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Abstract

In recent years many Tone Mapping Operators (TMOs) have been
presented in order to display High Dynamic Range Images (HDRI)
on typical display devices. TMOs compress the luminance range
while trying to maintain contrast. The dual of tone mapping, inverse
tone mapping, expands a Low Dynamic Range Image (LDRI) into
a HDRI. HDRIs contain a broader range of physical values that can
be perceived by the human visual system. The majority of today’s
media is stored in low dynamic range. Inverse Tone Mapping Op-
erators (iTMOs) could thus potentially revive all of this content for
use in high dynamic range display and image-based lighting. We
propose an approximate solution to this problem that uses median-
cut to find the areas considered of high luminance and subsequently
apply a density estimation to generate anExpand-mapin order to
extend the range in the high luminance areas using an inverse Pho-
tographic Tone Reproduction operator.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: Tone Mapping, Image Processing, Image Based Light-
ing

1 Introduction

In recent years with the increasing need and popularity of HDRIs
in various fields such as physically-based renderings, movies and
videogames, the issue of reproducing such vast luminance ranges
on typical displays has become extremely important. This pro-
cess is usually called Tone Mapping, and in the past decade many
TMOs had been proposed, see [Reinhard et al. 2005] for a complete
overview.

These operators can be divided into different categories depending
on how they attempt to reduce contrast of an HDRI. There are mod-
els that apply the same mapping function across the image which
are known as Global Operators. Examples of these include [Ward
1994; Larson et al. 1997; Tumblin et al. 1999; Drago et al. 2003].
While these algorithms are very simple, details are frequently lost
in very bright and/or dark areas of the image [Ledda et al. 2005].

The other class of TMOs are known as Local Operators, in which
each pixel is scaled according to the average luminance level of its
local neighborhood, for example [Chiu et al. 1993; Tumblin et al.
1999]. The most difficult issue with this class of operators is the
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correct determination of the size of the local neighborhood for each
pixel. Indeed if it is done incorrectly, ringing artifacts, or “halos”,
may occur around high contrast edges. To solve this problem sev-
eral approaches have been proposed, such as [Reinhard et al. 2002;
Ashikhmin 2002; Fattal et al. 2002; Pattanaik and Yee 2002], that
employ a series of band-pass filters or apply a multiscale decompo-
sition into intrinsic layers, such as reflectance, illumination, texture,
etc. Contrast reduction is then applied to the illumination layer.

Finally, another class of TMOs attempt to mimic the Human Visual
System employing mapping functions that take account of aspects
of human vision for example, [Pattanaik et al. 1998; Ledda et al.
2004].

The dual of Tone Mapping is the Inverse Tone Mapping problem. In
this paper we introduce an approach for an inverse Tone Mapping
Operator (iTMO). While, it has been standard practice to generate
HDRI from many LDRI captured at different exposures times [De-
bevec and Malik 1997], the problem is considerably more difficult
when using a single LDRI. Clearly the problem is unconstrained
as we do not have the ratio image [Ward and Simmons 2005] for
tonemapped HDRIs, and we do not know any information from
standard 8bit images except the given exposure.

Since HDR capturing was introduced only in the last decade [De-
bevec and Malik 1997], Inverse Tone Mapping could make avail-
able in HDR the media of 180 years of photography and more 100
years of cinematography. All of this material was taken not in HDR,
and it can represent places, people and historical events that do not
longer exist. iTMOs could enhance this material for new display
devices. Also none of this material can be used to light synthetic
scenes in Image Based Lighting applications, as using LDRI in Im-
age Based Lighting can only achieve soft shadows.

Furthermore, in fields such as Visual Effects, Image-based lighting
is becoming more popular therefore the need for panoramic HDR
images are fundamental. Unfortunately, it is still quite rare that such
images are captured due to the extremely limited time constrains on
movie sets. Taking multiple photographs, is often too time consum-
ing and therefore expensive. The importance of inverse tone map-
ping becomes clear since only one photograph needs to be taken.

Image Based Lighting is very important field in Computer Graph-
ics, because it is very useful to improve the realism and to insert an
object in real scene [Debevec 1998]. Indeed it plays a key role in
modern Visual Effects productions however as mentioned above,
due to time constraints often only a single exposure image can be
captured. Although a few studios have HDR panoramic cameras
these are very expensive and still slow to capture the entire range
[SpheronVR ; PanoScan ].

