features Deformable Convolutions

Extractor

HDR Frame at time I-th



Evaluation



Metrics

e \any WOorks Uses:
e | Inear domain PSNR and SSIM.

e 1-law or Reinhard et al. 2002's TMO PSNR or SSIM

* [hese approaches have many ISsues:

e | inear domain PSNR and SSIM are prone to outliers.

e 1-law and Reinhard et al. 2002's TMO are empirical approaches that
do not model the Human Visual System.

* [hey may Introduce distortions.



Metrics

e PON

o H

D)

R-V

D)

P 2.2, and H

D)

R-V

D)

= and SSIM should be computed using the PU21

PU21 er
Jniform |

codes absolute HDR linear value Into approximately perceptually
°U) values.

> 3.0.0.

e Deghosting artifacts: Tursun et al. 207106.

e Note that many HDR reference images and output images are

o [f we do not have calibration gata;

Display-referred values.



Limitations



Limitations

e The C

_%

- needs to be known (a partial lImitation):;

e \ost methods are limited to merge ONLY three images:

e [here Is N0 method addressing an arbitrary numboer of
mages or more than tnrees.

e [he difference In 1-stop has to be fixed:

e [nere is N0 method that can merge an image at -o-stop, O-

stop, ana +1-stop



Other Problems in Reconstruction



Other Reconstruction Problems

e \/\le have other problems for HD
that can e solved using aeep lea

e Assorted pixe
2020, XU et a

e HDR reconstruction usi
al, 2022, Messikomme

:%

reconstruction with partial real information

ning:

s/rows [Chol et al. 2017, Cogolan et al. 2020, Suda et al.
2027, Vien et al. 2022].

e HDR from deep optics/masks |Alghamdi et al. 2019, Metzler et al. 2020)]

ng an event camera [Wang et al. 2019, Shaw et
retal. 2022).

e HDR reconstruction for quanta sensors [Gnanasambandam et al. 2020,
Gao et al. 2022].



Questions?



