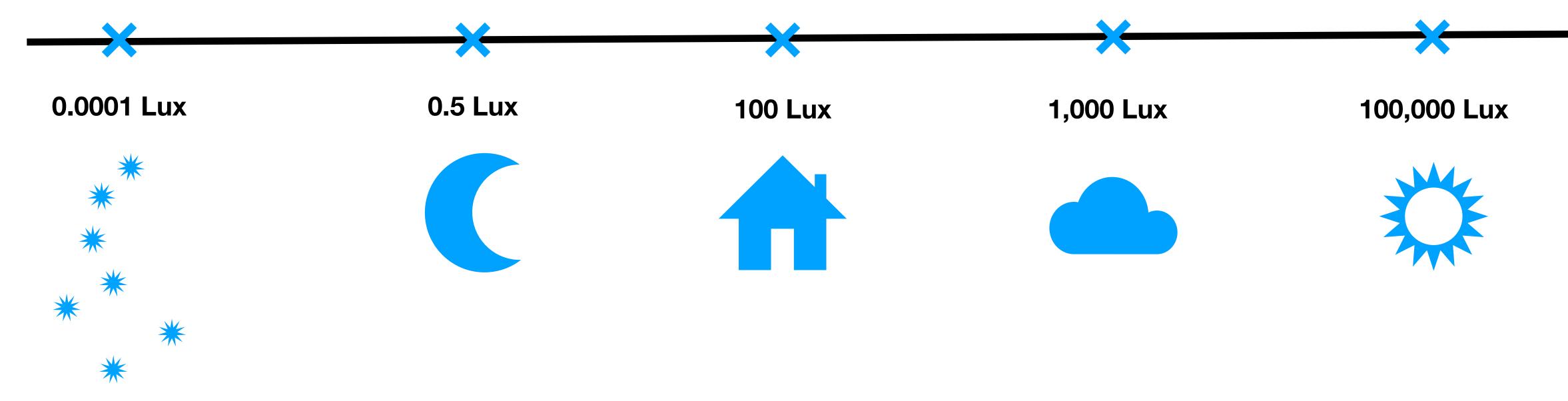
Modern High Dynamic Range Imaging at the Time of Deep Learning