Finally, we are not aware of commercialy available off the shelf
HDR videocameras, so there is no video content available for HDR
display [Seetzen et al. 2004], except synthetic videos or HDR
steady camera techniques, which suffer from flickering in anima-
tion. An experimental technique presented in [Kang et al. 2003]
can acquire HDR videos but it is quite limited; the frame rate is low
and can not acquire rapid motion, very large brightness ranges, and
it sometimes produces artifacts. In this case an iTMO could be use-
ful to enhance existing content and use this for simulations, games,
and visualization of photographs.



1.1 Related Work

Our work can be related to a number of techniques that have been
developed and can be found in various tutorials on graphics web
sites that present techniques to expand the range in LDRI [Lan-
dis 2002]. These techniques can be classified as a simple linear or
exponential expansion of the values of pixels that reach a certain
thresholdk to a maximum value. The main problem of this ap-
proach is that there is no space knowledge of the neighbor pixels,
and this implies no knowledge of where light sources are. This can
lead to noise problems, and bright pixels around low brightness ar-
eas, Figure 1. Another serious issue is that there can be areas that
change very sharply and in an unnatural way, we call these areas
block area, Figure 1.

In [Bennett and McMillan 2005] a video processing technique is
presented in which HDR concepts are used to improve the qual-
ity of videos for removing noise and tonemapping underexposed
video. However they did not look into the problem of creating a
HDR video from a LDR video.

Finally our work can be related in aim to existing image editing
unconstrained techniques [Khan et al. 2006] in which the user can
change the material properties of a selected object in an image. Or
colorization algorithms that try to colorize gray scale images, for
example [Levin et al. 2004].

Figure 1:An example of naive techniques to expand the range: the red circle show
the noise problem. The blue circle shows the block area problem.

2 Outline

The algorithm performs the following steps, Figure 2:

1. An initial HDRI is generated by applying the Inverse Tone
Mapping Operator;

2. Median Cut Algorithm [Debevec 2005] is applied for finding
the areas of high luminance;

3. An Expand Mapis created from density estimation of the ar-
eas of high luminance found using Median Cut result;

4. The final HDRI is composed through linear interpolation of
LDRI with the initial HDRI generated at the first step using
theExpand Mapas interpolation weights.

Figure 2: An overview of the proposed algorithm: firstly we create an Expanded
LDRI using an inverse Photographic Tone Reproduction. Secondly we generatetheEx-
pand Mapwhich is the result of density estimation of light sources created by Median
Cut on LDRI. Finally the Original LDRI and Expanded LDRI are linearly interpolated
using theExpand Map.

2.1 Inverse Tone Mapping Operator

Recently published TMOs usually take the world luminanceLw val-
ues and produce a set of luminance valuesLd [Reinhard et al. 2005].
WhereLw is defined as:

Lw = 0.213Rw +0.715Gw +0.072Bw (1)

whereRw, Gw, andBw respectively are red, green and blue world
color. To compress the values the following equation is applied:
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whereRd, Gd, andBd are respectively red, green and blue com-
pressed colors. For solving the inverse equation we have:
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However, when starting from a LDRI we do not have any notion
aboutLw(x,y), but only onRd,Gd, andBd.

The expansion of the range in a LDRI could be done in many ways;
artists from visual effects productions usally apply to pixel a scaling
or an exponential function [Landis 2002]. This technique can work
in some cases, but in general it does not create convincing results, so
we decided to solve the problem of expanding the range in a more
accurate way. An alternative approach, which we adopt, is to re-
verse a TMO. As metioned above it is a unconstrained problem, but
convincing results can be achieved by making some assumptions.

Our first step is to choose a TMO; several exist, each with their
own advantages and disadvantages. For our iTMO we chose to



reverse the Photographic Tone Reproduction in its is global version
[Reinhard et al. 2002]. The main reason for choosing this TMO
is that it is quite easy to reverse, and also it is popular for Tone
Mapping, since it performed better than other TMOs in terms of
contrast loss during range compression [Smith et al. 2006], and in
a series of psychophysics experiments [Ledda et al. 2005] when
evaluating TMOs against an HDR display reference.

