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Abstract

In this paper we introduce an algorithm and related methods that
expand the contrast range of Low Dynamic Range (LDR) videos
in order to regenerate missing High Dynamic Range (HDR) data.
For content generated from single exposure LDR sequences, this is
clearly an under constrained problem. We achieved the expansion
by inverting established tone mapping operator, a process we term
inverse tone mapping. This approach is augmented by a number of
methods which help expand the luminance for the required pixels
while avoiding artifacts. These methods may be used to convert the
large libraries of available legacy LDR content for use, for instance,
on new content-starved HDR devices. Moreover, these same meth-
ods may be used to provide animated emissive surfaces for image
based lighting (IBL). We demonstrate results for all the above ap-
plications and validate the resultant HDR videos with original HDR
references using the HDR Visual Difference Predictor (HDR-VDP)
image metric.
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1 Introduction

High dynamic range imaging has enhanced the use of a significant
number of applications that use digital content, by preserving data
with larger pixel depth than is used with low dynamic range imag-
ing. This now makes it possible to account for more than all the
dynamic range that can be seen by the human visual system which
can deal with about 1 : 104 at any given eye adaptation level. The
HDR imaging community has been very active in the last decade
and several key new application areas have arisen; due to the orig-
inal shortage of HDR capture devices researches have generated
HDR content from sequences of more readily available LDR im-
ages, see for example [Debevec and Malik 1997]. Since currently
widely available viewing displays can only handle LDR imagery,
techniques, known as tone mapping, which compress the luminance
range of HDR images and attempt to recreate them for such dis-
plays have been developed. The need to display HDR data on LDR
devices has led to numerous tone mapping algorithms. A descrip-
tion of some of the most popular methods can be found in [Reinhard
et al. 2005]. HDR has also been used to enhance rendering methods
by enabling the ability to capture the physical properties of emis-
sive materials and use them within a rendering context, known as
IBL [Debevec 1998].

While the use of HDR imagery has become increasingly
widespread, the vast majority of digital content still has a limited
dynamic range. HDR photography is growing in popularity with
the ability to capture multiple bracketed exposures now a standard
feature in medium to high range cameras. Yet, the same cannot be
said for HDR video. Video cameras capable of capturing a large
luminance range are not readily available commercially. Even for
high-end commercial applications, such as movies, music videos,
or advertising, traditional 35mm motion-picture cameras are still
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Figure 1: This image illustrates how our method is able to retrieve the luminance
range from an LDR image (middle) and generates a new high dynamic range image
(right) which matches the reference HDR image (left). At high exposure levels (top
row) the three images appear similar. The importance of our iTMO is clear when the
images are shown at a lower exposure level (bottom row). Red circles represent clipped
regions in the LDR. Green circles highlight the regions retrieved with our algorithm
[see the video].

the option of choice. With the advent of HDR displays, for ex-
ample [Seetzen et al. 2004], there is a growing desire to recreate
the luminance range of the original content which is missing in the
multitude of film and video captured prior to the popularity of HDR.
Furthermore, even now, capturing high dynamic range information
of a scene is not always possible due to the nature of the scene or
for practical and financial reasons. A typical example is the visual
effects industry. While most post-production studios have an HDR
pipeline these days, quite often, due to the limited timing given to
visual effects on set, there is only time for single exposure captures.

In this paper we show how to regenerate missing HDR content from
legacy LDR data by conceptually inverting the tone mapping pro-
cess, which we term inverse tone mapping, see Figure 1. Since most
of the LDR content is captured at a single exposure, the problem is
considerably more difficult than creating HDR content from mul-
tiple exposure LDR images. In this case our input is a single low
contrast ratio image or video that needs to be expanded to generate
HDR data from. We tackle this problem by extending the algorithm
in [Banterle et al. 2006]. We provide a fully automated temporal
expansion map that is suitable for video streams. Furthermore we
enhanced contrast around edges transferring them using cross/joint
bilateral filter. We provide a new set of TMOs, that can be used
for the expansion process, and we identify the better one using an
HDR-VDP for a set of images. We introduce a new method for the
reconstruction of lost colors in over exposed areas using Poisson
equation. We also extend their approach to videos, solving flicker-
ing problems, exploiting temporal coherence in light samples and
finding a heuristic for the automatic calculation of parameters in the
density estimation. Finally we present applications of our algorithm



Figure 2: The inverse tone mapping pipeline.

such as expansion of video sequences and IBL.

