
Francesco Banterle and Alessandro Artusi

Modern High Dynamic Range
Imaging at the Time of Deep
Learning
Main Deep Learning Architectures

Convolutional Neural Networks

 Filter kernel

 Pooling Convolution + activation Fully connected

 Outputs

 Convolution + activation

Convolutional layer - Principle

∑ f(x − i, y − j)g(i, j)

35 145

110 2

45 255

3

9

125

120

6

15 115

1 2

1 0

-1 0

3x3 kernel filter

1

-1

0 1 1

2D input image 2D convolved image

10

4

90

75

3 65 15 21038

25 * 96

f(x, y) g(i, j)

=

Stride - shift of the kernel on the input image

Convolutional layer - Padding

∑ f(x − i, y − j)g(i, j)

35 145

110 2

45 255

3

9

125

120

6

15 115

1 2

1 0

-1 0

3x3 kernel filter

1

-1

0 1 1

2D input image

2D convolved image

10

4

90

75

3 65 15 21038

25 * 96

f(x, y) g(i, j)

=

Stride - shift of the kernel on the input image

0 0 0 0 0 00

0 0 0 0 0 00

0

0

0

0

0

0

0

0

0

0

Convolutional layer - Dilatation (x,y)

1,-1 1,0

0,-1

3x3 kernel filter

1,1

0,1

-1,-1 -1,0 -1,1

2D input image

* 0,00,00,-1

-1,-1 -1,0 -1,1

0,1

1,-1 1,0 1,1

Dilation = 2

Scope - increasing the receptive field

Activation Functions (layers) categories - most used

x

y

 1. Ridge activation functions

1.1 linear

0

2. Radial activation functions

1.2 ReLU
1.3 logistic

2.1 gaussian
2.2 multi quadratics
2.3 polynomials

ReLU(x) = max(0,a + x′ b)

Pooling - downsampling (e.g., max function)

1 5

4 2

7 2

3

9

3

1

1

6

8 1

1 2

5 7

9 9

y

x 2x2 filter, stride 2

 - controlling overfitting
 - reducing the number of parameters - reducing the number of computations

 - memory footprint

The U-Net

Encoder/Contraction Decoder/Expansion

The U-Net - Multi-scale concept in Image Processing

• How Human Visual system works:

• Distance places a role in the
perceived details of the image

• Far away fine details are not
visible

• Closer we are, we are able to
perceive fine details in
objects.

Fully Convolutional Neural Networks

• FCN what is it?

• Architecture with only
convolutional layers

• No dense layers

• U-net is an example

• But others architectures are
possible

no-Contraction and no-Expansion

Contraction and Expansion
but different from U-net

Generative Adversarial Networks (GANs)

2.0e+01

1.1e+02

6.7e+02

3.9e+03

2.3e+04

Lux

G D

Real image

Final output image

Generated image
y

x G(x)

Generate new data instances,
i.e., new image

Discriminate between different data instances,
e.g., fake vs. real

Random input - HDR image

GANs: Backpropagation in Discriminator

2.0e+01

1.1e+02

6.7e+02

3.9e+03

2.3e+04

Lux

G D

Random input - HDR image

Real image

Generated image
y

x G(x)

Discriminator loss

Generator loss

Backpropagation

Real Data - positive sample

Fake Data (negative sample)
instances created by the generator

Generator does not train

GANs: Backpropagation in Generator

2.0e+01

1.1e+02

6.7e+02

3.9e+03

2.3e+04

Lux

G D

Real image

Generated image
y

x G(x)

Generator loss

Discriminator loss

Backpropagation

Real Data - positive sample

Fake Data (negative sample)
instances created by the generator

Random input - HDR image

GANs: Loss Function - e.g., Minimax loss

LGAN(G, D) = 𝔼y[logD(y)] + 𝔼x[1 − logD(G(x))]
Discriminator loss Generator loss

 = discriminator estimated probability that the real data instance y is realD(y)
𝔼y = expected value over all the real y instances

G(x)

D(G(x))
𝔼x

 = generator instance output value when given random input/input image x

 = discriminator estimated probability that a fake instance is real

 = expected value over all fake generated instances

