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Abstract
The separation of reflection components is an important issue in computer graphics, computer vision and image
processing. It provides useful information for the applications that need consistent object surface appearance,
such as stereo reconstruction, visual recognition, tracking, objects re-illumination and dichromatic editing. In this
paper we will present a brief survey of recent advances in separation of reflection components, also known as
specularity (highlights) removal. Several techniques that try to tackle the problem from different points of view
have been proposed so far. In this survey, we will overview these methods and we will present a critical analysis
of their benefits and drawbacks.

Keywords: Specularity Removal, Specular-free image, diffuse and specular reflections, polarization, intrinsic
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ACM CCS: I.4.8 [Scene Analysis]: Colour shading, shadowing, diffuse and specular reflections, highlights; I.4.3
[Enhancement]: Specularity removal; General; [I.4.0]: Dichromatic reflection model

1. Introduction

Specularity removal can be viewed as the general problem
of extracting information contained in an image and trans-
forming it into certain meaningful representation. This rep-
resentation is able to describe the intrinsic properties of the
input image, and it is well-known under the name of intrinsic
images introduced by Barrow et al. [BT78]. Several charac-
teristics of the original input image can be defined as intrinsic
images: illumination colour, illumination geometry, surface
reflectance, surface geometry and view-point [TI04]. In our
case, the two intrinsic characteristics that must be extracted
are the diffuse and the specular reflection components.

Several applications in computer graphics, computer vi-
sion and image processing can benefit from using this mean-
ingful information in the form of intrinsic images. On the one
hand, the presence of specular reflection is inevitable since in
the real world we have many materials that show both diffuse

and specular reflections. On the other hand, many algorithms
in computer graphics, computer vision and image process-
ing assume perfect diffuse surfaces and consider locations
of specular reflection as outliers. This simplification reduces
the robustness of these algorithms when used in applications
where specular surfaces should be considered. As a result,
the applicability of these algorithms is limited.

In particular, stereo reconstruction, visual recognition and
tracking need to have a consistent surface appearance of
an object in different images. The appearance of a surface
can significantly vary in the presence of highlights. Specular
highlights may cover surface details and appear as additional
features that are not intrinsic to the object [TLQ06]. Ac-
quired textures with the presence of highlights are a classical
example of how details may be lost and the simulation of the
changes of the light source position will be affected by the
highlights and shadows generated by the light source used
during the acquisition process.
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In this paper, we describe recent work on separation of re-
flection components, also known as Specularity (Highlights)
Removal. These techniques can be used to separate the dif-
fuse and specular reflection components of an image.

In the following sections we will introduce the specularity
removal problem, followed by methods classification based
on their characteristics and also some basic concepts, used
through the survey, will be introduced (Section 2). After-
wards the techniques (Sections 3 and 4) will be presented,
discussing their advantages and drawbacks (Section 5).

2. Overview

The information contained in the image of an object or a
scene can be extracted in form of different representations or
descriptions. These representations or descriptions are also
called intrinsic image properties, and the result of separa-
tion is an intrinsic image that describes a specific intrinsic
property.

In our case, the intrinsic image properties are the two
kinds of reflection components: the interface one, also called
specular, and the body one, also called diffuse.

Why do we need to extract this information?

Most algorithms used in numerous tasks of computer vi-
sion, computer graphics and image processing, such as stereo
matching, photo-consistency, segmentation, recognition and
tracking work under the assumption of perfect Lambertian
surfaces (perfect diffuse reflection); they consider specular
pixels (highlights) as outliers or noise.

Unfortunately, in the real world we have many materials
that show both diffuse and specular reflections. When these
algorithms are used directly on surfaces that show also spec-
ular reflection, this can lead to problems: stereo mismatch-
ing, false segmentations and recognition errors. For example,
the photo-consistency based registration often used in three-
dimensional (3D) model reconstruction assumes Lambertian
surfaces; otherwise, the measure of how consistent the views
are will fail because of specularities.

In this case, the separation of specular and diffuse com-
ponents is useful, and having a specular-free (diffuse) map
is often desired. Figure 1 shows an example of how the
two reflection components can be processed separately and
afterwards recombined to produce particular visual effects
[MZK*06]. This process is called dichromatic editing. By
modulating the two reflection components, visual effects
such as wetness, make-up, additional light or changes in
the appearance, can be produced.

Figure 2 shows an image where details and colours are
completely washed out in the highlights region. This case is
typical in the texture acquisition process, where the presence
of a source light may generate the presence of highlights. To

(a) (b) (c) (d)

Figure 1: Example of different visual effects produced by
dichromatic editing [MZK*06]: (a) is the input image,
(b) wetness effect, (c) skin colour change and (d) effect of
make-up. Input image courtesy of S.P. Mallick.