2 Previous Work

One of the first publications on inverse tone mapping was [Landis
2002], in which an LDR image was expanded using an exponential
function for pixel values above a certain threshold. This algorithm
works for IBL, but not well for visualizing HDR images because
it does deal effectively well quantization and noise during the ex-
pansion. A straightforward method to expand single exposure LDR
images for creating specular highlights was presented in [Meylan
et al. 2006]. Two linear tone scales with thresholding were applied
to LDR images. Psychophysical experiments with a Dolby DR-37P
HDR Monitor [Dolby 2005] were presented in order to validate
the images generated by the algorithm. As in [Landis 2002], this
method was designed for a very specific task rather than the general
case. In [Banterle et al. 2006] a more general method for expanding
the range of single exposure LDR images, an iTMO based on the
Global Photographic Tone Reproduction Operator (GPTR) [Rein-
hard et al. 2002] was proposed. In their model, what they called an
expand map, representing the density of light sources, was used to
expand the luminance range for those pixels which belong to light
sources. The expand map was derived from sampling the image
using the median cut algorithm [Debevec 2005]. The main limi-
tation of their method is that it can not be applied to videos; this
is because manual selection of some parameters is needed and fur-
thermore flickering would occur due to the nature of the median cut
sampling algorithm. A similar, but computationally more efficient,
method for performing LDR expansion in real-time for high def-
inition content was presented in [Rempel et al. 2007]. Instead of
the density estimation of the previous approach, a large Gaussian
convolution of pixels over a certain threshold is adopted. An edge-
stop function is applied to the expansion map to enhance contrast
around edges. Finally, the image is expanded linearly according to
the expansion map.

Recently in [Akyüz et al. 2007] two psychophysical experiments
using the Dolby DR-37P HDR Monitor were presented. From a
perceptual point of view the conclusion of these experiments was
that a linear scaling of LDR images gives an HDR experience that
can be equal or even surpass the appearance of a true HDR image.
However their solution was designed for an HDR Monitor appli-
cation only and not IBL, which needs expansion in the high lumi-
nance areas instead of the whole image. Finally [Wang et al. 2007]
proposed a system for adding HDR details to the over-exposed and
under-exposed regions of an LDR image. This system transfers tex-
ture details from a correct exposed patch to an over-exposed and

under-exposed patch, followed by an expansion. The main dis-
advantages of this system were the possibility to not find a patch
for transferring detail and the manual interaction that restricts this
method only to static images and not video sequences.

Furthermore inverse tone mapping has been used for HDR com-
pression for still images and videos [Mantiuk et al. 2006; Hateren
2006; Li et al. 2005; Okuda and Adami 2007]. In all these ap-
proaches the content is firstly tone mapped, then the inverse tone
mapping function is calculated using an optimization process, and
finally the LDR content is coded using classic algorithms for LDR
content such as JPEG and MPEG. Additional information for the
inverse tone mapping function are usually embedded in the meta-
data tag of LDR coding standards.

3 Inverse Tone Mapping Framework

We begin this section by presenting an overview of our inverse tone
mapping framework, illustrated in Figure 2, based on the work of
[Banterle et al. 2006]. We show the framework in the context of
inverse tone mapping for videos. Inverse tone mapping for single
images would be just a special and simpler case of this framework.

The design of our framework, and the processes within this frame-
work, are motivated by the expansion using an iTMO to regenerate
HDR from LDR content. Naive application of the iTMO may result
in incorrect expansion of certain pixels causing areas of the image
to have quantization problems. During expansion the difference be-
tween a single integer value can be dramatically increased causing
banding. This problem can be further compounded in video se-
quences resulting in temporal flicker. Our framework uses several
methods to solve these problems.