Before describing the details of our inversion method we briefly
present the global version of Photographic Tone Reproduction. Ini-
tially the TMO scales pixels of the image using geometric average
Lw, this is an approximation of the key of the scene, which indi-
cates if a scene is subjectively light, normal, or dark. This scaling
is given by the following equation:

Lm(x,y) =
α
Lw

Lw(x,y) (4)

whereα is a user parameter that can be estimated from the image
[Reinhard 2002], andLw, the geometric average, is defined as:

Lw = exp
( 1

N ∑
x,y

log
(

δ +Lw(x,y)
))

(5)

whereδ is a small non negative value, andN is the number of pixels
in the image. Finally the values are compressed by the following
function:

Ld(x,y) =
Lm(x,y)

1+Lm(x,y)
(6)

The chief problem with this function is that the highest luminance
value in the image will never be mapped to 1. Also it might be de-
sirable to burn out high luminance pixel for artistic purposes. This
problem is solved by blending Equation 6 with a linear mapping:

Ld(x,y) =
Lm(x,y)

(

1+
Lm(x,y)
L2

white

)

1+Lm(x,y)
(7)

where Lwhite denotes the smallest luminance value that will be
mapped to white.
To inverse the TMO, we need to solve inLm from Equation 6 or
Equation 7. The result of inversion of the first Equation is the fol-
lowing:

Lm(x,y) =
Ld(x,y)

1−Ld(x,y)
(8)

then substituting Equation 4 in the previous equation we obtain:

Lw(x,y) =
Ld(x,y)Lw

(

1−Ld(x,y)
)

α
(9)

There are two problems for the above equation. Firstly the 1 lumi-
nance value is mapped to infinity which is not desirable. To account
for this, we need a damping factor. Secondly it is not possible to
control well the range to expand. In fact, very high luminance val-
ues are mapped on the highest maximum value chosen by user (the
maximum value is driven usingα and the damping factor), while
middle and low luminance values are mapped on very low lumi-
nance values, Figure 3. Instead of the above approach, we opted to
solve forLm re-arranging Equation 7:

L2
m(x,y)

L2
white

+Lm(x,y)
(

1−Ld(x,y)
)

−Ld(x,y) = 0 (10)

then substuting Equation 4 we obtain:
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L2
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+
α
Lw

(
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)

Lw(x,y)−Ld(x,y) = 0 (11)

Image Name HDRI LDRI TONEMAPPED
Alhambra3 0.019511 0.018965 0.284269
AtriumMorning 0.284378 0.202698 0.243726
AtriumNight 0.076215 0.075131 0.272415
BristolBridge 0.028821 0.028131 0.224723
ChurchWindow1 0.002905 0.002697 0.239985
Clockbui 0.002826 0.002636 0.280020
Colorcube 0.001540 0.001388 0.250926
Couple 0.008118 0.007776 0.255610
Dani Belgium 0.001598 0.001598 0.267191
Dani Cathedral 0.049861 0.043159 0.239216
Dani Synagogue 0.321129 0.302462 0.281919
DeskoBA2 0.119672 0.079009 0.187675
EucalyptusGrove 1.205781 0.447119 0.34845
Galileo tomb 0.378422 0.356415 0.309129
GraceCathedral 0.040209 0.036034 0.254408
HerculesCave1 0.013785 0.013037 0.230455
Hotel 0.373111 0.307517 0.282104
ItalianChurch1 0.008473 0.008196 0.298908
ItalianMuseum1 0.006467 0.006156 0.289998
Temple 0.078451 0.067611 0.216348
Lamp 0.165595 0.163474 0.307505
Memorial 0.031256 0.029504 0.276244
MtTamWesto281 0.132048 0.100824 0.206138
Naveo366 0.172494 0.147410 0.287591
NapaValley 0.048545 0.047631 0.262453
Still Life 0.001916 0.001734 0.192833
St Peters 0.350107 0.336801 0.317300
Tahoe1 0.039601 0.039030 0.280015
TreeoAC1 0.073774 0.056163 0.198197
Uffizi 0.274167 0.190992 0.249118
Wreathbu 0.003593 0.003372 0.251488

Table 1:The values of geometric average for various HDRIs. The column labelled
HDRI represents the values for original HDRI, the column LDRI represent the values
for a single exposure image extracted from HDRI (the same for all images). Finally in
the column TONEMAPPED are the values for the tonemapped HDRI using the global
version of Photographics Tone Reproduction. The mean of absolute error between
HDRI and LDRI isµ = 0.091766 and the variance isσ2 = 0.006694081. The mean
of absolute error between HDRI and Tonemapped isµ = 0.255 and the variance is
σ2 = 0.182601.