Figure 2: Example of an image where the presence of high-
lights generates the loss of details and colour information.
Details and colours are completely washed out in the high-
lights region.

recompose the details and the colour information, highlights
removal techniques are required. Moreover, the simulation of
light movements will not be realistic enough if the highlights
are not removed.

On the other hand, specular reflectance can play a role in
human perception, and some algorithms rely on this informa-
tion [MZK*06]. For example, Blake et al. [BB88] reconstruct
geometry from specularity. In a shape-from-specularity sys-
tem, Healey et al. [HB88] derive and use relationships be-
tween the properties of a specular feature in an image and the
local properties of the corresponding surface. Osadchy et al.
[OJR03] have shown how to use the highlights information
to recognize challenging shiny transparent objects.

Why is the component separation problem difficult?

In general, recovering two intrinsic images from an input
image is a classical ill-posed problem [Wei01]. In fact, the
number of unknown variables is larger than the number of
equations. We have only one equation that defines the total
radiance as the sum of different terms as will be described in
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Table 1: The classification of highlights removal methods. These
methods are classified based on the number of images used as input
and the type of information used.

Single image Multiple images

Tech. - Sec. Type CSA NA IS MFI POL

CRM - 3.1.1 G x – – – –
TDA - 3.1.2 L x – – – –
BM - 3.1.3 G x – – – –
USFI - 3.2.1 L – x – – –
PDE - 3.2.2 L – x – – –
IT - 3.2.3 L – x – – –
TS - 3.2.4 L – x – – –
CC - 3.2.5 L – x – – –
FR - 3.2.6 G – x – – –
HM - 4 G – – x – –
HFLF - 4 G – – x – –
MBS - 4.1 G – – x – –
MII - 4.2 L – – x – –
CP - 4.3 G – – – – x
MF - 4.4 L – – – x –

L is used for local and G is used for global approach. The number in
the first column, indicates the paragraph where the technique appears
in the survey.

Section 2.2. If one analyses this equation, the only term that
can be known is the chromaticity of the illumination (colour
associated with the specular component); all the other terms
are unknown.

Highlights removal can be reduced in complexity when
geometry is known. In this case, the problem is straightfor-
ward to solve and it can be efficiently solved, for example see
Dellepiane et al.’s work [DCC*10]. However, in most of the
cases this information is not available making the solution of
the separation problem difficult.

Various specularity removal techniques are available in lit-
erature; they differ in the information they use and in how
this information is used. Table 1 summarized how these
techniques may be classified and in which paragraph of
this survey they are explained. The notation used in Ta-
ble 1 for the categories is the following: CSA, colour space
analysis; NA, neighbourhood analysis; POL, polarization;
IS image sequences; MFI, multiple-flash images. The no-
tation used in Table 1 for the techniques is the follow-
ing: CRM, using colour reflection model [KSK87, KSK88];
TDA, 2D diagram approach [ST95b, SK00]; BM, Bajcsy
et al. method [BLL96]; USFI, use of specular-free image
[TI05b, YCK06, SC09]; PDE, PDE approach [MZK*06];
IT, inpainting technique [TLQ06]; CC, use of colour
information and classifier [TFA05]; TS, separation of high-
light reflections on textured surfaces [TLQ06]; FR, Fres-
nel methods [Ang07]; HM, histogram methods [CGS06];
HFLF, high-low frequency separation [LPD07, NGR06];
MBS, multi-baseline-stereo [LB92, LYK*03, LS01]; MII,

Figure 3: A graphical representation of the reflection pro-
cess when light strikes a surface. (After Shafer [Sha85].) Two
kinds of reflection are generated: specular and diffuse.

deriving intrinsic images from image sequences with illumi-
nation changes [Wei01]; CP, colour and polarization meth-
ods [NFB97, KLHS02, MPC*07, USGG04]; MF, multi-flash
methods [FRTT04, ARNL05].

Based on the type of data used as input, there are two main
categories: single-image and multi-image methods. The first
category performs the separation of the reflection compo-
nents using only a single image. The second category makes
use of a sequence of images benefiting from the fact that un-
der varying viewing direction diffuse and specular reflections
show different behaviours.

In the single-image category, we can further subdivide
the techniques based on the information they use: neigh-
bourhood analysis, colour space analysis. The first group
uses the information of the neighbourhood pixels to compute
the pixel diffuse colour. The second group considers colour
space to analyse the distribution of the diffuse and specular
components and uses this information for the separation.

Besides this classification, these approaches can be cate-
gorized as local or global depending on how they use the
information contained in the image data. The local methods
utilize local pixel interactions to remove the specular reflec-
tion, while the global methods estimate diffuse colours of
image regions, which implies segmentation.

In the next section, we will review the reflection models
and the definitions used by the techniques presented in this
survey.