Our framework is composed of two sequences. Firstly, an iTMO
is applied to an LDR image or a frame of a video to expand its
luminance values. In the second one, areas of high luminance are
identified, what we term the expand map is built from these regions
using density estimation. The expand map solves problems related
to incorrect expansion from the inverse tone mapped images. For
video sequences, the expand map is extended into a temporal ex-
pand map to account for temporal coherence and reduce flickering.
Finally, the temporal expand map is used as weighting for the inter-
polation of the LDR and the inverse tone mapped image.

The above framework description outlines the general solution for
our inverse tone mapping, the individual methods used for some
of the processes warrant further discussion. Below, we discuss the
theory used to generate our iTMOs. Furthermore, the discussion on



the expand map will take into account the automatic generation of
parameters and optimizations to improve the quality for expanding
video sequences.

4 An Inverse Tone Mapping Operator

The first step when an image needs to be inverse tone mapped is to
linearize the signal. In the general case, a camera response function
(CRF) was applied to the input image when it was captured using a
camera or a videocamera. The linearization is achieved by invert-
ing the CRF, and applying it to the signal. This function can be
calculated using several exposures [Debevec and Malik 1997; Mit-
sunaga and Nayar 1999]. However in our case it is more suitable to
estimate it from a single image as in [Lin et al. 2004]. More specifi-
cally assuming that a video was captured by the same videocamera,
and it is not an edited video (with different video sources), we can
calculate the CRF only once.

After this step we need to expand the range, this can be achieved
using a function that boosts values. Unfortunately, not every TMO
can be easily inverted. Typically, global TMOs have an easy in-
verse, since they are invertible functions, while local TMOs do
not. The problem is difficult due to the convoluted nature of local
TMOs. In our work, we follow the approach presented in [Banterle
et al. 2006]. We inverted the GPTR [Reinhard et al. 2002] because
it presents a good trade-off between simplicity and flexibility for
the expansion curve, indeed only two parameters are needed. The
GPTR is defined as:
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where L is the HDR luminance calculated as L = 0.213R +
0.715G+0.072B where R, G, and B are respectively red, green and
blue channel. L′ is the compressed luminance and LH the harmonic
mean is defined as:
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where N is the number of pixels in the image and δ a small positive
value. Banterle et al. [Banterle et al. 2006] showed that LH can be
approximated using L′ instead of L. If g = f−1 exists, and this is
the case when the TMO is an invertible function, we can exploit it
to expand LDR images. Equation 1 can be inverted to obtain:
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The iTMO presented in Equation 2 has two parameters that can
be set: Lwhite and α . Lwhite the white point is quite intuitive as it
stretches the boosting curve, see Figure 3. On the other hand, a user
can find it difficult to predict the shape of the iTMO as a function
of α . To solve this problem, we introduce an interface parameter
LMax, representing the maximum luminance that will be present in
the inverse tone mapped image. α is calculated by solving Equation

1 for α using Lwhite and setting L = LMax and L′ = L′
Max, where

L′
Max the maximum luminance of the LDR image:
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Figure 3: iTMO curves, showing how Lwhite is related to the shape of the iTMO. In
this example different curves are plotted with an increasing value for Lwhite 1, 2.5, 5,
10, 25, 50, 100, and 1000 (the arrow shows the increasing direction).

5 The Expand Map

The expansion of the range using merely a global function for the
whole image can introduce quantization problems such as notice-
able differences between two luminance level. These problems can
be attenuated using an expand map, that expands the range only in
the areas of high luminance.

In our framework the expand map is generated in two steps: the
first identifies the light samples present in an image, the second
generates a smooth field using these samples.

Light samples are identified using importance sampling. Several
algorithms could be used to do this for example structured impor-
tance sampling [Agarwal et al. 2003], blue noise sampling [Os-
tromoukhov et al. 2004], quadrature sampling [Kollig and Keller
2003], and Median Cut [Debevec 2005]. In our approach we em-
ployed the median cut algorithm which identifies area of high lumi-
nance by splitting the image in 2n regions of similar light energy.
The image is split along the longest dimension. A sample represent-
ing clustered luminance is placed in the centroid of each region.