(a) (b) (c)

Figure 3: Comparison in false color HDRIs using logarithm 2 scale: a) Original
Memorial HDR. b) Inverse Tone Mapped Memorial using Equation 9 image with 20
as a maximum luminance value. c) Inverse Tone Mapped Memorial using Equation 9
image with 200 as maximum luminance value. In b) and c) middle and low tones are
mapped to very low luminance value.



This new formulation is a second order equation inLw(x,y) that can
be solved easily using the quadratic formula. However, we want to
solve it starting from a LDRI so there are a number of unknowns:
the scaling factorα , the white pointLwhite, the geometric average
Lw and the tone mapped luminanceLd.

We can approximate the original geometric averageLw using the
geometric average of the LDRIs. This approximation will not work
very well for overexposed or unexposed LDRI, because the value
will be much higher or lower than the associated hypothetical
HDRI. However, we are working with LDRIs in whichLw does
not change too much with respect to the associated value for the
HDRI. In fact, we noticed that this value is nearly the same for
the most common test HDRIs, which include a very broad number
of lighting conditions, see Table 1. Although this is not true for
tonemapped HDRI (in this case we observed values between 0.2
and 0.3), we obtained good results using it for this kind of LDRIs.

The parameterLd(x,y) in Equation 11 is equal toL′
w(x,y) the lu-

minance of the tone mapped version. This can be simply observed
from Equation 2. So we use it for all LDRIs. Obviously, this value
is approximated for a single exposure image, but it works fine un-
der the hypothesis mentioned before, that is not too over or under-
exposed images.

The last two parameters left areα andLwhite. They can not be de-
rived from image. The parameterα is quite cryptic. So for an easy
understanding we introduced the valueL′

max which is the maximum
luminance value expected for the inverse tone mapped image, and
it is chosen by user. If we consider that the maximum luminance
value in a LDRI is 1, we can derive from the quadratic solution of
Equation 11 the following relation:

L′
max =

LwhiteLw

α
(12)

which leads forα :

α =
LwhiteLw

L′
max

(13)

Also Lwhite is set by user. We noticed that this parameter drives
the expansion for the original middle and low luminance values.
If Lwhite is very high those values are mapped to very low lumi-
nance values. On the other hand, ifLwhite is very low, the inverse
tone mapped image will have luminance values near to the original
LDRI scaled byL′

max. We found that good values forLwhite that
keep middle and low luminance values as the original LDRI are
values with the same order ofL′

max, Figure 4.

Finally, we can solve Equation 11. This equation always has two
solutions. In factLd(x,y) is always a non-negative value so the
determinant of quadratic equation is always positive:

( α
Lw

(

1−Ld(x,y)
))2

+4
α2

L2
whiteL2

w

Ld(x,y) ≥ 0 (14)

We chose the positive solution with highest value, because it is
equal to the real value ofLw(x,y) if we commenced with the real
values of all parameters.

The main advantage of this iTMO is that the function is smooth so
it avoids noise of the naive algorithm (due to threshold). On the
other hand the main problem is that we cannot expand the range
arbitrarily. It works only when expanding to a medium dynamic
range. Otherwise, if the value of the highest luminance is set to
very high we obtain blocky effects. An efficient way to solve this
problem is to create an interpolation map that interpolates pixels
which belong to the high luminance areas. This map, which we

(a) (b) (c)

Figure 4:Comparison in false color of Inverse Tone Mapped Memorial HDRIs with
20 as maximum luminance using logarithm 2 scale: a) HDRI usingLwhite = 1, in this
case too many pixels are expanded as can happen in a linear scale. b) HDRI using
Lwhite = 10 in this case the values of original middle and low luminance value are
nearly kept as before, and original high luminance values are expanded smoothly. c)
HDRI usingLwhite = 100 in this case the values of original middle and low luminance
value are mapped to very low luminance value, while original high luminance value
near 1 are mapped on the maximum luminance chosen by user.