2.1. Basic definitions

As we said earlier, we have two types of reflections: specular
and diffuse. The specular reflection is the light reflected at
the interface between the air and the surface. We can no-
tice in Figure 3, that the direction of the specular reflection
is different at the macroscopic and microscopic levels. This
is because the direction is related to the surface normal that is
different at the macroscopic level (reference surface normal)
and at the microscopic level (local surface normal). The spec-
ular reflection is governed by the well-known Fresnel’s law
that relates the specular reflectance to the angle of incidence,
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Figure 4: The reflectance geometry used by Shafer [Sha85]
and by Cook and Torrance [CT82] for describing their re-
flection models.

the index of refraction of the material, and the polarization
of the incoming illumination [Sha85].

The diffuse reflection is generated by the light that pene-
trates through the interface and passes through the medium,
where it undergoes scattering from the colourant. As it can
be noted from Figure 3, in this case the light is either trans-
mitted through the material (when the latter is not opaque),
absorbed by the colourant, or reflected through the same in-
terface by which it entered [Sha85, NS92]. The reflected light
represents the diffuse reflection. The colour of the diffuse re-
flection is, in general, different from that of the illumination,
and the diffuse reflection is usually considered to be unpolar-
ized [Sha85]. This helps the reflectance separation process
since the degree of light polarization can be considered as a
strong indicator of specular reflection.

The terminology used by Shafer [Sha85], for describing
the reflectance geometry is illustrated in Figure 4 . The direc-
tions are denoted as follows: I is the illumination direction, N
is the normal surface, V is the viewing direction, and J is the
perfect specular direction at the macroscopic level. The an-
gles are denoted as follows: i is the angle of incidence, e the
angle of emittance, g the phase angle, and s the off-specular
angle.

Mainly, two reflection models have been used in the
context of specularity removal: Dichromatic [Sha85] (Sec-
tion 2.2) and Cook and Torrance [CT82] (Section 2.3).

2.2. The dichromatic reflection model

The dichromatic reflection model [Sha85] is a simple model
of reflectance in which the total radiance is the sum of two
independent terms: the radiance Ls of the light reflected at
the interface and the radiance Ld of the light reflected from
the surface body:

L(λ, i, e, g) = Ld(λ, i, e, g) + Ls(λ, i, e, g). (1)

Equation (1) can be decomposed for better understanding
of the components:

L(λ, i, e, g) = wd(i, e, g)cd(λ) + ws(i, e, g)cs(λ). (2)

That is, each of the two terms in Equation (1) is formed by
different terms c and w. The term c called composition is the
relative spectral power distribution (SPD), which depends
only on the wavelength λ. The term w called magnitude is a
geometric scale factor which depends only on the geometry
[Sha85]. These two terms relate the reflectance geometry to
the wavelength of the light that strikes the material surface.

The main assumption is about the surface that must be an
opaque inhomogeneous medium with one significant inter-
face. There is another assumption about the material sur-
face made by the dichromatic reflection model [Sha85]:
The surface is not optically active. This means that the sur-
face does not have fluorescent and thin film properties, and
the colourant is uniformly distributed.

The assumptions about the reflection are the following:

• The reflection from the surface is invariant with respect
to rotation around the surface normal.

• There are no inter-reflections among surfaces.

• The body reflection is Lambertian, which means that the
brightness is independent from the viewing direction.

• The specular reflection has the same colour of the illumi-
nation and tends to be polarized. As it will be shown later
in this survey, considering the specular reflection having
the same colour of the illumination will simplify the re-
flectance separation process. However, this is not always
true in the real world as it has been demonstrated by An-
gelopoulou [Ang07] (Section 3.2.6). The assumption of
polarization is used by the polarization based techniques
(Section 4.3) to determine the colour of the specular com-
ponent, simplifying the reflectance separation process.

Despite these assumptions, the model [Sha85] has a high
level of generality. In fact, no assumptions are made about
the imaging geometry. The model can be applied to either
curved or planar surfaces, as well as to textured surfaces. No
specific functions are assumed by the model for describing
the terms w and c. This means that no specific geometric
model of highlights is used.

No assumptions are made about the light source either: the
model can be applied to pointwise, extended, and infinitely
distant light sources. The model does not assume that the
amount of illumination is the same everywhere in the scene.

The model [Sha85] suffers from some flaws, but they have
a minimal impact on the usefulness of the model. In reality,
both the specular reflection and the diffuse reflection exhibit
an interdependence between wavelength and geometry. In
[Sha85], this effect is estimated to be negligible.

How is it possible to relate the SPD of the light to its colour
coordinates?

c© 2011 The Authors
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The spectral projection, as proposed by Shafer [Sha85], is
a way to compute the colour values from the SPD of the
measured light.