The expand map details a weight associated with each pixel such
that when expanded it would achieve a smooth transition between
pixels. A quick solution for generating an expand map, could be
to use Gaussian filtering on the areas of high luminance identified
using a threshold. However this method does not take into account
the spatial distribution of light. Another solution, which we employ
to obtain better results, is density estimation (see [Duda et al. 2001]
for more details), a statistical technique that constructs an estimate,
based on observed data, in our case light samples. This technique
has already been successfully used in the field of computer graph-
ics, for example in photon mapping [Jensen 2001].

The density estimation is calculated for each pixel (i, j) to deter-
mine the density of light samples inside an area of influence which



is a circle defined by the radius rt. The density estimation is given
by the following:

γ̂i, j =
1

πr2
max

n

∑
k=1

Lk (5)

where γ̂i, j is the estimate for pixel (i, j), Lk is the luminance value
for the k-th light sample in the set of all light sources inside the area
of influence given by radius rt and centered in (i, j), and rmax is
the distance of the farthest light sample Lmax in the set inside the
area of influence. The application of smoothing filters in Equation
5 can improve the estimate. To speed-up the search of samples in
the radius rt, light sources obtained from the Median Cut algorithm
are stored in a 2d-tree.

The density estimation can be applied to each color of light sam-
ples. In this way a sort of expansion for colors is generated avoiding
non flickering free methods, such as interpolation of colors around
edges of saturated regions which are defined using thresholding.

5.1 Edge Enhancement

Once the expand map is generated we would like to enhance con-
trast around the edge and avoid potential halos. This problem was
solved in [Rempel et al. 2007] using an edge stopping function,
however this function needs a threshold for defining edges and it
can potentially produce flickering. In order to transfer edges, which
are present in the original frame, to the expand map and to avoid
thresholding we opted for using cross/joint bilateral filtering [Eise-
mann and Durand 2004; Petschnigg et al. 2004]:

γi, j =
1

ki, j
∑

(l,m)∈W
γl,mGS(‖(i, j)− (l,m)‖)GR(‖Ei, j −El,m‖) (6)

ki, j = ∑
(l,m)∈

GR(‖(i, j)− (l,m)‖)GS(‖Ei, j −El,m‖) (7)

where γi, j is the final expand map, W is the filtering window, GR
and GS are two Gaussian functions, E is the guidance map, in our
case the luminance of the image. The variance for the first function
is equal to σS = 1 while for the former σR = 0.2.

Figure 4 compares the basic expand map γ̂ , the basic using joint
bilateral filtering γ , and simple method using the combination of
thresholding, Guassian filtering and edge stopping function.

6 The Temporal Expand Map

The method for generating an expand map in Section 5 will cause
flickering for video sequences. There are two main reasons for this,
median cut coherence and parameters for the density estimation.

Applying median cut to each frame does not create coherent sam-
ples. For example, in two adjacent frames a sample could appear
and disappear in the same area. This occurs because the sampling
algorithm is based on a splitting axis mechanism, and energy bal-
ancing can change frame by frame with only small changes within
the frame. One solution that conforms to our simple method of just
using a Gaussian filter to create the expand map, is to use a tempo-
ral Gaussian. However for maintaining the same quality obtained
using the density estimation, we introduce a new method we term
temporal median cut.

The second issue that arises is how to determine the parameters for
density estimation, the radius and the minimum number of sam-
ples in the estimate. Since the computational cost for long video
sequences may be prohibitive, in order to produce a good den-
sity map, we must compute the parameters automatically for each
frame.

6.1 Temporal Median Cut and Density Estimation

In order to solve the problem of incoherent samples we introduce
the temporal median cut, which is a 3D version of median cut,
where the third dimension is time. In our case, the density esti-
mation is evaluated by cutting a slice of samples for the evaluating
frame. However, due to its nature, median cut needs to have the un-
compressed image or its summed-area table [Crow 1984] in mem-
ory. For an 8 second sequence in high definition of 1920×1080 at
24 frames per second this would require more than 1GB of memory.
Clearly, this solution is not very efficient.