Francesco Banterle and Alessandro Artusi

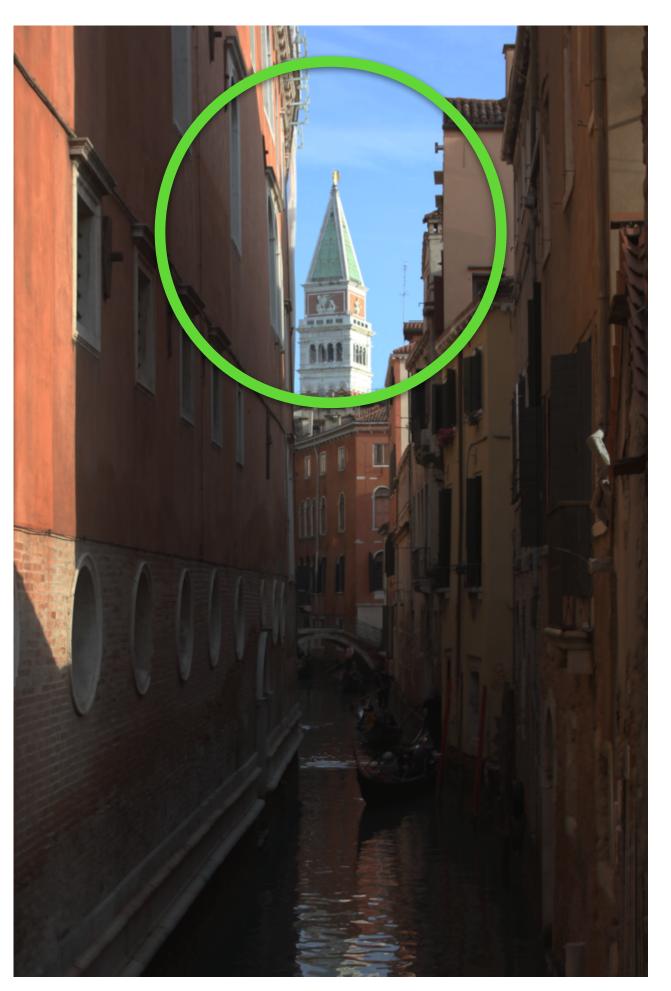
High Dynamic Range Imaging

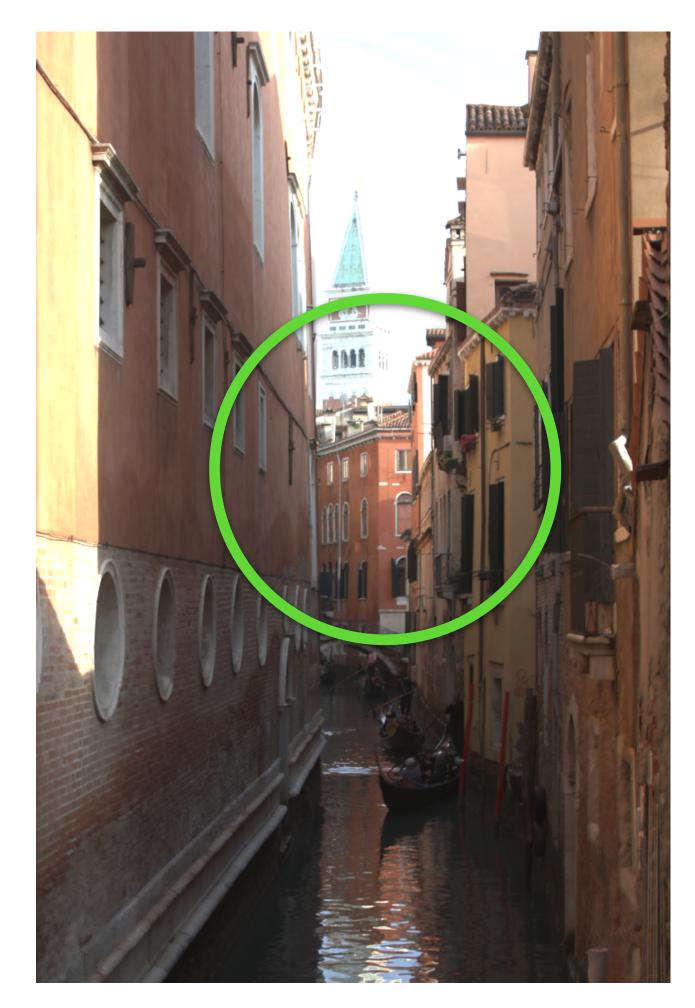
HDR Imaging



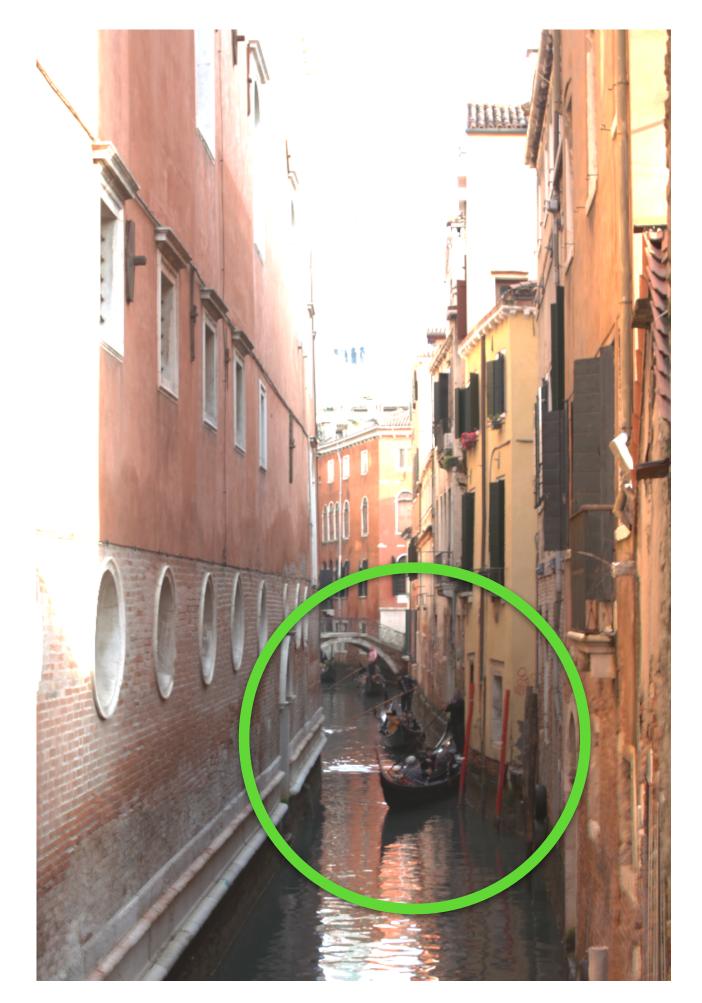
→

HDR Imaging





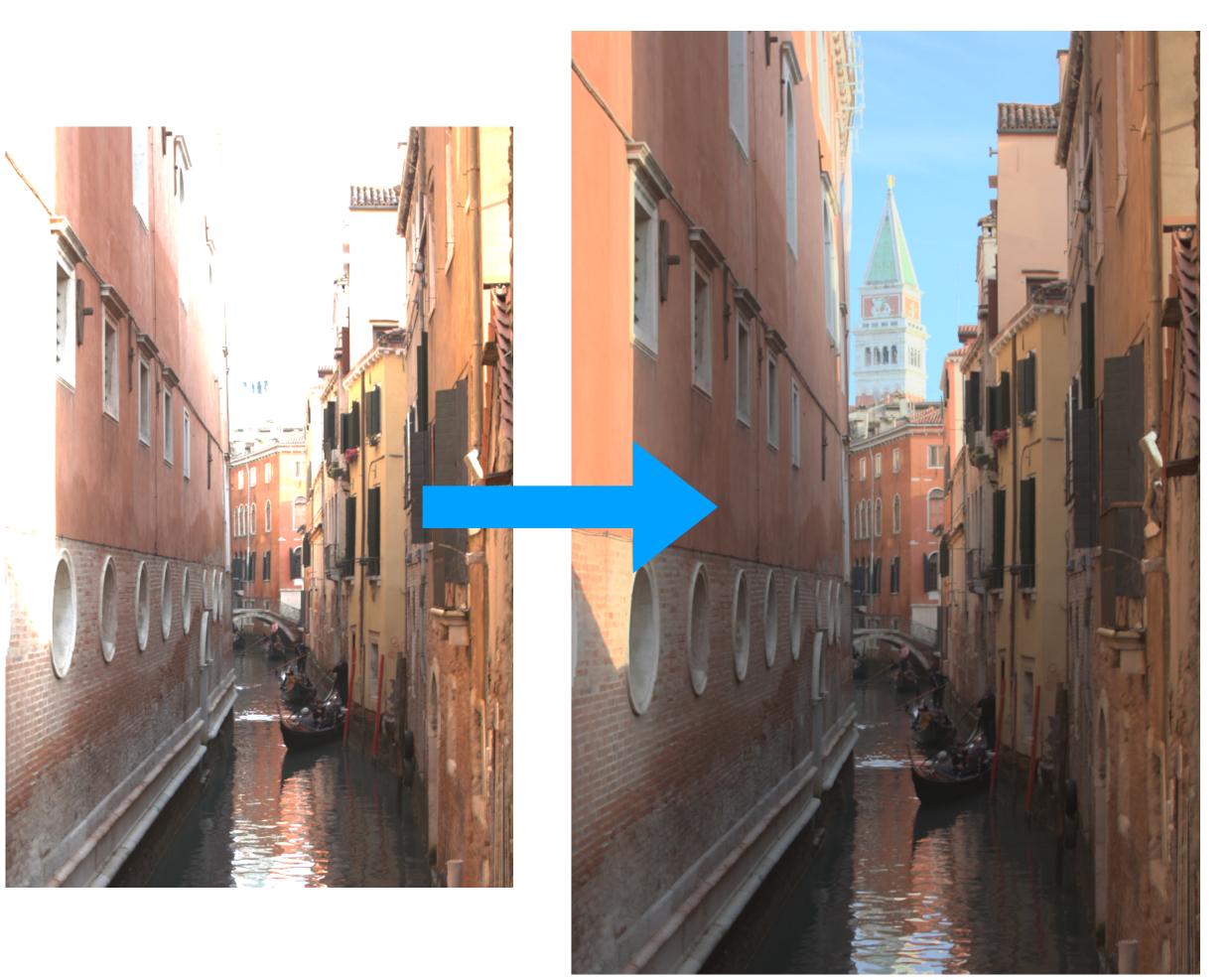
Long Exposure



Mid Exposure

HDR Imaging

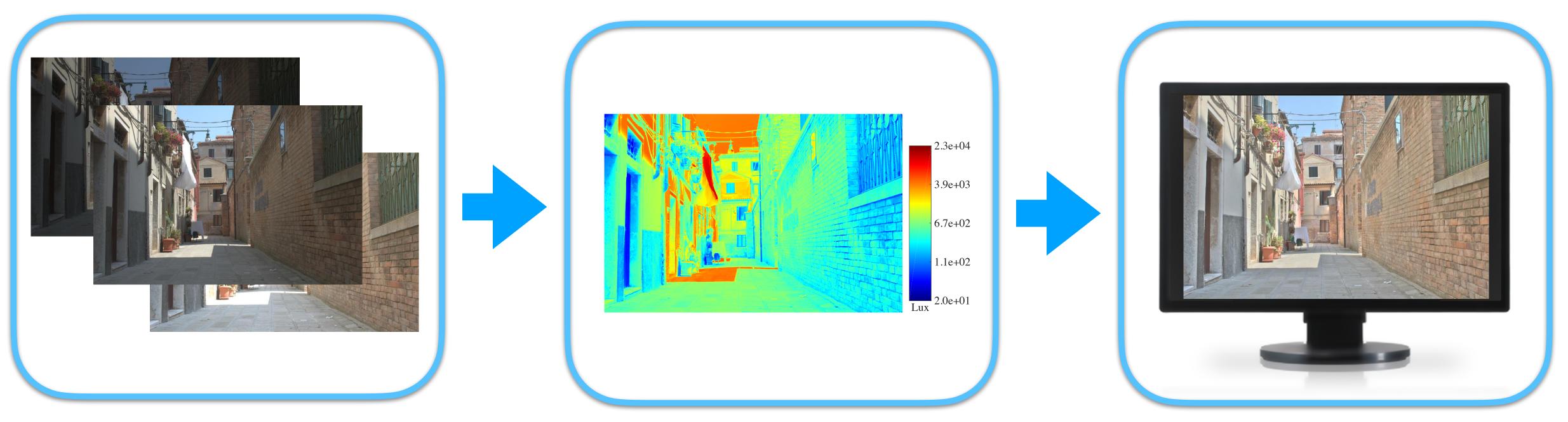




Merged Exposures

The HDR Pipeline

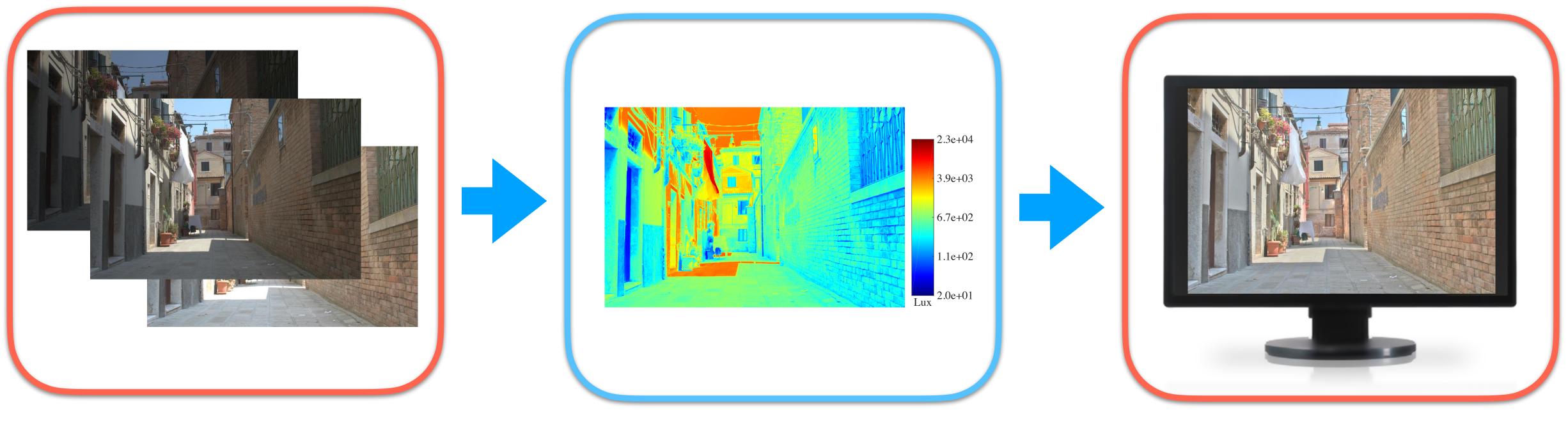
CAPTURE



STORING

DISPLAY

HDR Imaging: Merging



CAPTURE

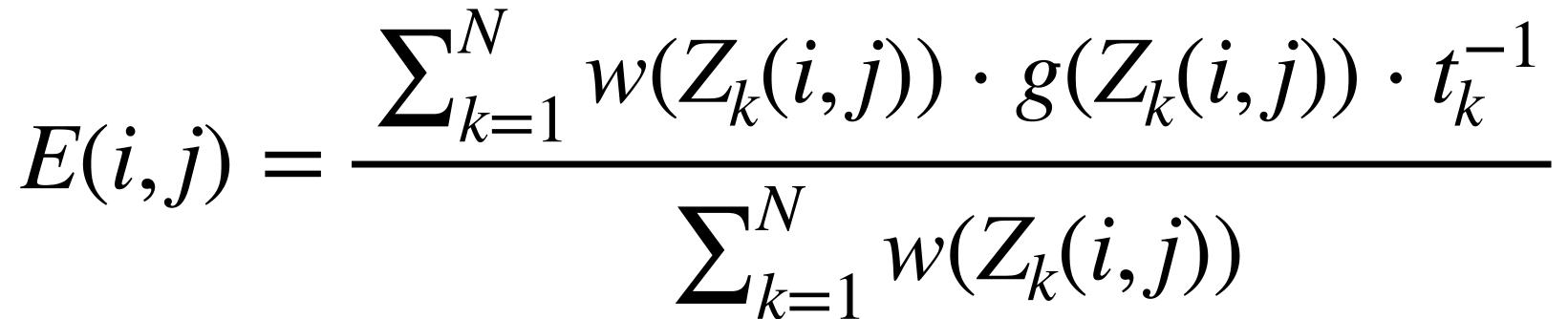
STORING

DISPLAY

HDR Imaging: Acquisition

HDR Imaging: Merging

shutter speed:



• where $g = f^{-1}$ is the inverse camera response function, and wis a weighting function. Typically, the merge is computed in the log-domain to reduce noise.

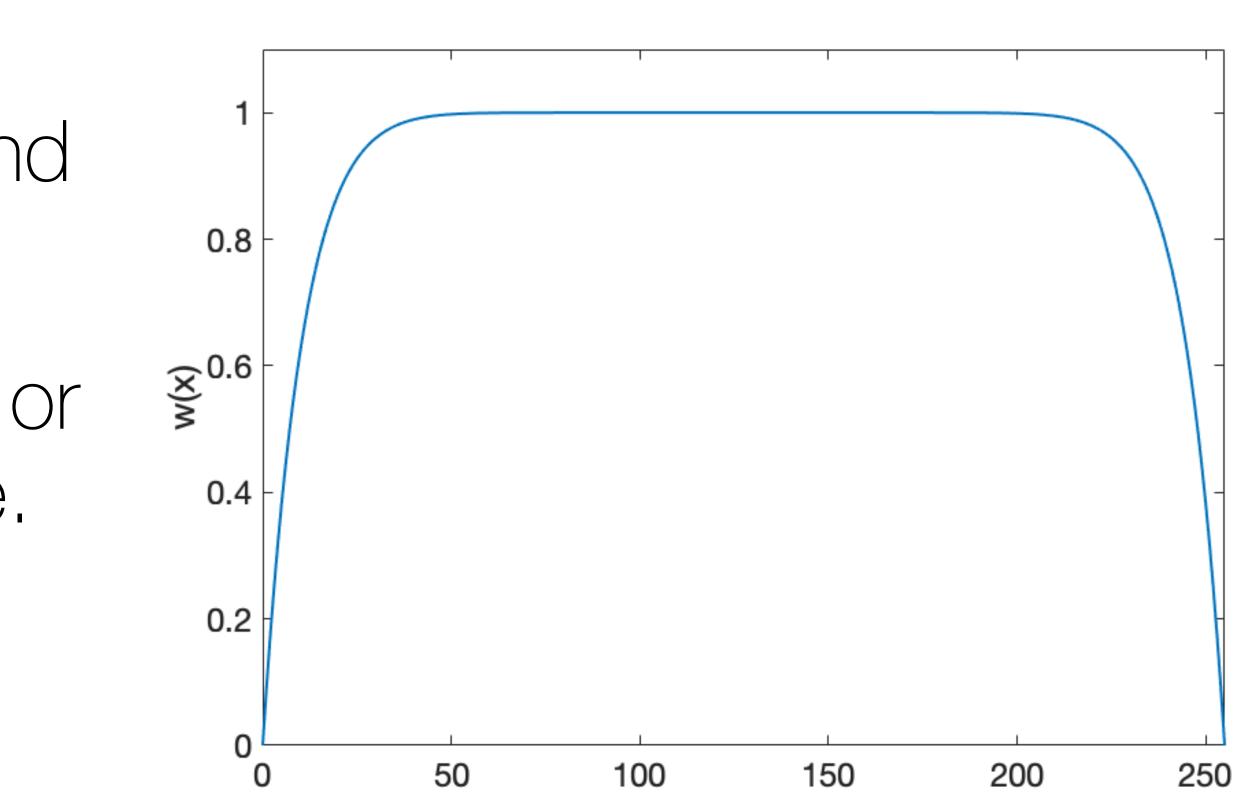
• To merge N images, Z_k , at different exposure times, t_k , we sum them up taking into account that they were taken at different

HDR Imaging: Merging • The result E(i, j) is a radiance map: • Note E is the irradiance symbol; the radiance symbol is L: Technically speaking we should taking into account that: $E(i,j) = L(i,j)\frac{\pi}{4}\left(\frac{d}{f}\right)^2 \cos^4 \alpha$

• But... Most lenses already compensate for this!