Before introducing the concept of spectral projection, it is
necessary to recall shortly how a colour value is obtained in
a colour camera

IX =

⎛
⎜⎝

rX

gX

bX

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫
λ

X(λ)r̄(λ) dλ

∫
λ

X(λ)ḡ(λ) dλ

∫
λ

X(λ)b̄(λ) dλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where r̄(λ), ḡ(λ) and b̄(λ) are the responsitivities in the three
channels, and X(λ) is the SPD. The spectral projection is a
linear transformation [Sha85], which means that in the case
of a mixture of two or more SPDs the resulting colour is the
sum of the corresponding pixel colours taken in the same
proportion:

IαX+βY = αIX + βIY . (4)

Applying this result to the Dichromatic Reflectance Model
(2), we obtain

I = wdB + wsG, (5)

where I is the pixel colour, ws and wd the magnitudes of
reflection at the point, and B and G the colours of the diffuse
and specular reflections of the material, respectively. One can
observe that the scale factors wd and ws vary from point to
point, whereas the colours B and G are the same in all points
of the surface, because they are the spectral projections of
cd(λ) and cs(λ) that do not vary with the geometry under the
assumption of uniform illumination. Equation (5) does not
assume any specific G, or any specific colour responses of
the camera.

It is easy to extend the model (2) to the case of ambi-
ent light. The reflected light of ambient illumination con-
tains specular reflection and diffuse reflection. This light
is incident from, and reflected into, all directions equally.
From these two considerations we can modify the dichro-
matic model adding a single term La(λ) that represents the
reflection caused by the diffuse illumination. In this case,
Equation (2) is modified as

L(λ, i, e, g) = wd(i, e, g)cd(λ)

+ ws(i, e, g)cs(λ) + La(λ), (6)

whereas Equation (5) is modified as

I = wsB + wdG + Ia, (7)

where Ia is the colour associated with the light reflected from
the diffuse illumination La(λ).

2.3. Cook and Torrance reflectance model

A model similar to the Dichromatic one has been introduced
by Cook and Torrance in the 1982 [CT82]. This model also
considers the total radiance associated to the total light re-
flected (bidirectional reflectance) at a certain point p of a
surface material as the sum of the two terms specular and
diffuse reflections. Their model can also be extended to take
into account the ambient light; it assumes the diffuse and the
ambient components to reflect light equally in all directions,
that is, independently from the location of the viewer. In this
way, only the specular reflection depends on the viewer po-
sition. To describe the specular reflection the authors assume
that the surface consists of microfacets that reflect specu-
larly, and only those that have the normal in the direction of
H contribute to the specular component that can be modelled
as

Ls = F

π

D

(N · I )

T

(N · V )
, (8)

where F represents the Fresnel term and describes how the
light is reflected from each microfacet; it is a function of an-
gle and wavelength. T represents the geometrical attenuation
factor and D is the microfacets distribution term. As observed
by Angelopoulou [Ang07], the Cook–Torrance model states
that the specular reflection varies over light spectrum due to
the fact that it depends on the index of refraction, which is
function of wavelength. On the other hand, the model as-
sumes that for dielectric materials this aspect is negligible,
so the colour can be considered the same as the colour of the
light source. In Section 3.2.6, we will show that this is im-
portant and can be used for reflectance component separation
[Ang07].

2.4. Fresnel term computation

The Fresnel term F, as explained in Section 2.3, describes
the reflection and transmission of electromagnetic waves at
an interface. F is defined as the ratio of reflected light over
incident flux densities at different wavelengths

F = 1

2

(
r2

N + r2
L

)
, (9)

where rN and rL are the reflection coefficients with respect to
the incident plane and the plane perpendicular to the incident
one, respectively. They are given by the following Fresnel
equations [Hec98]:

rN(λ) = nt(λ) cos �i − ni(λ) cos �t

ni(λ) cos �t + nt(λ) cos �i
, (10)

rL(λ) = ni(λ) cos �i − nt(λ) cos �t

ni(λ) cos �i + nt(λ) cos �t
, (11)

where �i and �t are the angle of incidence and transmit-
tance respectively. ni and nt are the indices of incident and
transmitting media respectively. As it can be seen these two
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terms depend on the wavelength λ, which means that F is
also a function of wavelength. Combining Equations 10 and
11 with Equation (9) and using the Snell’s Law, we obtain:

F (λ,�i)

= 1

2

(
n2

i (λ) cos �2
i + J − 2ni(λ) cos �i

√
J

n2
i (λ) cos �2

i + J + 2ni(λ) cos �i

√
J

)

+ 1

2

(
n2

t (λ) cos �2
i + n2

it (λ)J − 2ni(λ) cos �i

√
J

n2
t (λ) cos �2

i + n2
it (λ)J + 2ni(λ) cos �i

√
J

)
,

(12)

where nit(λ) = ni(λ)/nt(λ), J = J(λ, �i) = n2
t (λ) − n2

i (λ) +
n2

i (λ)cos �i.