We solve this problem using an efficient memory-wise approach.
Firstly, we calculate median cut at each frame, then we store sam-
ples of a frame onto a 3D-tree, where the third coordinate is set to
the frame number. When we need to calculate the density estima-
tion for a given frame we calculate the volume density estimation,
using a similar approach to volume photon mapping [Jensen 2001].
This algorithm is performed for every frame belonging to the same
shot. In a sequence, this process is applied individually to each
shot. To determine what constitutes a shot we apply a video parti-
tion technique based on [Hanjalic 2002].

The temporal filtering ensures that we remove flickering while
maintaining temporal coherence. Since the spatial estimation usu-
ally requires a larger estimation radius than the temporal estimate,
we opt for an ellipsoidal volume rather than a spherical one. The
density estimation is filtered using a cone kernel that removes un-
wanted noise:

wk = 1− dk

αr
(8)

where dk is the distance from the center of ellipsoid to the k-sample,
r is the radius of the ellipsoid along the direction of the k-th sample
from the center of ellipsoid and α ≥ 1 is the parameter of the filter.
The final equation for density estimation is given by:
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where n is the number of samples found in the ellipsoid Ei, Lk is the
luminance value of the k-th sample, and a are b are the semi axes
of Ei.

The calculation of the temporal density estimation is the main cost
during the calculation of the expand map. To speed-up our imple-
mentation of the expand map, median-cut and density estimation
are generated using a downsampled version of luminance channel,
1/8 the area. For the final step, the application of the cross bilateral
filter, cross bilateral upsampling [Kopf et al. 2007] is employed. In
this way we perform upsampling and cross bilateral filtering at the
cost of one filtering operation. This operation does not degrade the
quality of the expand map.
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Figure 4: A comparison between methods for generating the expand map. In the top row the method presented in [Rempel et al. 2007]: a) A single exposure LDR image. b)
Gaussian filtered of thresholded luminance for a). c) The final expand map with the application of an edge stopping function to b). In the bottom row our method: d) Light source
samples for a) generated using median cut algorithm. e) The expand map, for each color channel, which is the result of the density estimation applied to d). f) Final expand map for
a) applying cross/joint bilateral filter to e) using luminance of a) as guidance.

(a) (b)

(c) (d)

Figure 5: A comparison between automatic and non automatic density estimation
for the 20-th frame of the sky sequence: a) The LDR frame. b) The light sources gener-
ated by median cut. c) The result of the density estimation using automatic parameters
estimation. d) The result of the density estimation using parameters which were esti-
mated by a user for the first frame. Note inside red circles the expand map is estimating
wrongly the density of light sources generating areas to expand.

6.2 Automatic Estimation of Density Estimation
Parameters

The main problem in the density estimation is how to determine
the parameters for the ellipsoid for the search of k-nearest neigh-
bors, and trmin. The parameter b can be calculated in a progressive
way, for example the ellipsoid is expanded in the temporal direction
until we reach a fixed point. However, we found empirically, ana-
lyzing various videos, that b ∈ [3,5] works well. This setting can be
changed by the user.

For the parameter a, the situation is more difficult as it needs to be
expanded until enough samples are reached. On the other hand we
have to limit a to some upper bound in areas without lighting. If
we expand a indefinitely it will use samples that will give a wrong
estimate, since in a non-lit area γ(i, j) should be zero or a value
close to it. To solve this problem we introduce an heuristic formula
to calculate amax, the maximum value a allowed for expansion and
nsmin the minimum number of samples needed to terminate the ex-
pansion of a. To do that for each frame being processed, we ex-
tract the samples of median cut of the current frame. Then, we
divide the space XY in a regular square grid with length equal to
lsquare = max(w,h)/k, where w, h is the width and height of image,
and k = log2 nsamples. This means that we divide the 2D space of the
image using the total number of cuts that we can obtain using me-
dian cut into non-uniform regions based on the density of samples.
Subsequently, we count the number of samples for each region, and
we sort these values in an array, T . We then calculate nsmin as the
value in T with the biggest slope between its predecessor and its
successor, see Figure 6. However, it may happen that there is a
constant slope, in this case this metric will not work. To solve this
problem we decided to set nsmin equal to the median value. Finally,
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Figure 6: Automatic Parameter Estimation: a) The image used for the estimation.
b) The result of Median Cut and image divided in squares. c) The graph of number of
samples for each square, with division line for nsmin (in red).
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Figure 7: The graph for values of βi for each frame for the sequence fireball.avi.
Our method compared to R. present less fluctuations and of lower intensity.