HDR Imaging: The Weighting Function

- The weighting function selects well-exposed pixels from the input image to avoid noisy and saturated pixels:
 - Such value increase noise or bias in the final HDR image.
- For example:
 - $w(x) = 1 (2x 1)^{12}$



Pixel value

HDR Imaging: Camera Response Function • A Camera Response Function (CRF), f, is a non-linear function

- of image irradiance:
 - bit of a JPEG image.
 - behavior.
 - It is typically not known, but it can be estimated.

 It is a solution for compressing the irradiance values large dynamic range into a fixed range of recordable values; i.e., 8-

RAW images (stored in 10-14 bits) have mostly a linear

Knowing:

Classic Debevec and Malik 1997

 $Z_k(i,j) = f(E(i,j) \cdot t_k)$

 $f^{-1}(Z_k(i,j)) = E(i,j) \cdot t_k$

 $\log f^{-1}(Z_k(i,j)) = \log E(i,j) + \log t_k$

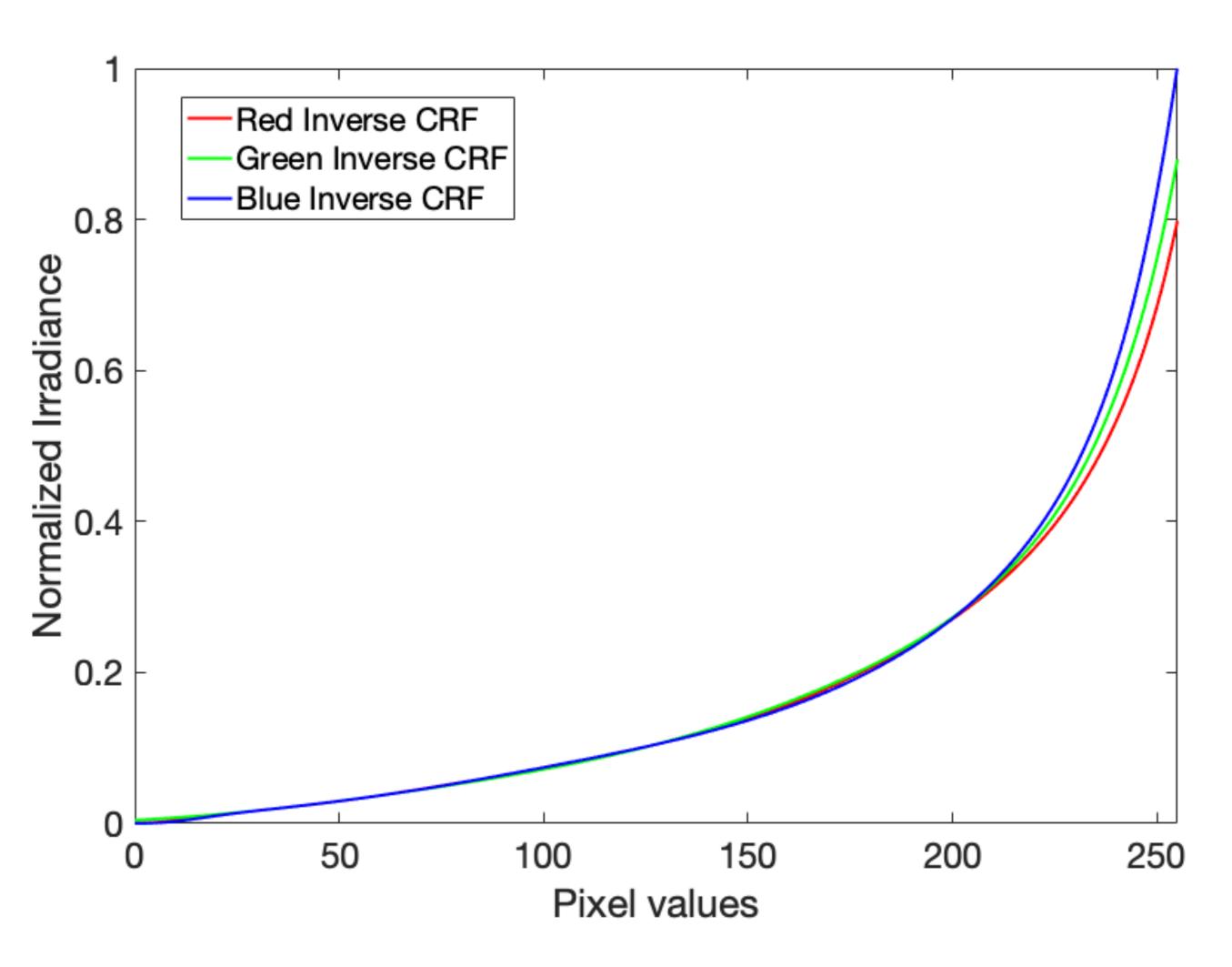
A typical estimation method is based on optimization:

$\mathcal{O} = \sum_{k=1}^{N} \sum_{i,j} \left(\log g(Z_k(i,j)) - \log E(i,j) - \log t_j \right)^2 + \lambda \sum_{x} g''(x)^2$

where $g(x) = f^{-1}(x)$.

Classic Debevec and Malik 1997

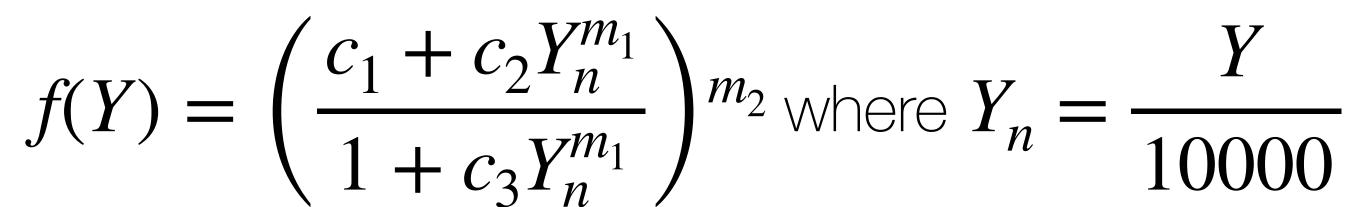
Classic Debevec and Malik 1997



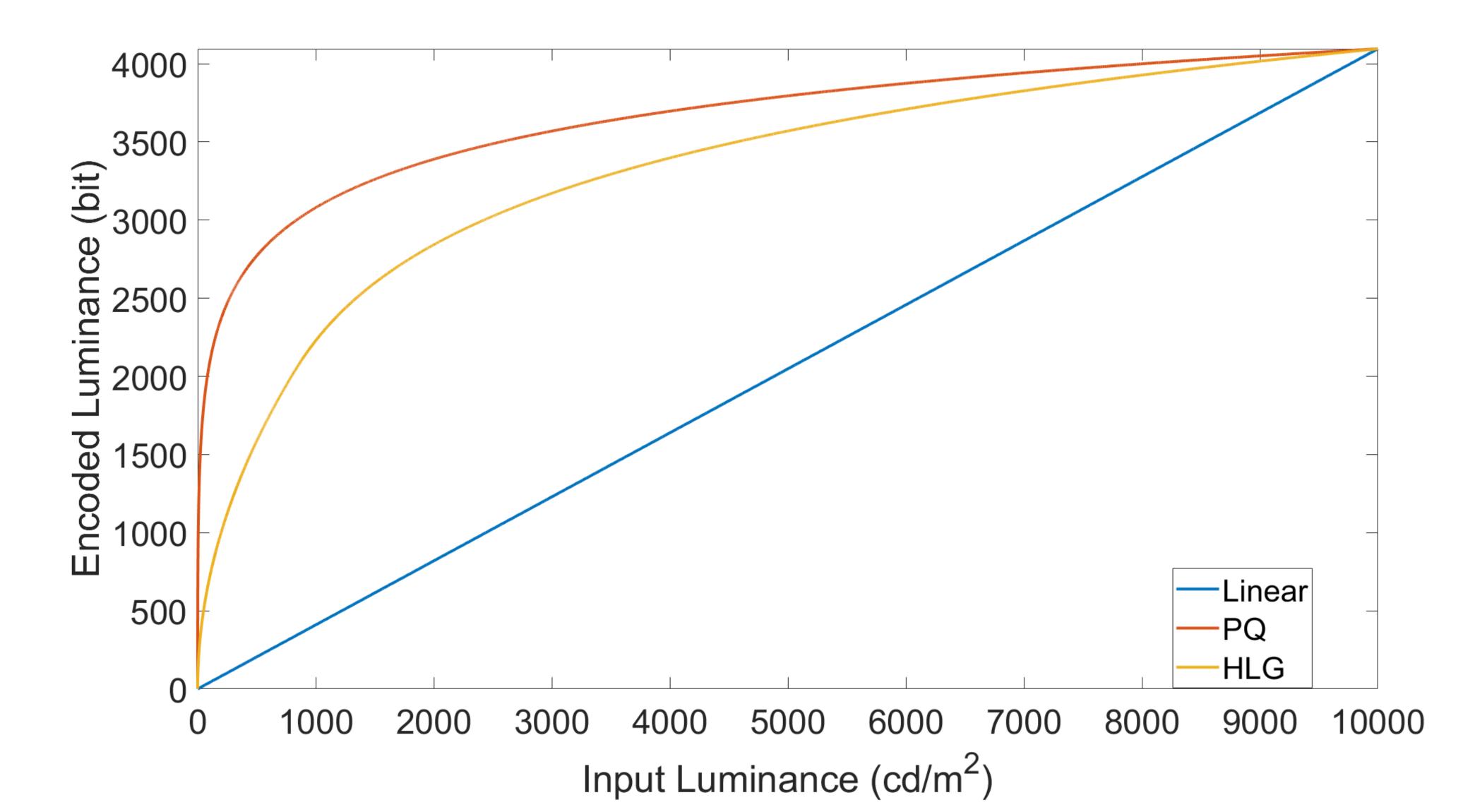
agree on some standard CRF or OETF. Most famous examples:

 $f(Y) = \begin{cases} r\sqrt{Y} \\ \end{array}$ $J \land /$

Many cameras/smartphone manufactures and displays makers have started to



$Y \in [0,1]$ $a \log(Y - b) + c \quad Y > 1$

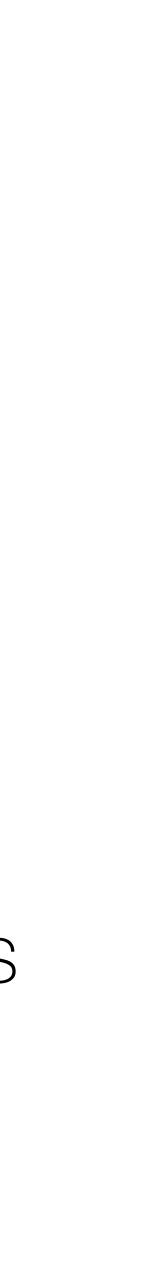


HDR Videos

- There are different strategies:
 - frames at different exposures time [Tocci+2011].
 - Varying the exposure shutter speed at each frame [Kang+2003].
 - [Yasuma+2010].