2.5. Polarization Model

Based on the assumption that the specular component tends
to be polarized, the colour of the specular component can be
determined using a polarized filter. The polarization filter is
placed in front of the sensor that measures the light reflected
by the material surface. One important aspect is that when
the material is perfectly diffuse, rotating the polarization filter
does not alter the image brightness. In other words, the diffuse
component is perfectly unpolarized. Because the specular
component is highly polarized, it varies as a cosine function.
The specular component is formed by two terms: a constant
term Isc and a cosine term with amplitude Isv [NFB97]

I (θ ) = Id + Isc + Isv cos 2(θ − α), (13)

where θ is the angle of the polarization filter and α the phase
angle. The values of Isc and Isv depend on the material prop-
erties and the angle of incidence. The Fresnel ratio relates
the two specular component terms to the material properties
and the angle of incidence.

2.6. Flash image model

For a static scene, the scene radiance of an image captured
using a flash can be viewed as a linear combination of the radi-
ance due to the flash and the ambient illumination [ARNL05].
The irradiance map of a linear-response camera can be mod-
elled as

I = F + A = φP + αE, (14)

where φ and α are the radiance maps of the flash and ambient
images, respectively, P the flash intensity, and E the exposure
time.

3. Single-Image Methods

Several approaches have been proposed in this main class
of component separation techniques. These methods use dif-
ferent information for the separation, and all of them have
the common advantage of easily reproducing the input. The

methods rely only on a single input image. They do not
require several images of the same scene obtained from dif-
ferent points of view, which needs time and may cause diffi-
culties in the image acquisition process.

3.1. Colour space analysis

The analysis of the colour space allows to understand the
distribution of diffuse and specular components in a colour
image, and utilize this information in the separation pro-
cess. Klinker et al. [KSK87, KSK90, KSK88] linked the
RGB colour space to the dichromatic model and proposed to
use colour information to separate reflection components. A
fast approach based on a 2D diagram has been presented by
Schluns et al. [ST95b, ST95a]. Bajcsy et al. [BLL96] pro-
posed a method that through colour image segmentation is
able to detect diffuse and specular reflections.

3.1.1. Using a colour reflection model to separate
highlights from object colour

Colour pixels form a dense cluster in the dichromatic plane.
Therefore, a relationship between the shape of the colour
cluster and the geometric properties of the diffuse and spec-
ular reflections can be used to determine the characteristic
features of the colour clusters. To relate the properties of the
dichromatic model to the shape of the colour cluster, Klinker
et al. [KSK88] classify colour pixels as matte, highlight and
clipped. A matte pixel exhibits only body reflection, a high-
light pixel both body and specular reflections. It is worth
to notice that the colours in a highlight area that lie on a
line of constant body reflection vary only in their respective
amounts of specular reflection. The colours of these pixels
form a straight highlight line in the colour space parallel to
the specular reflection vector. A clipped colour pixel is a
highlight pixel at which light reflection exceeds the dynamic
range of the camera [KSK87].

This information can be used to detect and remove high-
lights from colour images. The algorithm by Klinker et al.
[KSK87] starts with normalizing the input image. This re-
quires the estimation of the illumination colour. Afterwards,
the input image is manually subdivided into different areas,
and the pixels belonging to the selected areas are projected
onto the colour space, where a dichromatic plane is fitted to
the colour data from each image area. In each dichromatic
plane, a search is performed to find the matte, the brightest
highlight and the clipped colour lines. A recursive line split-
ting algorithms [Pav77] is used to extract these lines, then
the lines are classified as matte, highlights and clipped colour
vectors.

The specular reflection is removed by projecting the colour
of every pixel onto the respective dichromatic plane. When
the projected colour is close to a clipped colour line, it is
replaced by the colour at the end of the highlight vector.

c© 2011 The Authors
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Then the colour of every pixel along the highlight vector is
projected onto the matte line [KSK87]. The result of this
process is the diffuse image; a specular (highlight) image
can also be generated. Similarly to other methods, in this
case the selection of the specular and diffuse regions is done
manually by the user.

3.1.2. Two-dimensional diagram approach

This fast approach uses a 2D colour representation to per-
form the separation of reflection components. In particular, it
works in the uv-space, that is, of the normalized values of the
Y ′U′V ′ colour space (uv-chromaticities). In addition, a 1D
space (hue space, or h-space) is used containing the number
of pixels per interval of α, the polar angle in the uv-space.
The approach has the following steps:

• The matte colours are estimated. For this, the RGB data is
transformed to the uv-space and then to the h-space. The
h-space is processed using a morphological filter [ST95b,
SK00]. The processed data is searched for maxima. For
each maximum in the h-space corresponding to a cer-
tain value of α, a maximum in the uv-space is searched
along the line lα . Each maximum in the uv-space is a
matte colour. In this way the diffuse components are de-
termined.

• Segmentation is done in the h-space to identify the correct
diffuse colour for each pixel. The specular component
is represented by the illumination colour, and it can be
estimated from the input image.

