Modern High Dynamic Range Imaging at the Time of Deep Learning Main Deep Learning Architectures

Francesco Banterle and Alessandro Artusi

Convolutional Neural Networks

Convolutional layer - Principle

*

2D input image

10	35	145	45	255
4	110	2	3	120
90	9	25	15	115
75	125	6	1	2
38	3	65	15	210

f(x, y)

Stride - shift of the kernel on the input image

2D convolved image

g(i,j)

 $\sum f(x-i, y-j)g(i, j)$

Convolutional layer - Padding

		2D) input in	nage			_	
0	0	0	0	0	0	0		
0	10	35	145	45	255	0		3:
0	4	110	2	3	120	0		1
0	90	9	25	15	115	0	*	-1
0	75	125	6	1	2	0		0
0	38	3	65	15	210	0		
0	0	0	0	0	0	0		
			f(x, y))			-	

Stride - shift of the kernel on the input image

2D convolved image

g(i,j)

 $\sum f(x-i, y-j)g(i, j)$

Convolutional layer - Dilatation (x,y)

2D input image

1,-1	1,0		1,1	
0,-1	0,0		0,1	
-1,-1	 -1,0	******	-1,1	
		*****		******

Scope - increasing the receptive field

3x3 kernel filter

1,-1	1,0	1,1
0,-1	0,0	0,1
-1,-1	-1,0	-1,1

*

Activation Functions (layers) categories - most used

 $ReLU(x) = \max(0, a + x'b)$

1. Ridge activation functions

- 1.1 linear
- 1.2 ReLU
- 1.3 logistic

2. Radial activation functions

2.1 gaussian2.2 multi quadratics2.3 polynomials

Pooling - downsampling (e.g., max function)

4	2	3	1
9	1	8	1
3	6	1	2

- controlling overfitting

- reducing the number of parameters

- memory footprint
- reducing the number of computations

The U-Net

Encoder/Contraction

Decoder/Expansion

The U-Net - Multi-scale concept in Image Processing

- How Human Visual system works:
 - Distance places a role in the perceived details of the image
 - Far away fine details are not visible
 - Closer we are, we are able to perceive fine details in objects.

Fully Convolutional Neural Networks

no-Contraction and no-Expansion

- FCN what is it?
- Architecture with only convolutional layers
 - No dense layers
 - U-net is an example
- Contraction and Expansion but different from U-net
- But others architectures are possible

Generative Adversarial Networks (GANs)

Real image

i.e., new image

es, Discriminate between different data instances, e.g., fake vs. real

GANs: Backpropagation in Discriminator

Random input - HDR image

Fake Data (negative sample) instances created by the generator

GANs: Backpropagation in Generator

Random input - HDR image

Fake Data (negative sample) instances created by the generator

GANs: Loss Function - e.g., Minimax loss

$L_{GAN}(G,D) = \mathbb{E}_{y}[logD(y)] + \mathbb{E}_{x}[1 - logD(G(x))]$

Discriminator loss Generator loss

 \mathbb{E}_{v} = expected value over all the real y instances G(x)D(G(x)) = discriminator estimated probability that a fake instance is real \mathbb{E}_{r} = expected value over all fake generated instances

D(y) = discriminator estimated probability that the real data instance y is real

= generator instance output value when given random input/input image x