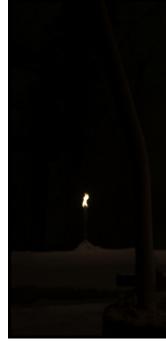
Multiple sensors combined with beam splitter capturing

Varying the exposure time in the bayer filter or assorted pixels



HDR Videos: Multiple Sensors

Stream \sim Stream \mathfrak{O} eam Str



 t_0

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

17

 t_1

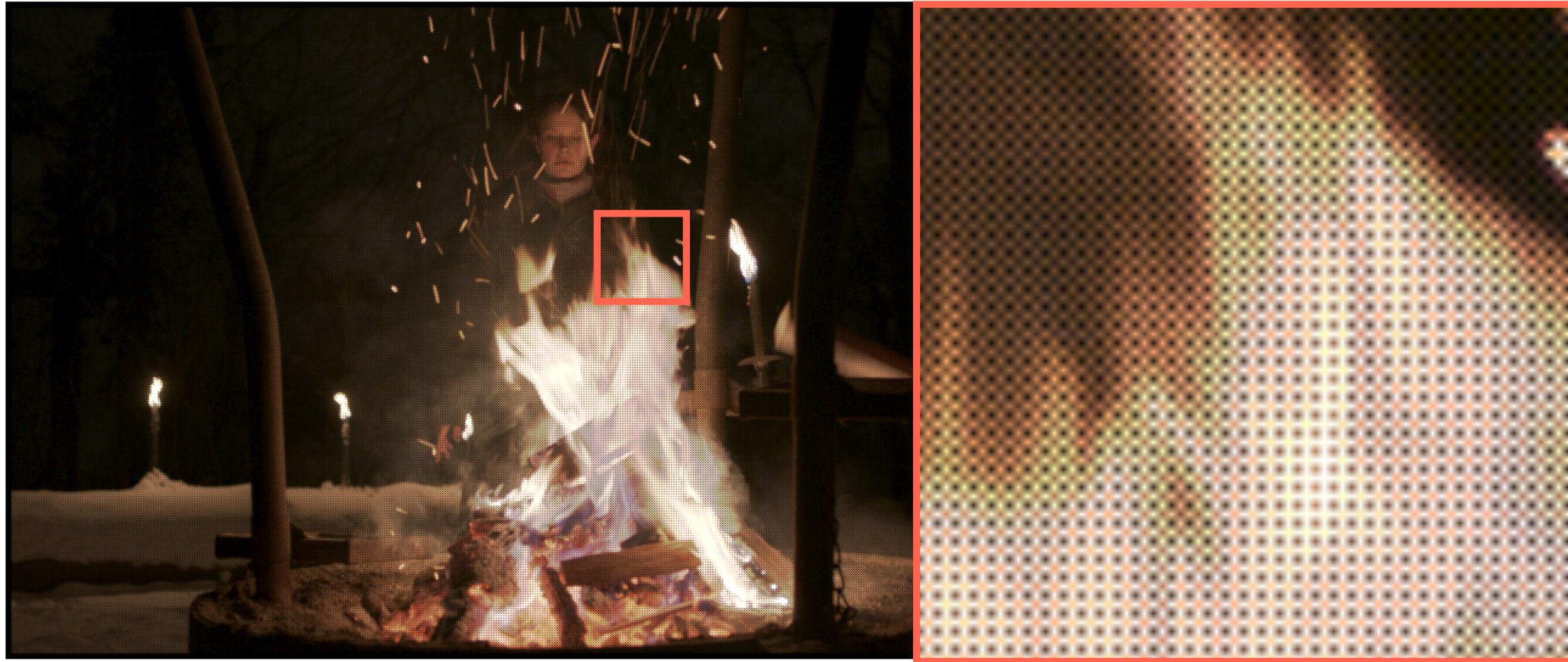
HDR Videos: Varying Exposure at Each Frame

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

 t_1

 t_2

HDR Videos: Assorted Pixels



Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

HDR Videos: Assorted Rows



Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

HDR Imaging: Tone Mapping - SDR Visualization

Tone Mapping

- A tone mapping operator (TMO) is a function, $f(\cdot)$, that reduces the classes:
 - mapped:
 - We want to maintain the global contrast of the original image.
 - be tone mapped:
 - image.

dynamic range of a HDR image to fit into a SDR display. We have two main

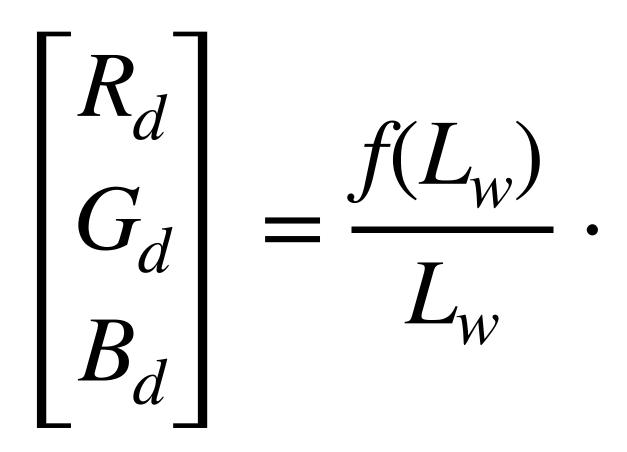
• Global operators: it uses global statistics of the image to be tone

• Local operators: it uses both global and local statistics of the image to

We want to maintain both the local and global contrast of the original

Tone Mapping

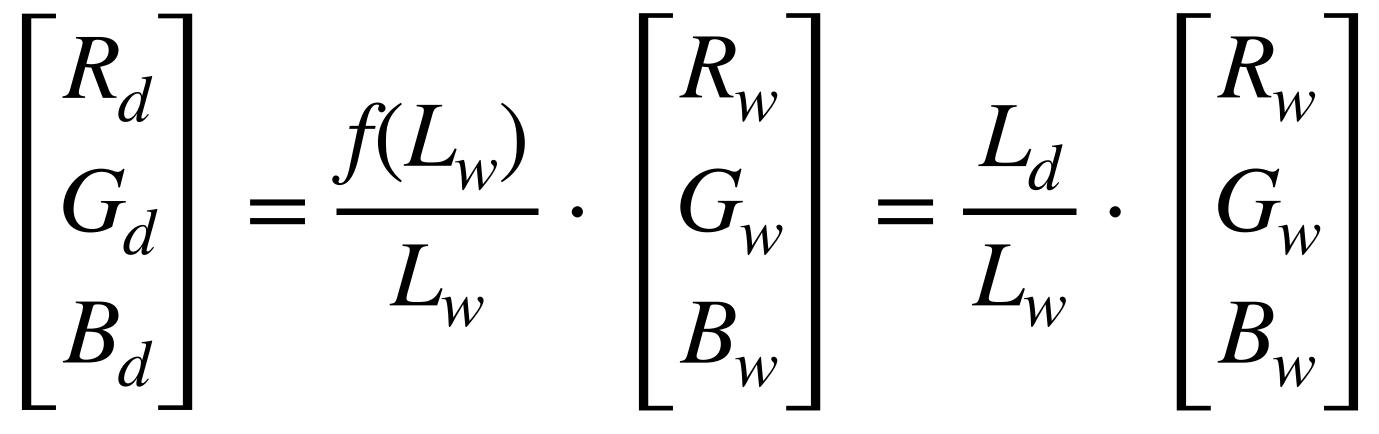
Most operators work only on the luminance channel:



• For the sRGB color space, this is defined as

 $L_{w} = 0.2126 \cdot R_{w} + 0.7152 \cdot G_{w} + 0.0722 \cdot B_{w}$

• To avoid color distortions when applying $f(\cdot)$ for each color channel.

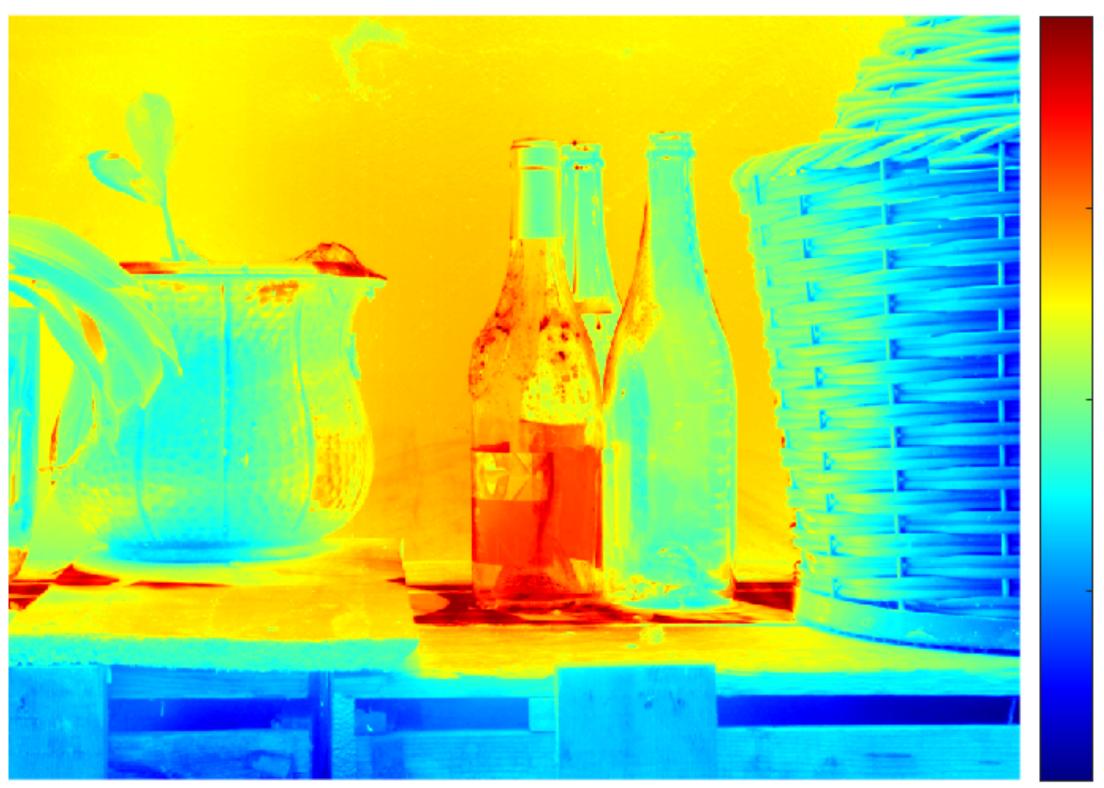


Tone Mapping: Global Operators • A classic local TMO is the Reinhard et al.'s operator [Reinhard+2002]: $L_d = f(L_w) = \frac{L_y}{1+y}$