3.1.3. Approach by Bajcsy et al.

A novel colour space, called S-space was introduced by Ba-
jcsy et al. [BLL96] to analyse the colour variations on ob-
jects in terms of brightness, hue and saturation. This colour
space can help to describe various optical phenomena such
as shading, highlight, shadow and inter-reflection [BLL96].
The S-space colour space is based on three orthogonal ba-
sis functions (axes) S0, S1 and S2. They are chosen to have
S0 aligned with the orientation of the neutral spectrum (i.e.
white or grey) in the visible range. This corresponds to the
specular reflection. Typical set of basis functions are the
Fourier basis functions but other types can be chosen.
The algorithm converts the RGB colour space of the input
scene to the S-space, then the appearance correlates bright-
ness, hue and saturation are derived from it. During the colour
space conversion the scene illumination is discounted using a
white reference plate as an active probe. The resulting image
will look as if the scene illumination was white. Analysing
the surface reflections for a surface with uniform body re-
flectance in hue and saturation in the S-space, Bajcsy et al.
[BLL96] have observed that the interface reflection always
decreases the saturation of body reflection, and increases
the brightness. Moreover, they have observed that the shad-

ing does not influence the hue or the saturation of the body
reflection. Based on these observations, the authors have pro-
posed an image segmentation technique to detect and sepa-
rate interface reflection from body reflection. It is based on a
decomposition of a three-dimensional space into a set of one-
dimensional data such as hue and saturation. The result of
discounting the scene illumination is that the interface reflec-
tion clusters in the S-space are all aligned with the brightness
direction. As a consequence of this, the interface reflections
have the same hue as the underlying body reflection clusters.
Another important observation is that under neutral illumina-
tion, the planes formed by the interface and body reflections
are parallel to the S0-axis and perpendicular to the S1 − S2

plane. Since the interface and body reflections from the same
object are aligned at the same hue, under neutral illumination
they can be segmented by hue segmentation.

The authors noticed that in each hue segmented plane in
the S-space, body reflection forms a linear cluster, that has
uniform saturation. Where interface reflection exists in ad-
dition to body reflection, the saturation is smaller. Once the
saturation of the body reflection has been found, it is straight-
forward to detect the interface reflection. Working in the S-
space and using multiple views with a spectral differencing
algorithm, Lee et al. [LB92] avoid the use of segmentation.

3.2. Neighbourhood analysis

Different techniques have been proposed in this category. All
of them perform local operations and use colour information
in the separation process. Tan et al. [TI05b], Yoon et al.
[YCK06] and Shen et al. [SC09] presented fast approaches
based on the use of specular-free, or specularity-invariant, im-
age. Mallik et al. [MZK*06] introduce a partial differential
equation (PDE) that iteratively erodes the specular compo-
nent at each pixel. Also, inpainting techniques have been ap-
plied to achieve the separation [TLQS03] [LM06] [OTS*05].
Tan et al. [TLQ06] presented a technique that makes use of
texture data from outside a highlight, demonstrating a possi-
bility to overcome problems typical for colour space analysis
methods. Tappen et al. [TFA05] presented methods that use
colour information and image derivative classifiers to recover
the diffuse and specular intrinsic properties of an image.

3.2.1. Use of specular-free image

These methods are based on the idea of initially generating
a pseudo-diffuse component image. This provides a partial
separation of the specular component, which is later used
to complete the reflection component separation of the orig-
inal image. The pseudo-diffuse component image is called
Specular-Free Image because it is essentially a specularity-
invariant representation of the input image. This new im-
age is free from specular reflection and it has the same
geometrical profile as the diffuse reflection component of
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Figure 5: An intuitive scheme for computing the specular-
free image.

the input image [YCK06]. The meaning of the geometrical
profile is the ratio of intensities (or colours) of neighbour-
ing pixels within each diffuse colour region. For instance,
suppose that two adjacent pixels have diffuse reflection com-
ponents like (A, kA), where A denotes a diffuse colour and k
is a constant. Then, they will have colours like (B, kB) in the
specular-free image. This means that, the ratio of the diffuse
reflection components does not change, although the colours
of the specular-free image change.

Figure 5 shows an intuitive scheme on how a specular-
free image can be computed. As input it receives a nor-
malized input image I′ and Imin, that is the minimum in-
tensity image, and the output is the specular-free image Ĩ .
More details about the different methods used to compute
a specular-free image are given in the following sections.
In these sections, we make use of the dichromatic model’s
notation (Section 2.2) and in particular the one presented in
Equation (5).