Our Algorithm Naive Algorithm
Image Name P(X) ≥ 0.75 P(X) ≥ 0.95 P(X) ≥ 0.75 P(X) ≥ 0.95

Alhambra3 0.09 0.02 0.49 0.32
AtriumMorning 25.18 22.24 34.01 29.26
AtriumNight 5.90 4.75 16.83 12.70
BristolBridge 10.72 7.78 20.95 14.69
ChurchWindow1 12.17 8.88 16.82 12.48
Clockbui 18.76 12.79 36.27 27.44
ColorCube 14.25 10.34 22.49 16.88
Couple 1.62 0.93 2.27 1.43
Dani Belgium 19.02 16.19 40.73 33.48
Dani Cathedral 7.12 4.54 10.38 6.79
Dani Synagogue 9.40 5.33 28.16 17.75
DeskoBA2 15.96 11.30 27.39 19.34
EucalyptusGrove 15.96 11.37 24.41 22.79
Galileo Tomb 38.17 32.59 47.83 41.64
GraceCathedral 6.26 4.27 16.71 13.18
HerculesCave1 8.05 5.82 23.70 17.49
Hotel 16.79 12.69 21.68 17.55
ItalianChurch1 3.88 2.49 6.01 3.5 7
Italian Museum 0.04 0.01 0.43 0.22
Lamp 8.61 6.45 9.60 7.89
Memorial 2.65 1.97 4.75 3.43
MtTamWesto281 7.04 5.06 8.05 5.82
Naveo366 8.97 7.46 14.87 11.85
NapaValley 4.14 3.34 6.65 5.11
Still Life 2.34 1.75 3.84 2.74
St Peters 22.86 18.07 38.0 31.48
Tahoe1 10.54 7.80 13.97 10.91
Temple 5.12 2.89 9.13 4.76
TreeoAC1 7.02 4.46 8.62 6.30
Uffizi 3.53 2.42 5.28 3.24
Wreathbu 10.43 7.31 23.41 16.84

Table 2:VDP HDR results: we compared the original HDRIs with HDRIs created
using our algorithm. Also we compared the original HDRIs with HDRIs generatedus-
ing the naive algorithm, that expands pixels that satisfy a threshold. In both algorithms
used we started from a single exposure of the original HDRI (stop 0). The columns
P(X) ≥ 0.75 andP(X) ≥ 0.95 with X = detection mean that the probability to detect
the difference is more than 0.75 and 0.95 for a certain percentage of pixels. The algo-
rithm presented performs better thannaivealgorithm with a lower percentage of pixels
detected by VDP metric.



call Expand Map, is generated from the result of density estimation
of the high luminance areas present in the image found using the
Median Cut algorithm.

2.2 Finding Light Sources

The Median Cut algorithm can be used for sampling light sources
for IBL [Debevec 2005]. The advantages of this algorithm is that it
clusters light sources near areas of high luminance.

(a) (b) (c)

Figure 5:Comparison of median cut results using an HDRI and LDRI of Memorial
HDRI: a) The memorial LDRI. b) Median cut result, 1024 light sources generated
starting from a LDRI c) Median cut result, 1024 light sources generated starting from
a HDRI.

The algorithm splits images into 2n regions of similar light energy.
The splitting axis is chosen as the longest dimension such that its
luminance is divided evenly. Finally, it places a light source in the
centroid of each region and sets the light source color to the sum
of pixels values within the region. In our implementation we store
the area of high luminance (equivalent to the lights in the tradi-
tional version) found in a 2D-Tree to speed-up the nearest neighbors
search during the calculation of theExpand Map. Additionally, we
do not scale the pixels for the cosine for normal images as pro-
posed in [Debevec 2005], since we do not need to compensate the
area distortion present in logitudine-latitudine images. Applying
Median Cut to a LDRI and to the equivalent HDRI can produce dif-
ferent results. However the lights sources distribution on the LDRI
maintains some features of the distribution using HDRI, Figure 5.

