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Introduction
• HDR reconstruction from multiple-

exposures:


• If we don’t place the camera on 
a stable tripod the camera 
moves!


• If we have wind or people, there 
will be movement!


• All this means, we will have 
artifacts!
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Introduction: Camera Movement
• What if we capture a stack of exposure images free-hand without a tripod?

-2-stop 0-stop +2-stop



Introduction: Camera Movement



Introduction: Camera Movement

Merged Stack and Tone Mapped



Introduction: Camera Movement



Introduction: Camera Movement

Merged Stack and Tone Mapped



Introduction: Camera Movement



Introduction: Camera Movement
• Typically, if we have ONLY camera movement, we can 

manage the merge:

• We have only a single global movement.


• There are several robust algorithm to deal with such situations:

• Greg Ward’s MTB method.

• Tomaszewska and Mantiuk’s Homography algorithm.

• Gallo’s Multiple Homographies.



• What if we capture a stack of exposure images on a tripod in a dynamic scene?

-2-stop 0-stop +2-stop
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Introduction: Camera Movement
• Typically, if when the moving people/objects are small they can 

be fixed easily.

• There are several robust algorithm to deal with such situations:


• Masks: Pece and Katuz 2010

• Grandaos et al. 2013

• PatchMatch-based: Sen et al./Hu et al. 2014



Datasets



Capturing Data: Kalantari’s Data
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Images
• For each SDR image , we know:


• The CRF, ; i.e, we know its inverse ;


• The exposure time  


• : Shutter speed.


• : Aperture value.


• : ISO value.


• : a constant depending on the camera.
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Images
• Typically, we work with “calibrated” SDR image :


 


• In many works, the CRF is assumed to be .


• Therefore, we have:
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Images: Patches and Augmentations
• All methods are trained on patches of different size: , 

, . 

• Patches may be create with or without overlap.

• We have different augmentations:


• Rotation, Flips, etc.

• Swapping color channels [Kalantari et al. 2017] 

40 × 40
256 × 256 512 × 512



Preprocessing
• The problem can be “simplified” by using classic approach for a 

first alignment:

• Homography alignment introduced by Wu et al. 2018;

• Optical flow alignment introduced by Kalantari et al. 2017.


• This initial alignment reduces blur.

• Typically, it matches the background well:


• Local mismatches are left.



HDR Image Datasets

Dataset Name #Images #Resolution Calibrated Website

Kalantari Dataset 74 1.5MPix Uncalibrated
https://

cseweb.ucsd.edu/
~viscomp/projects/

SIG17HDR/

Tursun Dataset 17 0.6Mpix Uncalibrated
https://

user.ceng.metu.edu.t
r/~akyuz/files/

eg2016/index.html

https://cseweb.ucsd.edu/~viscomp/projects/SIG17HDR/
https://user.ceng.metu.edu.tr/~akyuz/files/eg2016/index.html


HDR Video Datasets
Dataset 
Name #Videos #Resolution Length FPS Color 

Space Format Website

Stuttgart 
HDR Dataset 33 1920×1080 13s-100s 24/25 REC709 Floating 

Point

https://
www.hdm-

stuttgart.de/
vmlab/projects/

hdr
UBC HDR 

Video 
Dataset 

10 2048×1080 7s-10s 30 REC709 Floating 
Point

http://
dml.ece.ubc.ca/
data/DML-HDR/

LIVE HDR Video 
Quality 

Assessment 
Database

31 (310 at 
different bit-

rates)
0.32Mpix 3s-10s 50/60 BT2020 HDR10

https://
live.ece.utexas.edu/
research/LIVEHDR/

LIVEHDR_index.html

MPI HDR 
Video 

Dataset
2 0.3Mpix 24s-34s 24 REC709 Floating 

Point

https://
resources.mpi-
inf.mpg.de/hdr/

video/

EBU HDR 
Video 

Dataset
10 3996×2160 10s-31s 50 BT2100 HLG

https://
tech.ebu.ch/

testsequences

https://www.hdm-stuttgart.de/vmlab/projects/hdr
http://dml.ece.ubc.ca/data/DML-HDR/
https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
https://resources.mpi-inf.mpg.de/hdr/video/
https://tech.ebu.ch/testsequences


End2End Architectures



Kalantari et al. 2017
• Kalantari et al. 2017 proposed a simple 

solution:

• Optical Flow for the main alignment 

between exposures;

• An end2end (a FCN) with ReLU in all 

layers except a sigmoid for the last layer:

• Convolution varies in kernel size from 

large to small:


• , , , and 7 × 7 5 × 5 3 × 3 1 × 1

1
×

1
×

n
0



Kalantari et al. 2017
• Kalantari et al. 2017 noted that the simple solution have some 

issues:

• It is difficult to train; we need a huge dataset!

• It does not fix alignment artifacts.


• The solution is to use the network to:

• Compute Weights.

• Refine images.



Kalantari et al. 2017
•Weight Estimator:


•The shown architecture is used to compute the per-pixel weights, , to obtain the 
estimated HDR image :


 


•Refined Images:


•The network also refines the alignment obtaining new improved images :
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Kalantari et al. 2017

Hi H̃i αi

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset



Encoder-Decoder - Wu et al. 2018
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Attention HDR - Yan et al. 2019
• Yan et al. 2019 introduces two blocks:


• Attention Module:

• The attention is computed on low level features.

• The attention is applied to features of images that are not 

the reference.


• Residual Dense Blocks [Zhang et al. 2018] with dilated 
convolutions to have a larger receptive field.