Specular-Free Image as Defined by Tan et al. [TI05b]

The specular-free image was introduced by Tan et al.
[TI05b] [TI05a]; it is produced by the so-called specular-
to-diffuse mechanism. This mechanism is based on the
maximum chromaticity and intensity values of diffuse and
specular pixels. Chromaticity, or normalized RGB, is defined
as

σ (x) = I (x)

Ir (x) + Ig(x) + Ib(x)
. (15)

If we consider only one of the two components (diffuse
or specular) in Equation (5), the corresponding chromaticity
will be independent from the corresponding weighting factor.
In this way, we can define diffuse chromaticity as

λ(x) = B(x)

Br (x) + Bg(x) + Bb(x)
, (16)

Figure 6: Specular-to-diffuse mechanism describes how a
specular pixel can be purified from its specular component.
(After Tan et al. [TI05b].)

and specular, or illumination chromaticity as


 = G

Gr + Gg + Gb

. (17)

Equation (5) can be re-written as

I (x) = md(x)λ(x) + ms(x)
, (18)

where

md(x) = wd(x)(Br (x) + Bg(x) + Bb(x)), (19)

ms(x) = ws(x)(Gr + Gg + Gb). (20)

From these definitions we have

σr + σg + σb = λr + λg + λb = 
r + 
g + 
b = 1. (21)

This method requires that the colour of the specular com-
ponent be pure white (
r = 
g = 
b). Since it is practi-
cally impossible to find a pure white specular component
in the real world, we need to normalize the input image.
This requires either the knowledge or the estimation of the
illumination chromaticity 
. Introducing I′(x) = I(x)/
 and
λ′(x) = λ(x)/
, we obtain

I ′(x) = md(x)λ′(x) + ms(x). (22)

The maximum chromaticity is defined as

σ ′
max(x) = max{I ′

r (x), I ′
g(x), I ′

b(x)}
I ′
r (x) + I ′

g(x) + I ′
b(x)

. (23)

The intensity versus maximum chromaticity space can be
used to explain the specular-to-diffuse mechanism as illus-
trated in Figure 6 . Taking two pixels, a specular x1 and a dif-
fuse x2 with the same diffuse chromaticity λ′, project them to
the maximum chromaticity intensity space. The location of
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the diffuse pixel will be to the right of the specular pixel since
diffuse maximum chromaticity is larger than specular max-
imum chromaticity. Tan et al. [TI05b, TNI04] discovered
that subtracting a small scalar number from Equation (22)
(specular pixel) and projecting the subtracted value onto the
maximum chromaticity-intensity space forms a curve in the
space as shown in Figure 6. The curve obeys the following
equation

I ′
max(x) = md(x)(λ′

max(x) − 1/3)σ ′
max(x)

σ ′
max(x) − 1/3

(24)

The intersection point between the curve and the vertical
line representing the diffuse pixel represents the diffuse com-
ponent of the specular pixel (md(x1)λ′

max). At this point ms is
equal to zero. To obtain this point, we first calculate md(x1)
derived from Equation (24)

md(x1) = I ′
max(x1)(3σ ′

max(x1) − 1)

σ ′
max(x1)(3λ′

max(x1) − 1)
. (25)

In Equation (25), the only unknown entry is the value
of the diffuse maximum chromaticity λ′

max(x1). Tan et al.
[TI05b] proposed to set the diffuse maximum chromaticity
to an arbitrary scalar value for all pixels regardless of their
colour. To avoid negative values, the authors proposed to
choose this value as the smallest value of the maximum
chromaticity. Often, this gives noisy results; to avoid them,
the value must be selected in the interval [0.5, 1.0].

Finally, the specular-free image defined by Tan et al.
[TI05b] can be described as

Ĩ (x) = md(x)λ̃(x). (26)

Specular-Free Image as Defined by Yoon et al. [YCK06]

Here, the main idea is to find a specularity-invariant quantity
for each pixel. In this case, it is also required to either nor-
malize the input image or have the illumination chromaticity
as pure white. Let define Imin(x) the smallest of the three val-
ues for r, g and b in the input pixel x. Introducing λmin(x) in
a similar way, we can write the relation between Imin(x) and
λmin(x) as

Imin(x) = md(x)λmin(x) + 1

3
ms(x), (27)

so the specular-free image is obtained as

Ĩ (x) = I ′(x) − Imin(x). (28)

This new image is characterized by having only two
bands since one of the three components becomes zero by
definition.

Both of the above methods either require that the specular
component be pure white or need the knowledge of illumi-
nation chromaticity for the normalization of the input image.

Figure 7: The scheme of the technique of Tan et al. [TI05b].

Tan et al. [TNI03, TI03] proposed a method to estimate the
illumination chromaticity using the Hough Transform. As
used by Yoon et al. [YCK06], Shen et al. [SC09] define the
specular-free image as in Equation (28) and have introduced
a new step of specular-free image called modified specular-
free (MSF) image that is more close to the diffuse component
of the input image. This is achieved adding to the specular-
free image an offset. The offset may be either constant for all
pixel [SZSX08] or being pixel dependent [SC09].