we calculate amax as the distance from the center of the median
square to the furthest sample in it.

Figure 5 shows the advantages of automatic parameter estimation
using the sky sequence. As can be seen, artifacts appear in the
expanded HDR frame where parameters were not chosen correctly.

7 Applications and Results

There are two direct applications for inverse tone mapping of single
exposure LDR content. Firstly, we can enhance LDR content in
order to display it on HDR displays, for HDR video editing, for
example performing common operations, adding filters, etc... and
for use in HDR pipelines of visual effects and games companies.
Secondly, we can use the content for IBL.

In order to demonstrate how close our expanded HDR images are
to actual HDR images we compare our results with reference HDR
material using the Visual Difference Predictor (VDP) [Daly 1993].
The VDP is a perceptual image metric for comparing two images
which takes into account limitations in the human visual system
rather than just physical values when comparing images. We use
an extension to VDP, HDR-VDP which is specialized in compar-
ing HDR images [Mantiuk et al. 2004]. HDR-VDP outputs a third
image showing per pixel false coloring of the percentage of percep-
tual difference between the two images. In the resulting color coded
images grey symbolizes no perceptual difference, green a low per-
ceptual difference and red a high probability of noting a perceptual
difference. It also summarizes the results with two values. The first
is the percentage of different pixels detected with the probability
of 75% (P(X) ≥ 0.75). The second is the percentage of different
pixels detected with the probability of 95% (P(X) ≥ 0.95).

We compared our results against an HDR reference and Rempel et
al. [Rempel et al. 2007] operator R, which is the closest method
to our technique; in particular it is the only operator presented for
videos that handles quantization artifacts during the expansion.

7.1 Enhanced LDR Videos for Visualization

The enhancement of LDR videos for visualization was tested with
five HDR sequences. The first is a sky captured from 4.30pm to
5.30pm and sampled at each minute, for a total of 60 frames. The
other sequences are lightprobes in which the camera is moved at
360 degrees for a total of 96 frames. In particular: the second and
the third are outdoor captured during daylight, the fourth is an in-
door captured at night, and the last is an outdoor in a city captured
at night. For the first frame of each sequence see Figure 11.

The results are summarized in Table 1. As can be seen in the table
our operator performed better than R in very difficult cases, such as
the reconstruction of Scene 1 and 5 where the error is quite high for
both methods. In Scene 2 our operator performed slightly better,
while in Scene 3 and 4 R is clearly a winner. However in Scene
3 and 4 the error is low in the absolute scale, 1.82% and 0.6% for
P(X > 0.75), and 0.4% and 1.05 P(X > 0.95)

7.2 Video Temporal Coherence

The main problem with iTMOs so far is that the are not designed
directly for videos, and so with current methods flickering occurs.
This is particularly evident in the case of R, because the expand
map is generated using thresholding. To test the quality of our new



Our Operator Rempel et al. [Rempel et al. 2007]
Name P(X > 0.75) P(X > 0.95) P(X > 0.75) P(X > 0.95)
Scene 1 42.02% 36.72% 56.46% 48.31%
Scene 2 9.65% 6.46% 10.61% 8.24%
Scene 3 3.18% 1.96% 1.36% 0.91%
Scene 4 0.70% 0.45% 0.10% 0.05%
Scene 5 9.49% 8.25% 25.42% 19.94%

