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Convolutional Neural Networks
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Convolutional layer - Principle

∑ f(x − i, y − j)g(i, j)
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Convolutional layer - Padding

∑ f(x − i, y − j)g(i, j)
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Convolutional layer - Dilatation (x,y)
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Activation Functions (layers) categories - most used

x

y

 1. Ridge activation functions

1.1 linear

0

2. Radial activation functions

1.2 ReLU
1.3 logistic

2.1 gaussian
2.2 multi quadratics
2.3 polynomials

ReLU(x) = max(0,a + x′ b)



Pooling - downsampling (e.g., max function)
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 - controlling overfitting
 - reducing the number of parameters  - reducing the number of computations

 - memory footprint



The U-Net

Encoder/Contraction Decoder/Expansion



The U-Net - Multi-scale concept in Image Processing

• How Human Visual system works: 

• Distance places a role in the 
perceived details of the image 

• Far away fine details are not 
visible 

• Closer we are, we are able to 
perceive fine details in 
objects.



Fully Convolutional Neural Networks

• FCN what is it? 

• Architecture with only 
convolutional layers 

• No dense layers 

• U-net is an example  

• But others architectures are 
possible

no-Contraction and no-Expansion

Contraction and Expansion 
but different from U-net



Generative Adversarial Networks (GANs)
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GANs: Backpropagation in Discriminator
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GANs: Backpropagation in Generator
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GANs: Loss Function - e.g., Minimax loss 

LGAN(G, D) = 𝔼y[logD(y)] + 𝔼x[1 − logD(G(x))]
Discriminator loss Generator loss

 = discriminator estimated probability that the real data instance y is realD(y)
𝔼y  = expected value over all the real y instances

G(x)

D(G(x))
𝔼x

 = generator instance output value when given random input/input image x

 = discriminator estimated probability that a fake instance is real

 = expected value over all fake generated instances


