Modern High Dynamic Range Imaging at the Time of Deep Learning **Multiple Exposures Reconstruction**

Francesco Banterle and Alessandro Artusi

Introduction

- HDR reconstruction from multipleexposures:
 - If we don't place the camera on a stable tripod the camera moves!
 - If we have wind or people, there will be movement!
 - All this means, we will have artifacts!

Introduction

- HDR reconstruction from multipleexposures:
 - If we don't place the camera on a stable tripod the camera moves!
 - If we have wind or people, there will be movement!
 - All this means, we will have artifacts!

• What if we capture a stack of exposure images free-hand without a tripod?

-2-stop

0-stop

+2-stop

Merged Stack and Tone Mapped

Merged Stack and Tone Mapped

- Typically, if we have ONLY camera movement, we can manage the merge:
 - We have only a single global movement.
- - Greg Ward's MTB method.
 - Tomaszewska and Mantiuk's Homography algorithm.
 - Gallo's Multiple Homographies.

• There are several robust algorithm to deal with such situations:

-2-stop

• What if we capture a stack of exposure images on a tripod in a dynamic scene?

0-stop

+2-stop

Merged Stack and Tone Mapped

Merged Stack and Tone Mapped

- be fixed easily.
- - Masks: Pece and Katuz 2010
 - Grandaos et al. 2013
 - PatchMatch-based: Sen et al./Hu et al. 2014

Typically, if when the moving people/objects are small they can

• There are several robust algorithm to deal with such situations:

Datasets

0-stop

+2-stop

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

Dynamic Stack

+2-stop

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

Dynamic Stack

Static Stack

+2-stop

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

Dynamic Stack

Static Stack

Training Stack

+2-stop

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

Dynamic Stack

Static Stack

Training Stack

Images

• For each SDR image I_i , we know:

• The CRF, $f(\cdot)$; i.e., we know its inverse $g(\cdot) = f^{-1}(\cdot)$;

• The exposure time $t_i = \frac{|SO_i \cdot t'_i|}{K \cdot A_i^2}$

- t'_i : Shutter speed.
- A_i : Aperture value.
- $|SO_i|$ |SO value.
- $K \in [30.6, 13.4]$: a constant depending on the camera.

Images

• Typically, we work with "calibrated" SDR image H_i : $H_i = \frac{g(I_i)}{t_i}$

- In many works, the CRF is assumed to be $f(x) = x^{\frac{1}{2.2}}$.
- Therefore, we have:

Images: Patches and Augmentations

- All methods are trained on patches of different size: 40×40 , 256 × 256, 512 × 512.
- Patches may be create with or without overlap.
- We have different augmentations:
 - Rotation, Flips, etc.
 - Swapping color channels [Kalantari et al. 2017]

Preprocessing

- first alignment:
- Homography alignment introduced by Wu et al. 2018; • Optical flow alignment introduced by Kalantari et al. 2017. • This initial alignment reduces blur.
- Typically, it matches the background well:
 - Local mismatches are left.

The problem can be "simplified" by using classic approach for a

HDR Image Datasets

Dataset Name	#Images	#Resolution	Calibrated	Website
Kalantari Dataset	74	1.5MPix	Uncalibrated	<u>https://</u> <u>cseweb.ucsd.edu/</u> <u>~viscomp/projects/</u> <u>SIG17HDR/</u>
Tursun Dataset	17	0.6Mpix	Uncalibrated	<u>https://</u> user.ceng.metu.edu.t <u>r/~akyuz/files/</u> eg2016/index.html

HDR Video Datasets

Dataset Name	#Videos	#Resolution	Length	FPS	Color Space	Format	Website
Stuttgart HDR Dataset	33	1920×1080	13s-100s	24/25	REC709	Floating Point	<u>https://</u> <u>www.hdm-</u> <u>stuttgart.de/</u> <u>vmlab/projects/</u>
UBC HDR Video Dataset	10	2048×1080	7s-10s	30	REC709	Floating Point	<u>http://</u> <u>dml.ece.ubc.ca/</u> <u>data/DML-HDR/</u>
LIVE HDR Video Quality Assessment Database	31 (310 at different bit- rates)	0.32Mpix	3s-10s	50/60	BT2020	HDR10	<u>https://</u> live.ece.utexas.edu/ <u>research/LIVEHDR/</u> LIVEHDR_index.html
MPI HDR Video Dataset	2	0.3Mpix	24s-34s	24	REC709	Floating Point	<u>https://</u> <u>resources.mpi-</u> <u>inf.mpg.de/hdr/</u> <u>video/</u>
EBU HDR Video Dataset	10	3996×2160	10s-31s	50	BT2100	HLG	<u>https://</u> <u>tech.ebu.ch/</u> <u>testsequences</u>