Table 1: The results for the comparisons for enhanced LDR videos for visualization.
For each entry we calculated the average of the VDP results of all frames for P(X >

0.75) and P(X > 0.95).
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Figure 8: The graph for values of βi for each frame for the sequence fireball-
smoke.avi. Our method compared to R. present less fluctuations and of lower intensity.

expand map we decided to expand a computer generated videos
of flames and fire in which the animation is smooth but changes
rapidly [Fedkiw 2008]. To avoid interferences due to the expansion
we used a linear expansion as in Rempel et al. [Rempel et al. 2007].
To determine the amount of flickering we used a simple metric, the
Brightness Flicking Metric, which is based on the difference of the
mean of luminance between two frames, βi = ‖L̄i − L̄i−1‖ where i
is the current frame and L̄i is the average of the luminance for the
i-th frame. βi is calculated for all frames of the sequence, which
can be summarized in a graph. High variations in the graph mean
that flickering is occouring in the video sequence.

The results are shown in Figure 7, for the sequence fireball.avi and
Figure 8 fireball-smoke.avi that can be downloaded from [Fedkiw
2008].

7.3 Image Based Lighting

IBL task was tested using four animated lightprobes, which were
generated linearly morphing two lightprobes per sequence, see Fig-
ure 9. A simple 3D scene was created with an Happy Buddha
and few spheres with different materials: a pure diffuse material, a
pure spherical material, and a glossy material using Ward’s BRDF
(αv = 0.3, αu = 0.1).

The results are summarized in Table 2. As can be seen our method
performed slighty better than R. This is due to the fact that during
integration small details, that can be seen as different in the visual-
ization, are lost.

Figure 9: The lightprobes used in the IBL test. In the top from left to right: L1 , L2,
L3, and L4. In the bottom from left to right: L5 , L6, L7, and L8.

Figure 10: An example of the rendered scene used in our experiments for IBL using
sequence L1 + L2 for the 10th frame: on the left the HDR reference, on the center the
our method, and on the right R.

Figure 11: The first frame for each sequence used in the experiment for testing
enhancing LDR videos for visualization using an HDR reference. In top from left to
right: Scene 1, Scene 2, and Scene 3. In the bottom from left to right: Scene 4 and
Scene 5.

Our Operator Rempel et al. [Rempel et al. 2007]
Name P(X > 0.75) P(X > 0.95) P(X > 0.75) P(X > 0.95)
L1 +L2 1.13% 0.72% 2.33% 1.37%
L3 +L4 8.02% 5.74% 8.33% 5.50%
L5 +L6 5.92% 3.87% 9.11% 5.94%
L7 +L8 0.30% 0.59% 0.77% 0.40%

Table 2: The results for the comparisons for IBL. The name Li + Li+1 means that
lightprobe Li was morphed linearly with the lightprobe Li+1. For each entry we calcu-
lated the average of the VDP results of all frames for P(X > 0.75) and P(X > 0.95).



8 Conclusion

We have presented a new framework for regenerating missing HDR
content using an iTMO for images and videos. A naive implemen-
tation of an iTMO can result in a number of issues, we addressed
those problems using a number of techniques.

The range was expanded using an iTMO, employing a tempo-
ral density estimation with automatic parameters estimation. This
helps to expand the dynamic range smoothly and reduce the flicker-
ing. The use of the cross/joint bilateral filter improved the previous
expand map reducing halos and enhancing contrast around edges.

The introduction of these temporal coherent techniques provides a
solid basis for handling HDR content. In this paper we have demon-
strated its success for recreating and visualizing HDR content and
IBL. We validated our results using HDR-VDP and a combination
of averaging techniques.

This paper has shown that inverse tone mapping has significant po-
tential. We have considered recreating missing HDR content from
legacy LDR images and videos, for visualization and IBL. In the
future we intend to validate our results running psychophysical ex-
periments using an HDR monitor [Seetzen et al. 2004]. Further-
more, we will investigate techniques to speed-up our method using
GPUs or FPGAs.
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