where lpha is a user parameter, and \hat{L}_{w} is the geometric mean of the luminance of the entire image:

$$\hat{L}_{w} = \exp\left(\frac{1}{n}\sum_{i,j}\log_{e}\left(L_{w}(i,j) + \delta\right)\right) \qquad \delta > 0$$

$$\frac{dm}{L_m} = \frac{\alpha}{\hat{L}_w} L_w$$



Lux

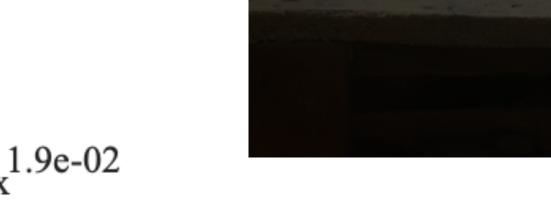
HDR Image

1.3e+03

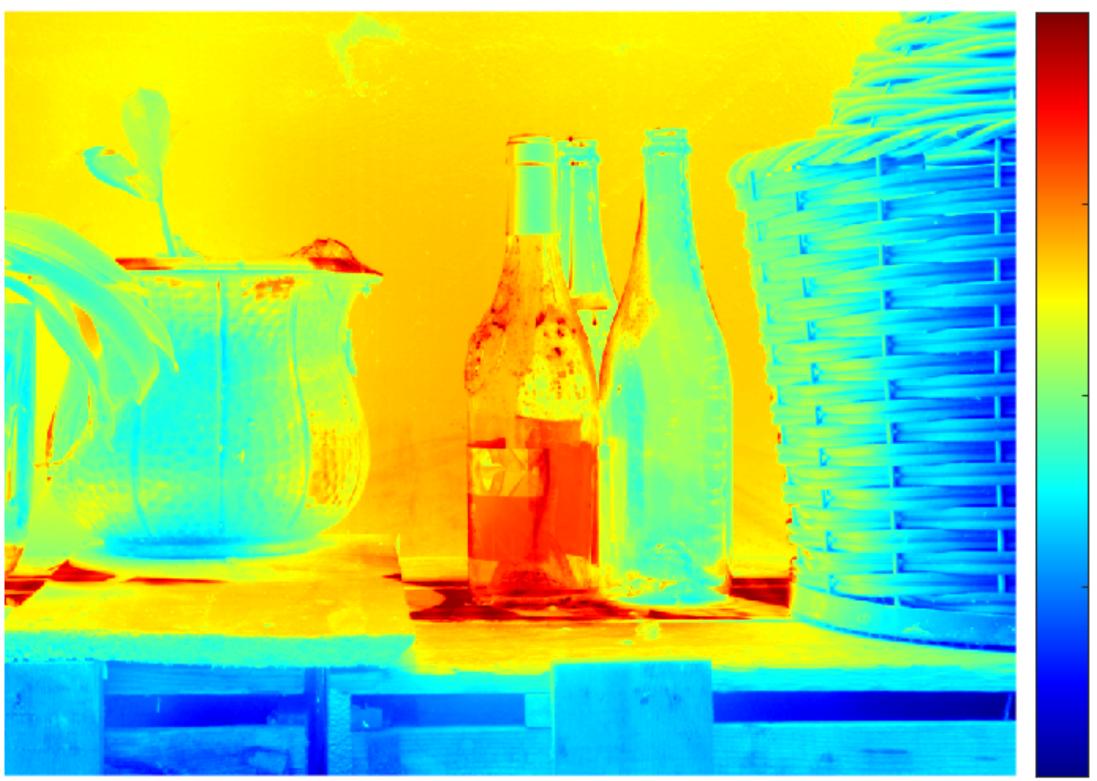
8.0e+01

5.0e+00

3.1e-01



Reinhard with $\hat{L}_w = 1$



Lux

HDR Image

1.3e+03

8.0e+01

5.0e+00

3.1e-01

1.9e-02

Reinhard with \hat{L}_{w} computed

Tone Mapping: Local Operators

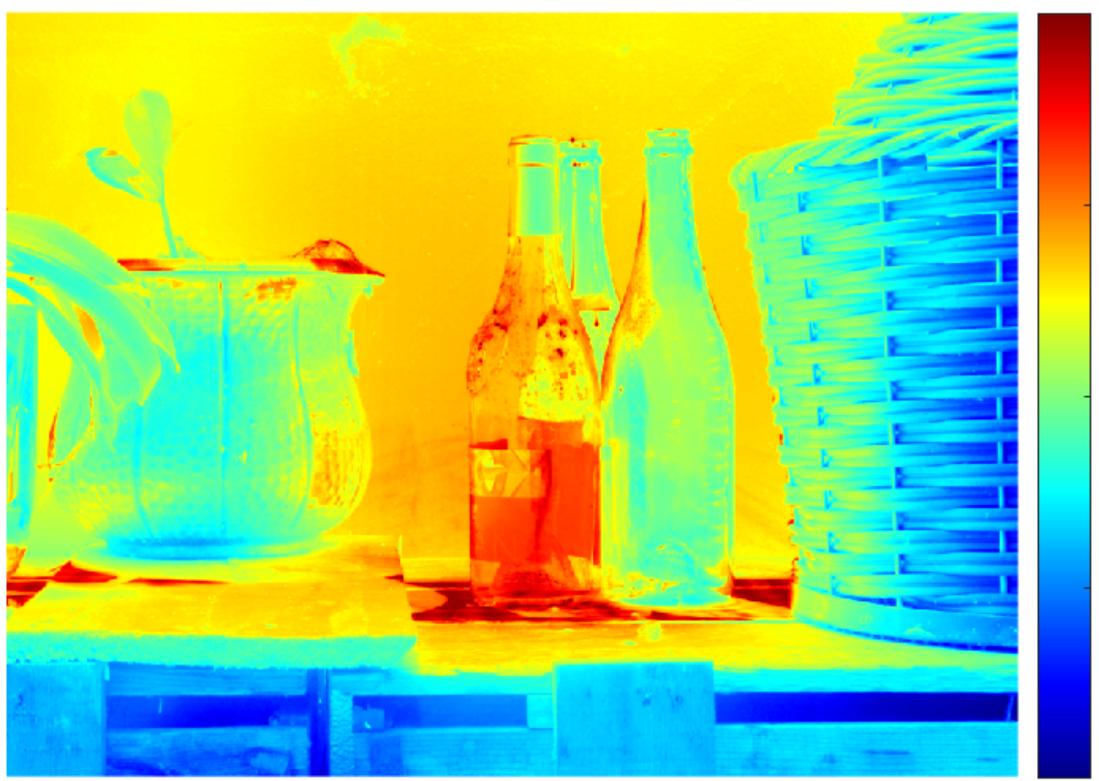
 A classic local TMO is a varia [Reinhard+2002]:

$L_d = f(L_w(i,j)) = \frac{L_m(i,j)}{1 + g(L_m(i,j))} \quad L_m(i,j) = \frac{\alpha}{\hat{L}} L_w(i,j),$

where $g(\ \cdot\)$ is a function computing the mean around the pixel (i,j).

• However, we need to avoid strong edges that may create halos. So $g(\cdot)$ has to be edge-aware; e.g., the bilateral filter.