2.3 The Expand Map

TheExpand Mapis a map with the list of pixels to be expanded. We
do not use a binary map to avoid a blocky transition between areas.
A better solution will be a map in which, for each pixel, there is
a weight associated. In other words, we want to identify a list of
pixels that when expanded would achieve smoothly transitions be-
tween pixels. One solution to the problem is density estimation (see
[Duda et al. 2001] for more details), a statistical technique that con-
structs an estimate, based on observed data (in our case the areas of
high luminance). This technique has already been successfully used
in the field of computer graphics, for example in Photon Mapping
[Jensen 2001].

The idea behind the use of density estimation is to determine for
each pixelx the density of high luminance areas inside an area of
influence which is a circle defined by the radiusrt . The basic for-
mula for density estimation is:

Λ(x, rt) =
∑p∈P Ψp

πr2
max

(15)

whereΛ(x) is the estimate at pointx(i, j) in the image,Ψp is the
luminance value for the point of high luminancep, P is the set
of all high luminance points inside the area of influence given by
radiusrt from x(i, j), andrmax is the distance of the farthest light
sourceΨmax∈ P inside the area of influence.

The estimate can be improved using a smoothing filter. In our work,
we used a Gaussian filter which is defined by the weight of the
kernel given by:

wg
p = γ

[

1−
1−e

−β d2
p

2r2max

1−e−β

]

(16)

whereγ andβ are parameters of the filter, we usually setγ = 0.918
andβ = 1.953 (see [Pavicic 1990] for details). This filter is nor-
malized so we have only to scale the luminance bywg

p:

Λ(x, rt) = ∑
p∈P

Ψpwg
p (17)

In our tests we used a radiusrt of 16 pixels. An important issue
is to insert a threshold for the number of light sources insideAx
otherwise the density map is very broad and false light regions can
be recovered. We found that a threshold of 4-6 light sources is
enough for 1024 generated light sources, Figure 6.

(a) (b) (c)

Figure 6:An example of Density Estimation using Gaussian Filter: a) the memorial
LDRI b) the density map calculated using a radius of 16 pixels and a thresholdof one
light sources, in this case we can not recover the density map properly. c) the density
map calculated using a radius of 16 pixels and a threshold of 4 light sources, inthis
case we can recover the correct density map around the light sources.

The final stage of the algorithm is to combine the original LDRI
and the expanded LDRI using theExpand Map, which has values
in the range[0,1]. Therefore these values can be used as weights
for a linear interpolation between the two images.

3 Results

The main applications of our work are Image Based Lighting and
in general photographs and videos sequences enhancement.

We validated our iTMO using the Visible Differences Predictor
(VDP) metric proposed in [Daly 1993], in particular we used the
HDR version presented in [Mantiuk et al. 2004; Mantiuk et al.
2005] and free downloadable [VDP-HDR ]. This metric is based
on what the Human Visual System can perceive as differences for
a pair of HDRIs, which is more perceptually accurate than other
metrics such as the Signal to Noise Ratio (SNR). The VDP-HDR
creates a new image, called a probability map of detection, which



assigns the probability that the difference can be noticed for each
pixel. For an easy understanding of the map created, we decided to
use the percentage of pixels in an image when probability of detec-
tion P(X) exceeds 0.75 and 0.95.

Figure 7:An example of an enhancement of LDR video. The used video represents
a daylight animation around the Kalabsha temple, we generated a LDR video at the
exposure stop -2. The first row shows the tonemapped frames of the video, and in the
second row the VDP results of comparison of these frames between the original HDR
video and the one generated using thenaive technique. Finally, in the third row the
VDP results of the three frames between HDR video and the one generated using the
presented algorithm are shown.

We tested the quality of our algorithm for the enhancement of pho-
tographs. For our test we generated HDRIs using our algorithm
starting from a single exposure of a HDRI (stop 0), because it is
the same condition of taking a picture. Starting from a tonemapped
image it is hard to understand if the iTMO works well thanks to non
linear transformation applied by a TMO. Then we compared these
generated HDRIs with the original HDRI using VDP HDR. Also
we compared the original HDRIs with HDRIs generated using the
naivealgorithm [Landis 2002] in which pixels over a certain thresh-
old are expanded exponentially. From the results in Table 2, we
show that algorithm presented in this paper perfoms better than the
naivealgorithm, on average it performs 50% better. Also the per-
centage of pixels detected is quite low with an average of 10.32%
for P(X) ≥ 0.75 and 8 forP(X) ≥ 0.95.