Attention HDR - Yan et al. 2019

AT
TE

N
TI

O
N

 M
O

D
U

LE

G
LO

BA
L 

R
ES

ID
U

AL

+2
-s

to
p

-2
-s

to
p

0-
st

op

Merged HDR Image



Attention HDR - Yan et al. 2019
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Attention HDR - Yan et al. 2019
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Attention HDR - Yan et al. 2019
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ADNet - Liu et al. 2021
• Liu et al. 2021, similarly to Pu et al. 2020, proposed for NTIRE 2021 a network based on 

two main blocks:


• Attention computed using the reference, similar to Yan et al. 2019.


• Pyramid, Cascade and Deformable (PCD) module by Wang et al. 2019:


• PCD is applied at the feature level of the gamma-corrected images.


• This module uses deformable convolutions 

OFFSET

DEFORMABLE CONVCLASSIC CONV



ADNet - PCD - Liu et al. 2021
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GAN Architectures



HDRGAN - Niu et al. 2021: Generator
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HDRGAN  - Niu et al. 2021: Training
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UPHDR-GAN - Li et al. 2022: Generator
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UPHDR-GAN - Li et al. 2022: Training
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Loss Functions



Loss Function in the -Law Domainμ
• Kalantari et al. 2017 introduced a L2 loss function in a tone-mapped domain:





 where  is a differentiable tone mapping function based on the -law:


 


• Note that there are variants of  where we have L1 instead of L2.


• This loss function is ubiquitous in most HDR works for reconstruction and 
inverse tone mapping.

ℒrec( ̂I, I) = ∥τ(I) − τ( ̂I)∥2

τ( ⋅ ) μ

τ(I) =
log(1 + μI)
log(1 + μ)

μ = 5000

ℒrec



GAN Loss
• Our goal is:





• Typically a GAN loss is defined as:





where:


•  is the adversial loss.


•  is the content/reconstruction loss.


•  and  are weights for balancing the two losses.

arg min
G

max
D

ℒ(G, D)

ℒ(G, D) = α1ℒGAN(G, D) + α2ℒrec(G)

ℒGAN(G, D)

ℒrec(G)

α1 α2



GAN Loss: HDRGAN
• Niu et al. 2021 has a GAN scheme with a content/reconstruction loss:





• And a GAN loss based on the sphere generative adverbial loss [Park and Kwon 2019], 
where the Discriminator output an -dimensional vector  which is projected on 

:





where  is the distance on the hypersphere, and .


ℒrec = min
G (∥τ(Ĥ1) − Ĥ∥1 + ∥τ(Ĥ2) − Ĥ∥1)

n q
p ∈ 𝕊n

ℒGAN = min
G

max
D ∑

r

𝔼z[dr
s(N, D(z))] − ∑

r

𝔼x1,x2,x3
dr

s(N, D(G(x1, x2, x3))]

ds(p, p′￼) N = [0,…,0,1] ∈ ℝn



GAN Loss: UPHDR-GAN
• Li et al. 2022 has a GAN scheme with a content/

reconstruction loss:





• The GAN loss is defined as:


ℒrec = 𝔼x∼pdata(x)[ VGG(G(x)) − VGG(x2) 1]
ℒGAN = 𝔼y∼pdata(y)[log D(y)] + 𝔼x∼pdata(x)[log 1 − D(G(y))] + 𝔼b∼pdata(b)[log(1 − D(b))]



Loss Function in the -Law Domainμ



HDR Videos



HDR Videos: Temporally Varying Exposure Time
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Video Strategies: Kalantari and Ramamoorthi 2019
• A 5-scale pyramid for computing a multi-scale optical flow 

using a CNN for each scale a simple FCN:

FCN 5-th scale

5-th scale

4-th scale

UPSAMPLE

WARP FCN 5-th scale UPSAMPLE

OPTICAL FLOW

RESIDUAL OPTICAL FLOW



Video Strategies: Kalantari and Ramamoorthi 2019
• Similar to the previous work by Kalantari et al. 2017, there is a 

merger (encoder-decoder). 

• To enforce temporal coherency and reduce artifacts the 

merger uses neighbors frames at previous and next time.



Video Strategies: Chen et al. 2021
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Video Strategies: Chen et al. 2021
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Evaluation



Metrics
• Many works uses:


• Linear domain PSNR and SSIM.


• -law or Reinhard et al. 2002’s TMO PSNR or SSIM


• These approaches have many issues:

• Linear domain PSNR and SSIM are prone to outliers.


• -law and Reinhard et al. 2002’s TMO are empirical approaches that 
do not model the Human Visual System. 

• They may introduce distortions.

μ

μ



Metrics
• PSNR and SSIM should be computed using the PU21:


• PU21 encodes absolute HDR linear value into approximately perceptually 
uniform (PU) values.


• HDR-VDP 2.2, and HDR-VDP 3.0.6.

• Deghosting artifacts: Tursun et al. 2016. 

• Note that many HDR reference images and output images are 

uncalibrated:

• If we do not have calibration data:


• Display-referred values.



Limitations



Limitations
• The CRF needs to be known (a partial limitation);

• Most methods are limited to merge ONLY three images:


• There is no method addressing an arbitrary number of 
images or more than threes.


• The difference in f-stop has to be fixed:

• There is no method that can merge an image at -5-stop, 0-

stop, and +1-stop.



Other Problems in Reconstruction



Other Reconstruction Problems
• We have other problems for HDR reconstruction with partial real information 

that can be solved using deep learning:

• Assorted pixels/rows [Choi et al. 2017, Çogolan et al. 2020,  Suda et al. 

2020, Xu et al. 2021, Vien et al. 2022].

• HDR from deep optics/masks [Alghamdi et al. 2019, Metzler et al. 2020]

• HDR reconstruction using an event camera [Wang et al. 2019, Shaw et 

al. 2022, Messikommer et al. 2022].

• HDR reconstruction for quanta sensors [Gnanasambandam et al. 2020, 

Gao et al. 2022].



Questions?