• A classic local TMO is a variant of the Reinhard et al.'s operator



HDR Image

Lux

1.3e+03

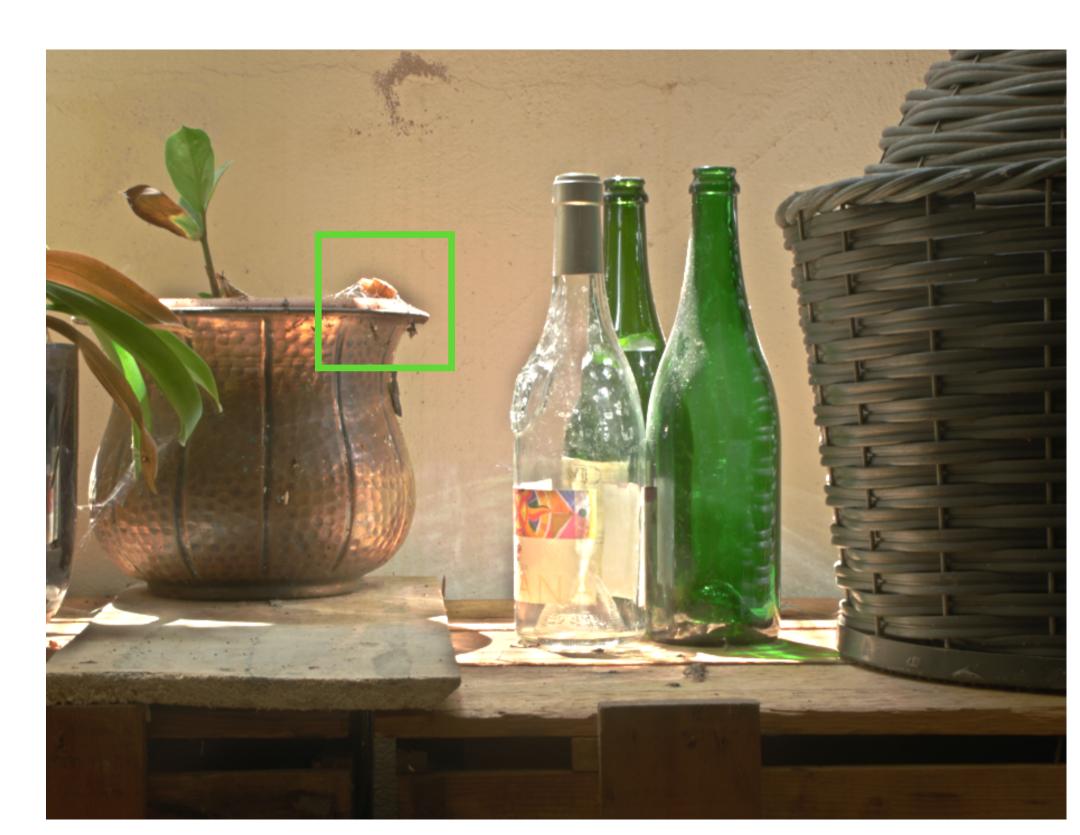
8.0e+01

5.0e+00

3.1e-01

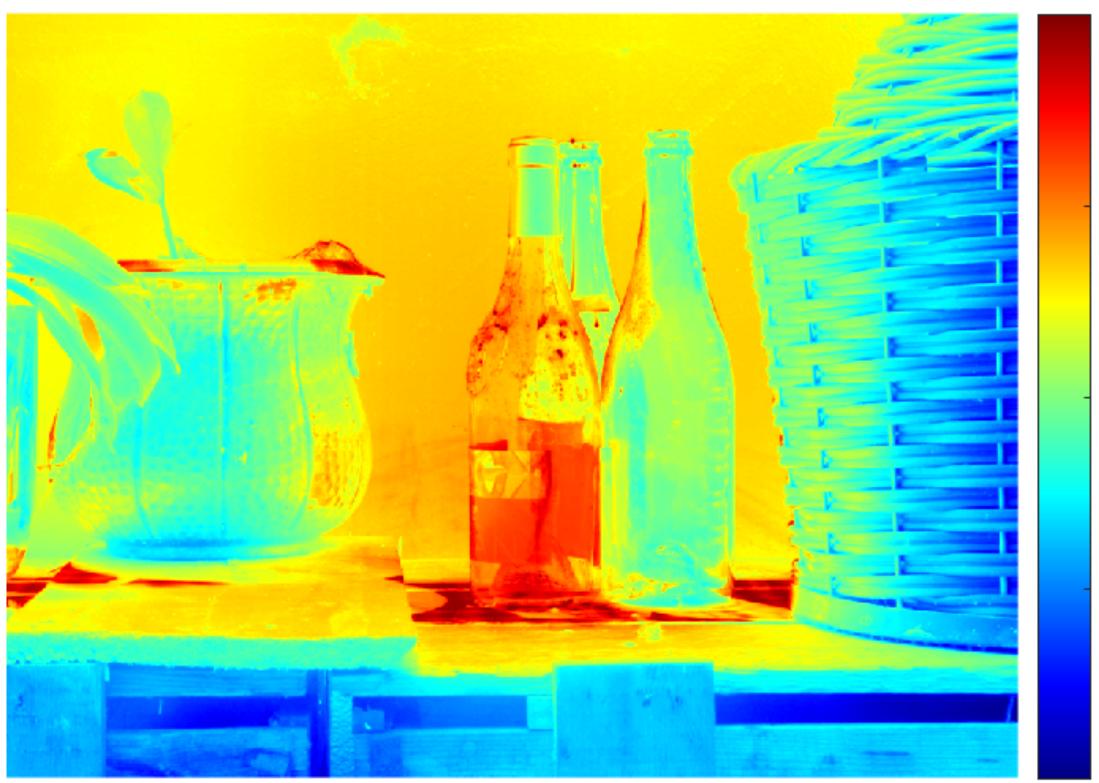
1.9e-02

Reinhard without an edge-preserving filter



Reinhard without an edge-preserving filter

Zoom on a halo



HDR Image

Lux

1.3e+03

8.0e+01

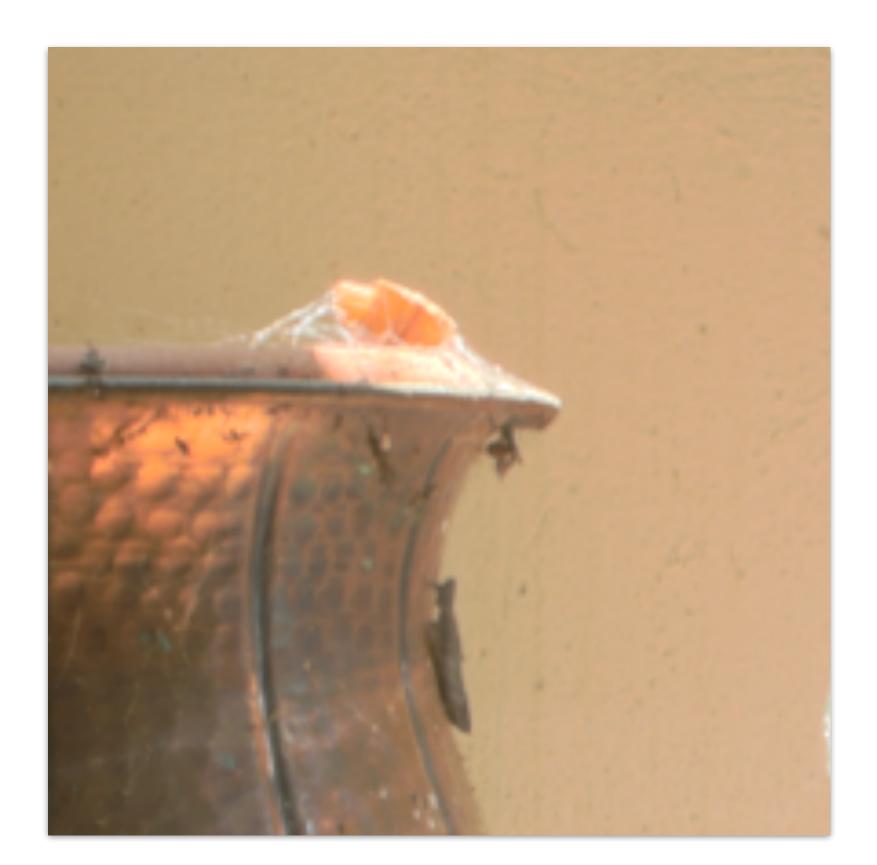
5.0e+00

3.1e-01

1.9e-02

Reinhard with an edge-preserving filter

Reinhard without an edge-preserving filter



Reinhard with an edge-preserving filter

Color Distortions

- have the following problems after applying $f(\cdot)$:
 - $L_{J} < L_{w}$, the saturation of the pixel increases.
 - $L_{\lambda} > L_{\mu}$, the saturation of the pixel decreases.

The problem with processing only the luminance is that we

Color Solutions

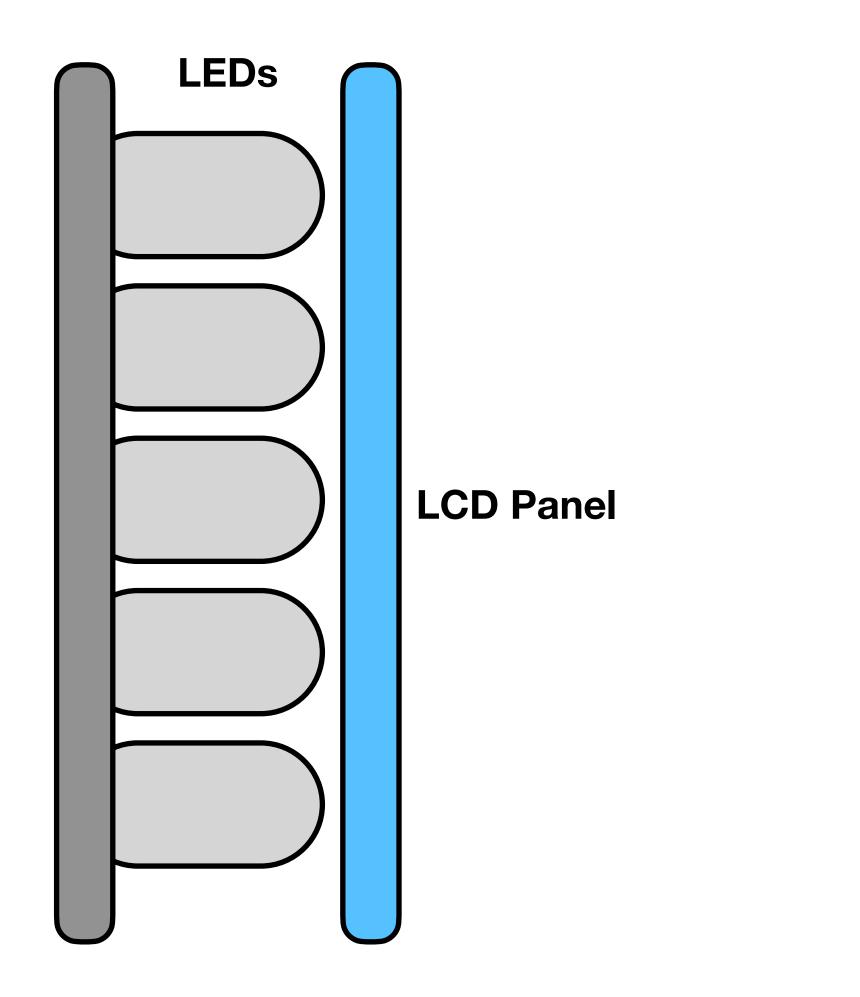
- Main solutions:
 - coefficient in (0,1] [Schlick+1995].
 - [Mantiuk+2009].
 - Hue reset and saturation scale in the LCh color space [Pouli+2013, Pouli+2017].

• Desaturate $[R_w, G_w, B_w]/L_w$ by applying a power with

Linear desaturation taking into account the TMO derivate

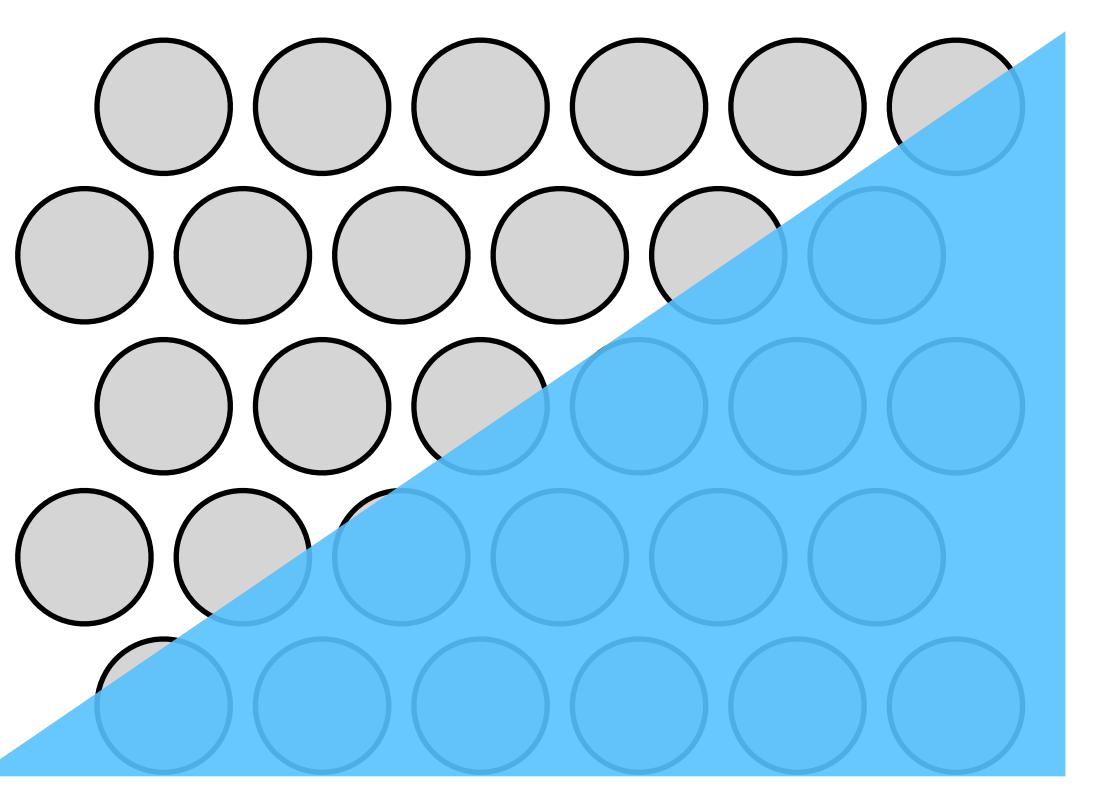
HDR Imaging: Native Visualization - HDR Monitors