We also tested our algorithm for Image Based Lighting applica-
tion. In this case a simple scene was modelled with a plane and the
Lucy model, illuminated using lightprobes, Figure 8. This scene
was rendered using a standard Monte Carlo Raytracer with Impor-
tance Sampling strategy for environment maps sampling (see [Pharr
and Humphreys 2004] for details). In this case we applied VDP
HDR to the generated images, and our algorithm again performed
better than thenaivealgorithm.

The last test considered the enhancement of LDR video. We used
a HDR video sequence representing the Kalabsha temple in day-
light. From the original HDR sequence, a LDR video was cre-
ated by taking a single exposure (stop -2 because it is a very bright
scene). Then the iTMO with standard settings was applied without
theExpand Map, because using the standard settings (for radiusrt
and number of lights threshold) for each frame, flickering can oc-
cur. We compared the video using thenaivealgorithm using VDP
HDR, Figure 7. In this case the averages of the percentage of pix-
els in which differences are detected with a probability of more
than 0.75 and 0.95 are respectivelyµ0.75 = 5.9 and µ0.95 = 3.4

(a) (b)

(c) (d)

Figure 8: An example of Image Based Lighting: a) Lucy rendered using original
HDRI Grace Cathedral. b) Lucy rendered using a LDRI Grace Cathedral (stop=0).
c) Lucy rendered using computed HDRI Grace Cathedral computed using our algo-
rithm. d) The VDP HDR comparison between a) and c) with a percentage of 3.07%
for P(X) ≥ 0.75, and 1.34% forP(X) ≥ 0.95.

with the following variancesσ2
0.75 = 17.7 andσ2

0.95 = 17.9 for our
algorithm. For thenaivealgorithm the averages areµ0.75 = 25.8
and µ0.95 = 17.7 with the following variancesσ2

0.75 = 34.5 and
σ2

0.95 = 23.0. The test shows that our algorithm can better enhance
video thannaiveone, avoiding flickering caused by blocky areas
and noise. In this case we achieved good results without theEx-
pand Mapbecause the images of sequence are overall bright, and
there are no localized light sources such as windows or lamps.

4 Conclusion and Future Work

We presented a new operator for LDRIs, the Inverse Tone Mapping
Operator. As the results show this iTMO performs well for IBL,
photographs and video sequences dynamic range enhancements in
general. It is based on the inversion of Global Photographic Tone
Reproduction operator and anExpand Mapbuilt using density esti-
mation of light source generated by Median Cut.

We achieved better image quality than with thenaive algorithm,
and we removed noise and blocky effects that can be seen in this
algorithm.

The iTMO problem is unconstrained, so we made some hypothe-
sises about the image. The main hypothesis is an input image (or a
sequence of images in case of videos) with a well balanced number
of dark, normal and bright regions. If this is not the case the iTMO
andExpand Mapcan not create convincing results.

The main problem of our algorithm is video processing. In that
case we can not use theExpand Map, because it can vary enough
at each frame to create flickering in the video. Also to calculate
the best possibleExpand Mapuser interaction is sometimes needed



to set the parameters of the density estimation (radius, number of
light sources at least). Therefore we can enhance videos only using
iTMO, in order to have smooth results. And this is a very big limit
to the range that we want to expand, as we have shown before.

In future, we would like to explore other TMOs to reverse, or to
design ad hoc iTMO in order to improve the quality. Also we will
develop some heuristics for estimating the parameters of density
estimation to generateExpand Map, which is very important task
for video sequences. We know that will not eliminate all flickering
problems, so we intend to generateExpand Mapevery 4-5 frames
and to interpolate the in between frames using an approach similar
to [Agarwala et al. 2004] to track the maps.
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Figure 9:Examples of comparison for some images. For each row the first image is the radiancemap of original HDRI, the second is the radiance map of the expanded LDRI
using our algorithm. In the third is the VDP-HDR between the first and secondimage. Finally, the fourth image is the expanded LDRI using thenaivealgorithm and the fifth one
is the result of VDP-HDR between the first and the fourth. The images comparisons shown are from top to bottom: DaniSynagogue, ItalianMuseum1, BristolBridge, DeskoBA2
image, and Memorial.