End2End Architectures

- Kalantari et al. 2017 proposed a simple solution:
 - Optical Flow for the main alignment between exposures;
 - An end2end (a FCN) with ReLU in all layers except a sigmoid for the last layer:
 - Convolution varies in kernel size from large to small:
 - 7×7 , 5×5 , 3×3 , and 1×1

- issues:
 - It is difficult to train; we need a huge dataset!
 - It does not fix alignment artifacts.
- The solution is to use the network to:
 - Compute Weights.
 - Refine images.

Kalantari et al. 2017 noted that the simple solution have some

- Weight Estimator:
 - estimated HDR image \hat{H} :

- Refined Images:

• The shown architecture is used to compute the per-pixel weights, α , to obtain the

 $\hat{H} = \frac{\sum_{i} \alpha_{i} \cdot H_{i}}{\sum_{i} \alpha_{i}}$

• The network also refines the alignment obtaining new improved images H_i :

 $\hat{H} = \frac{\sum_{i} \alpha_{i} \cdot \hat{H}_{i}}{-}$

 $\sum_{i} \alpha_{i}$

 H_i

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

 \tilde{H}_i

 α_i

Encoder-Decoder - Wu et al. 2018

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

- Yan et al. 2019 introduces two blocks:
 - Attention Module:
 - The attention is computed on low level features.
 - the reference.
 - Residual Dense Blocks [Zhang et al. 2018] with dilated convolutions to have a larger receptive field.

• The attention is applied to features of images that are not

Dilated Residual Dense Block (DRDB)

Dilated Residual Dense Block (DRDB)

ADNet - Liu et al. 2021

- Liu et al. 2021, similarly to Pu et al. 2020, two main blocks:
 - Attention computed using the reference, similar to Yan et al. 2019.
 - Pyramid, Cascade and Deformable (PCD) module by Wang et al. 2019:
 - PCD is applied at the feature level of the gamma-corrected images.
 - This module uses deformable convolutions

Liu et al. 2021, similarly to Pu et al. 2020, proposed for NTIRE 2021 a network based on

ADNet - PCD - Liu et al. 2021 I_2 Aligned FEATURE *I*₂ DCONV FEATURE I₂ FEATURE I_1 CONCATENATION DCONV

GAN Architectures

HDRGAN - Niu et al. 2021: Generator

HDRGAN - Niu et al. 2021: Training

UPHDR-GAN - Li et al. 2022: Generator

INPUT IMAGES

UPHDR-GAN - Li et al. 2022: Training

INPUT IMAGES

GROUND TRUTH

GENERATED IMAGE

BLUR IMAGE

Loss Functions

Loss Function in the μ -Law Domain • Kalantari et al. 2017 introduced a L2 loss function in a tone-mapped domain: $\mathscr{L}_{\mathsf{r}\in\mathsf{C}}(\hat{I},I) = \|\tau(I) - \tau(\hat{I})\|_2$

- where $\tau(\cdot)$ is a differentiable tone mapping function based on the μ -law: $\tau(I) = \frac{\log(1 + \mu I)}{\log(1 + \mu)}$ $\mu = 5000$
- Note that there are variants of $\mathscr{L}_{\mathrm{rec}}$ where we have L1 instead of L2.
- This loss function is ubiquitous in most HDR works for reconstruction and inverse tone mapping.

GAN Loss

• Our goal is:

 $G \quad D$

• Typically a GAN loss is defined as:

 $\mathscr{L}(G,D) = \alpha_1 \mathscr{L}_{GAN}(G,D) + \alpha_2 \mathscr{L}_{Fec}(G)$

where:

- $\mathscr{L}_{GAN}(G,D)$ is the adversial loss.
- $\mathscr{L}_{rec}(G)$ is the content/reconstruction loss.
- α_1 and α_2 are weights for balancing the two losses.