Native Visualization: LEDs HDR Monitors



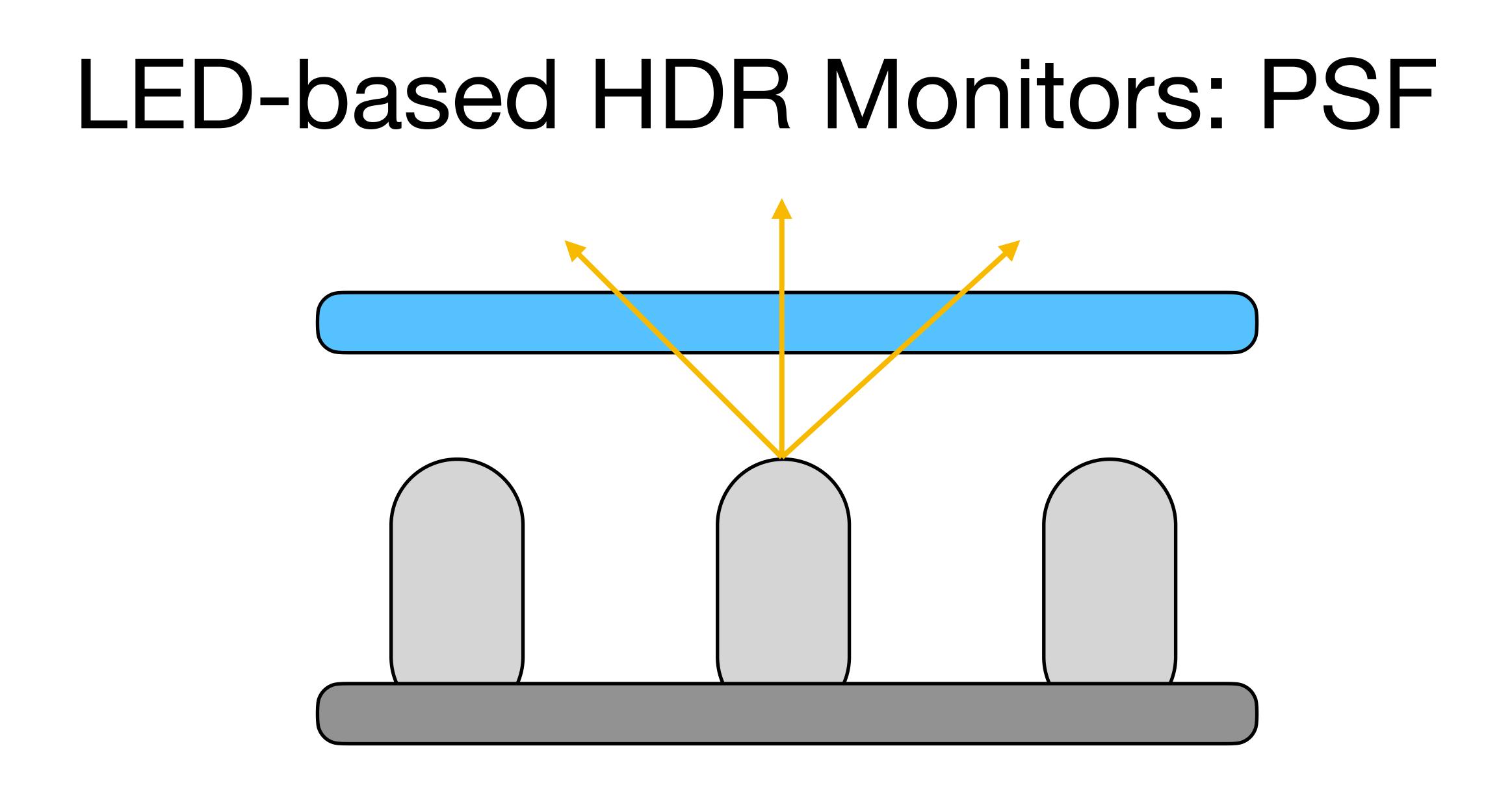
SIDE

LEDs

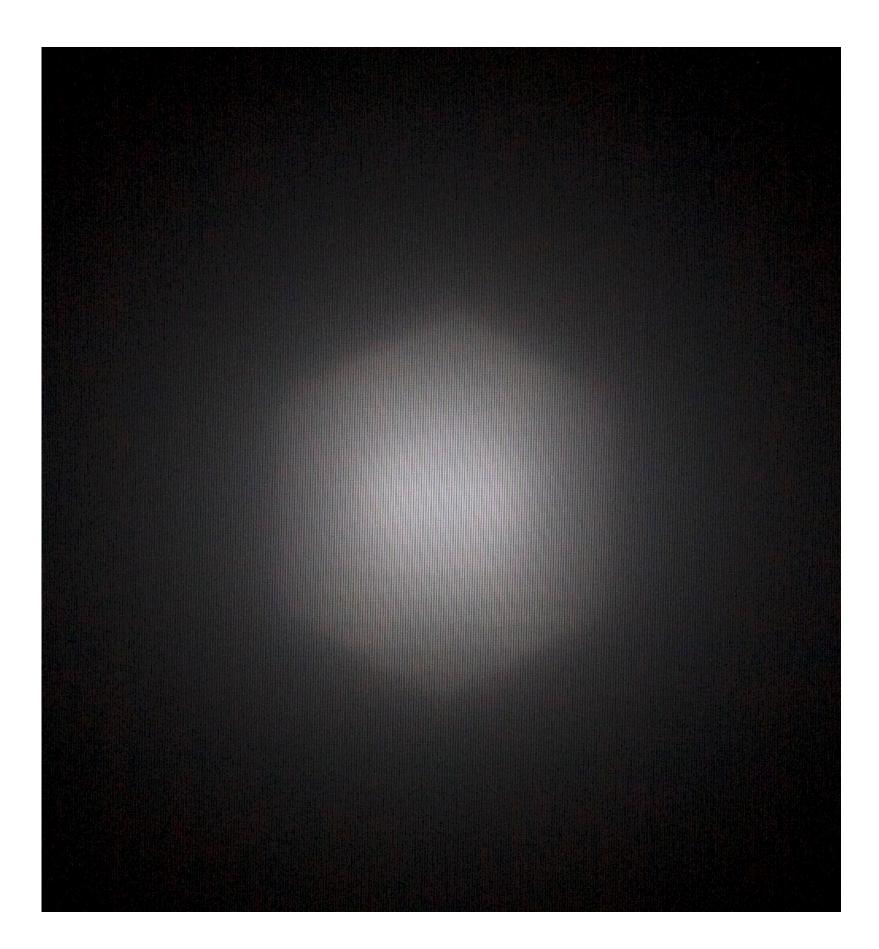


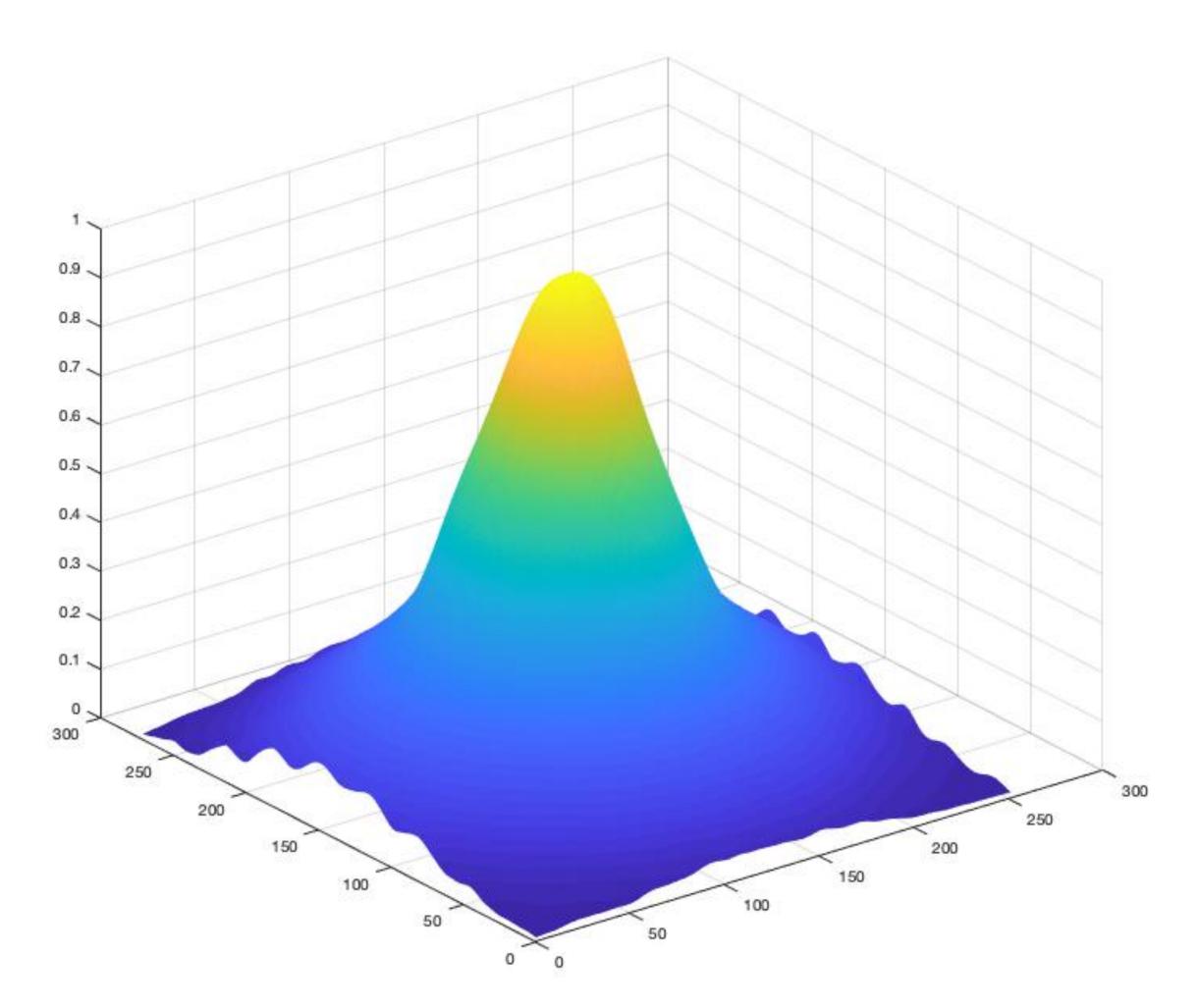
LCD Panel

FRONT

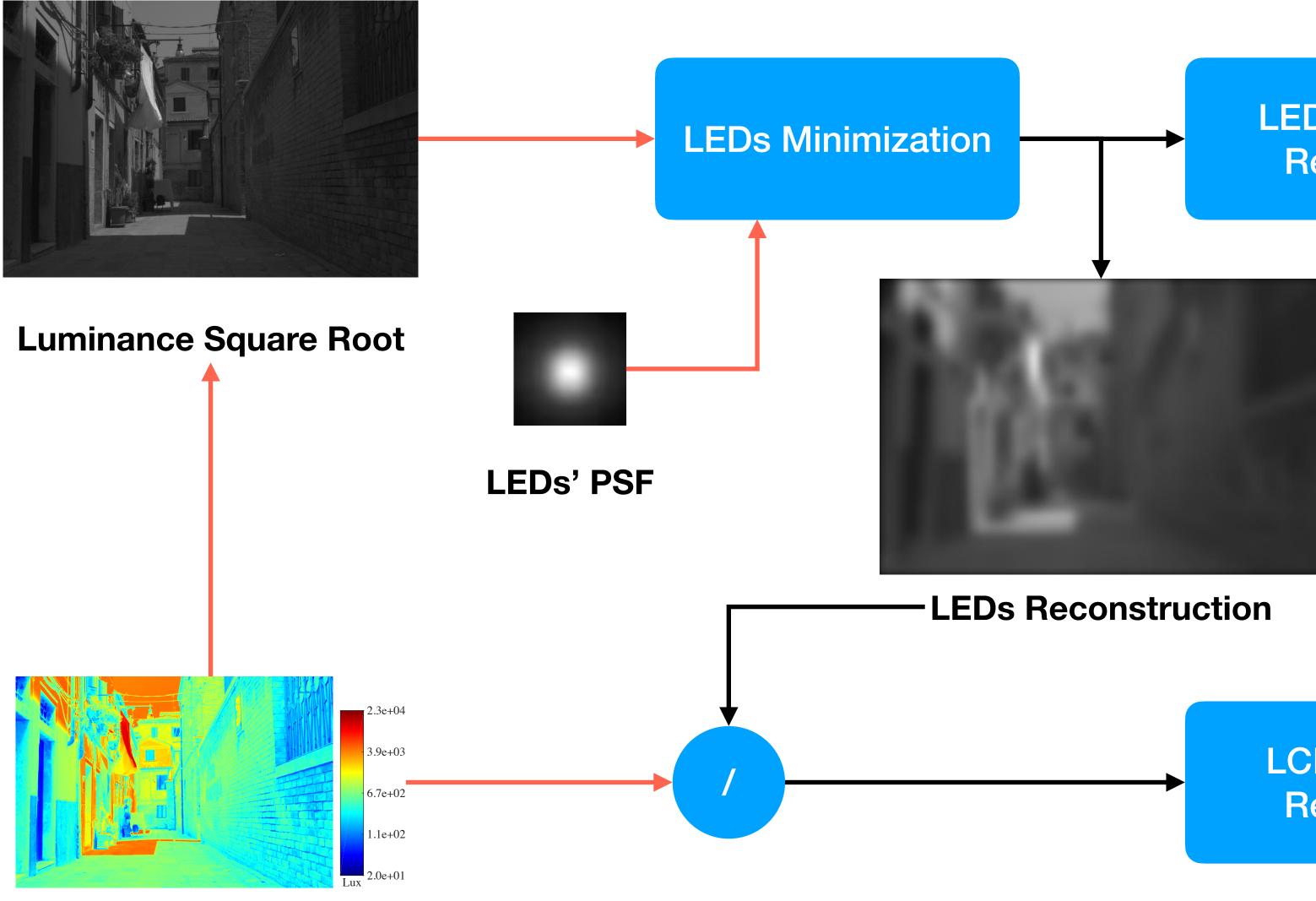


LED-based HDR Monitors: PSF





Native Visualization: HDR Monitors



HDR Image

LEDs Inverse Response

LEDs Panel

LCD Inverse Response

LCD Image

HDR Imaging: Metrics

Image Quality Metrics: with Reference

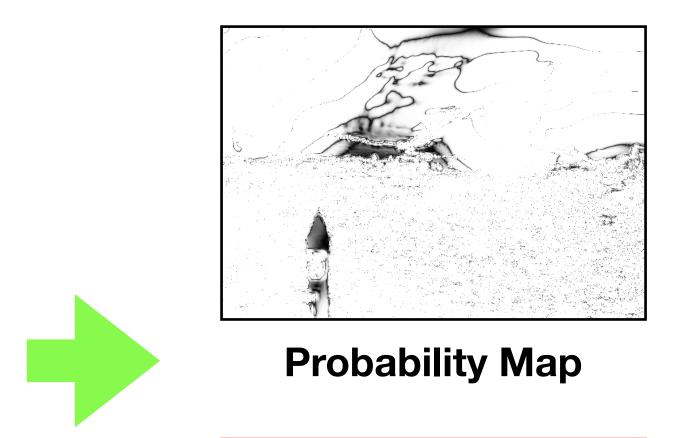
- to the reference by a viewer.
- Q predictor value in the range [0,100]; the higher the better.

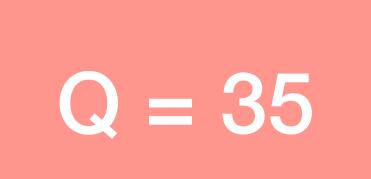
Reference Image

Distorted Image

• A probability map; each pixel has the probability of being detected when compared

METRIC

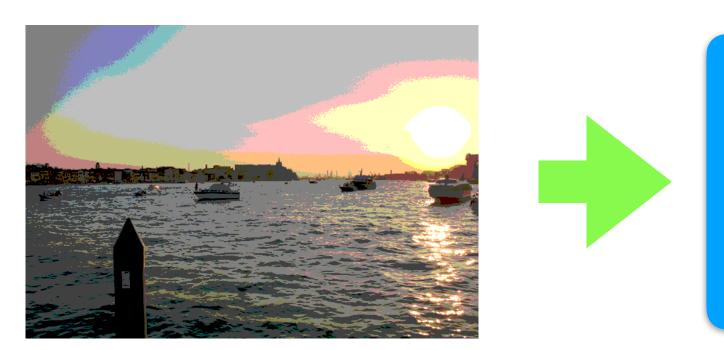




Quality value

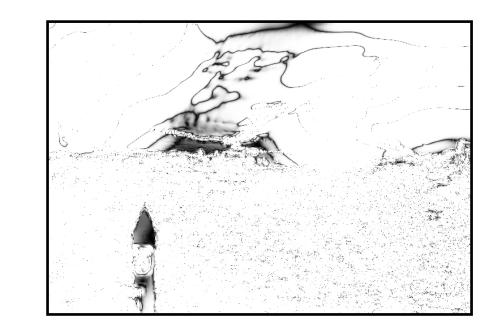
Image Quality Metrics: No Reference

- to the reference by a viewer.
- Q predictor value in the range [0,100]; the higher the better.



Distorted Image

• A probability map; each pixel has the probability of being detected when compared



Quality value

Metrics for HDR Applications

- HDR-VDP 2.2/3.0.6/FoVVDP/DRIM:
 - They are reliable metrics for the general case:
 - HDR vs HDR; HDR vs SDR; etc.
 - Computational cost is demanding.
 - A reference is required!
- TMQI and TQMI-II:
 - Limited for comparing HDR vs SDR for tone mapping.
 - A reference is required!

HDR Open Problems: Acquisition

HDR Problems: Merging Exposures in Dynamic Scenes

Stack of 8-bit images

Scene-referred HDR image

MERGE

HDR Problems: Merging Exposures in Dynamic Scenes

Stack of 8-bit images

Scene-referred HDR image

MERGE

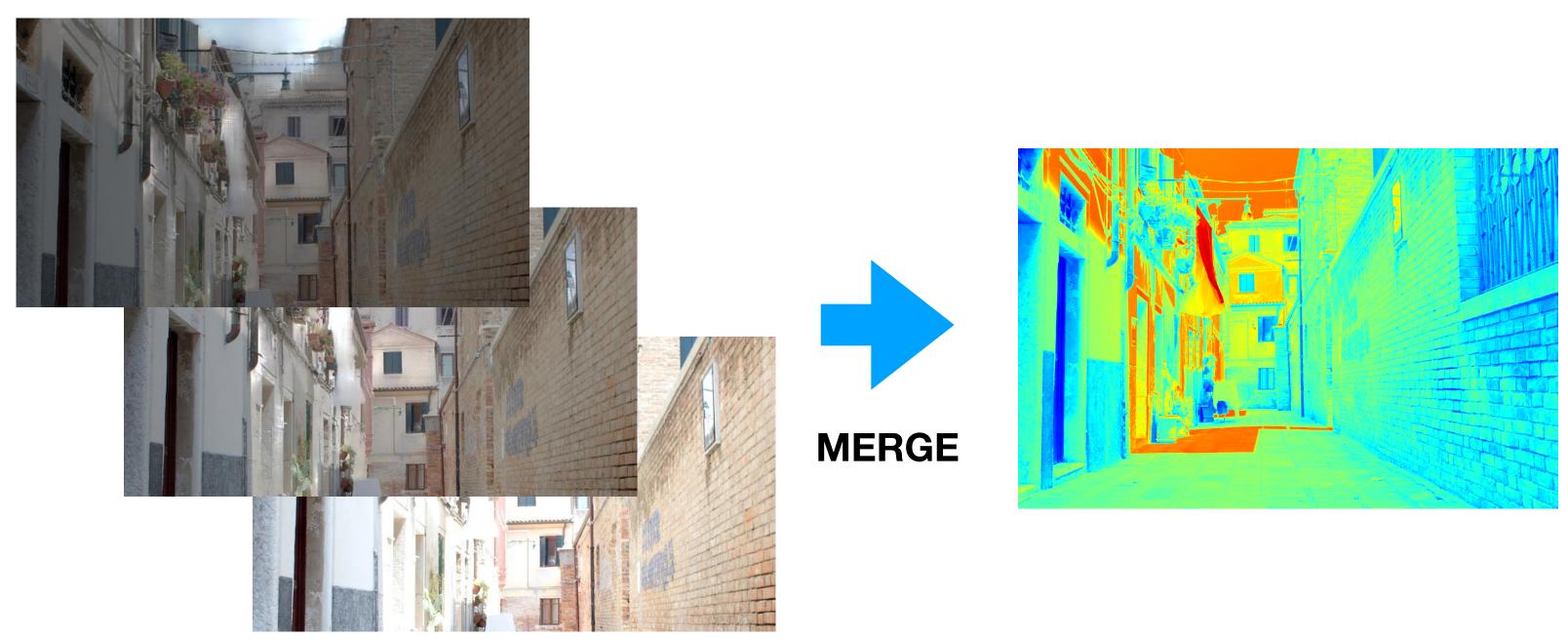
HDR Problems: Merging Exposures in Dynamic Scenes

Stack of 8-bit images

Scene-referred HDR image

MERGE

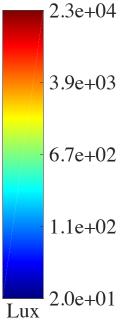
HDR Problems: Single-Image Acquisition / Inverse Tone Mapping



Single 8-bit images

Stack of 8-bit images

Scene-referred HDR image



HDR Open Problems: Visualization

HDR Problems: Tone Mapping

Scene-referred HDR image

8-bit Tone Mapped Image

TMO

HDR Open Problems: How to Measure the Performance?

How to Measure Performance?

• How do we convert large experiments into metrics?

metrics?

• Can we have no-reference metric?

Can we speed-up high quality but computationally expensive

To Recap

To Recap

- In this tutorial, we will address how to use Deep Learning methods for:
 - Acquiring HDR content;
 - Display HDR images and videos;
 - Metrics for comparing HDR content.

Questions?