$\operatorname{arg\,min\,max} \mathscr{L}(G,D)$

GAN Loss: HDRGAN

Niu et al. 2021 has a GAN scheme with a content/reconstruction loss:

$$\mathscr{L}_{\text{FeC}} = \min_{G} \left(\|\tau(\hat{H}_1) - \hat{H}\|_1 + \|\tau(\hat{H}_2) - \hat{H}\|_1 \right)$$

 $\mathbf{p} \in \mathbb{S}^n$:

$$\mathscr{L}_{\text{GAN}} = \min_{G} \max_{D} \sum_{r} \mathbb{E}_{\mathbf{z}}[d_{s}^{r}(\mathbf{N}, D(\mathbf{z}))] - \sum_{r} \mathbb{E}_{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}} d_{s}^{r}(\mathbf{N}, D(G(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}))]$$

where $d_{s}(\mathbf{p}, \mathbf{p}')$ is the distance on the hypersphere, and $\mathbf{N} = [\mathbf{U}, \dots, \mathbf{U}, \mathbf{I}] \in \mathbb{K}$.

 And a GAN loss based on the sphere generative adverbial loss [Park and Kwon 2019], where the Discriminator output an n-dimensional vector **q** which is projected on

GAN LOSS: UPHDR-GAN • Li et al. 2022 has a GAN scheme with a content/ reconstruction loss:

The GAN loss is defined as:

 $\mathscr{L}_{\text{GAN}} = \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D(y)] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log 1 - D(G(y))] + \mathbb{E}_{b \sim p_{\text{data}}(b)}[\log(1 - D(b))]$

$\mathscr{L}_{\text{rec}} = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\left\| VGG(G(x)) - VGG(x_2) \right\|_1 \right]$

Loss Function in the μ -Law Domain

HDR Videos

HDR Videos: Temporally Varying Exposure Time

 t_0

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

Video Strategies: Kalantari and Ramamoorthi 2019 A 5-scale pyramid for computing a multi-scale optical flow using a CNN for each scale a simple FCN:

Video Strategies: Kalantari and Ramamoorthi 2019 Similar to the previous work by Kalantari et al. 2017, there is a

- merger (encoder-decoder).
- To enforce temporal coherency and reduce artifacts the

merger uses neighbors frames at previous and next time.

Video Strategies: Chen et al. 2021

Video Strategies: Chen et al. 2021

HDR Frame at time i-th

Evaluation

Metrics

- Many works uses:
 - Linear domain PSNR and SSIM.
 - μ -law or Reinhard et al. 2002's TMO PSNR or SSIM
- These approaches have many issues:
 - Linear domain PSNR and SSIM are prone to outliers.
 - do not model the Human Visual System.
 - They may introduce distortions.

• μ -law and Reinhard et al. 2002's TMO are empirical approaches that

Metrics

- PSNR and SSIM should be computed using the PU21:
 - PU21 encodes absolute HDR linear value into approximately perceptually uniform (PU) values.
- HDR-VDP 2.2, and HDR-VDP 3.0.6.
- Deghosting artifacts: Tursun et al. 2016.
- Note that many HDR reference images and output images are uncalibrated:
 - If we do not have calibration data:
 - Display-referred values.

Limitations

Limitations

- The CRF needs to be known (a partial limitation); Most methods are limited to merge ONLY three images: • There is no method addressing an arbitrary number of
- images or more than threes.
- The difference in f-stop has to be fixed:
 - stop, and +1-stop.

• There is no method that can merge an image at -5-stop, 0-

Other Problems in Reconstruction

Other Reconstruction Problems

- that can be solved using deep learning:
 - 2020, Xu et al. 2021, Vien et al. 2022].

 - al. 2022, Messikommer et al. 2022].
 - Gao et al. 2022].

We have other problems for HDR reconstruction with partial real information

• Assorted pixels/rows [Choi et al. 2017, Çogolan et al. 2020, Suda et al.

• HDR from deep optics/masks [Alghamdi et al. 2019, Metzler et al. 2020]

• HDR reconstruction using an event camera [Wang et al. 2019, Shaw et

HDR reconstruction for quanta sensors [Gnanasambandam et al. 2020,

Questions?