On one hand, these methods are simple and fast because
they apply single-pixel operations. On the other hand, the
original surface colour is not preserved. This can lead to
problems when this colour information is essential. Once
the specular-free image has been obtained, it can be used to
complete the separation process. Tan et al. [TI05b] and Yoon
et al. [YCK06] developed two different iterative frameworks
to perform this operation. Below, we describe the two frame-
works separately.

Method of Tan et al. [TI05b]

The authors have presented an iterative framework that ap-
plies local operations involving two neighbouring pixels. The
method assumes uniform surface colour of three neighbour-
ing pixels: one diffuse, c, and two specular, a and b. Figure 7
shows the scheme of the specularities removal technique of

Tan et al. [TI05b]. The method is based on the difference
of logarithmic differentiation of the normalized input and
specular-free images

�x = dlog(I
′
(x)) − dlog(Ĩ (x)). (29)

In discrete domain, the logarithmic differentiation is com-
puted using [TI05b]

dlog(I (x)) = log

⎛
⎝ ∑

i∈(r,g,b)

Ii(x + 1)

⎞
⎠ − log

⎛
⎝ ∑

i∈(r,g,b)

Ii(x)

⎞
⎠ .

(30)
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Figure 8: The scheme of the technique by Yoon et al.
[YCK06].

The algorithm works as follow:

• As input receive two images, the input image normal-
ized I

′
and the Specular-Free image Ĩ . The differ-

ence of logarithmic differentiation is computed using
Equation (30).

• The labelling step is used for categorising the pixels of
the normalized image I

′
. In the case �x is equal zero, the

pixel is diffuse otherwise is specular. In the case of spec-
ular pixels we may have ambiguity. We need to verify if
we are in the case of noise or boundary pixels. Boundary
pixels are characteristic of multicoloured images, in this
case the �x is not equal to zero even if the two neigh-
bouring pixels are both diffuse. This is due to the fact that
two neighbouring diffuse pixels have a different surface
colour in the boundary condition. This ambiguity is re-
solved using a simple chromaticity based method, where
the chromaticity values of two of the colour channels of
the neighbouring pixels are analysed. To identify if a pixel
is a noisy one or not, the maximum chromaticity values
of two neighbouring pixels are compared. Two specular
pixels never have the same maximum chromaticity.

• To the pixels labelled specular, the specular-to-diffuse
mechanism is applied to produce a more diffuse
image.

• Using this new image, the entire process is repeated as is
shown in Figure 7.

In the case of multi-colour surfaces, a colour segmentation
procedure is applied, and in each colour region the above
method is used for specular separation [TI04].

Method of Yoon et al. [YCK06]

Yoon et al. [YCK06] also proposed an iterative framework
based on the comparison of local ratios. Figure 8 shows the
scheme of their technique.

Considering two adjacent pixels, x1 and x2, in an image I,
the local ratio is defined as

r =

∑
i∈(r,g,b)

Ii(x1)

∑
i∈(r,g,b)

Ii(x2)
. (31)

Two kind of local ratios can be defined, the local ratio for
the two-band specular-free image, rd, and the local ratio for
the input specular image, rd+s

rd = md(x1)

md(x2)
, (32)

rd+s = md(x1) + ms(x1)

md(x2) + ms(x2)
. (33)

A diffuse image can be generated separating its specular
component by making rd+s equal to rd for every pixel. One
condition is assumed, namely that at least one diffuse pixel
(ms = 0) exists in each colour region. The authors proposed
an algorithm that iteratively decreases the specular reflection
coefficients to obtain rd+s = rd.

This is achieved by the following steps (nth iteration)

r
(n)
d+s = md(x1) + m(n)

s (x1)

md(x2) + m
(n)
s (x2)

. (34)

The local ratio of the specular input image can be either
bigger or smaller than that of the two-band specular-free
image. When it is bigger, we have the following

m(n)
s (x1) > rdm

(n)
s (x2). (35)

In this case, we achieve r(n)
d+s = rd by decreasing m(n)

s (x1)
with the value of rdm(n)

s (x2). Considering the normalized im-
age I′ (22), for pixel x1 we have that, at the nth iteration, the
new normalized image after decreasing the specular coeffi-
cients will be equal to

I ′(n)(x1) = I ′(n−1)(x1) − m

3
, (36)

where m is derived as

m =
∑

i∈(r,g,b)

I
′(n)
i (x1) − rd

∑
i∈(r,g,b)

I
′(n)
i (x2). (37)

When the local ratio of the specular input image is smaller
than that of the two-band specular-free image, pixel x2 is
updated as follows:

I ′(n)(x2) = I ′(n−1)(x2) − m

3
, (38)

where

m =
∑

i∈(r,g,b)

I
′(n)
i (x2) − 1

rd

∑
i∈(r,g,b)

I
′(n)
i (x1). (39)
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Differently from Tan et al. [TI05b] and Yoon et al.
[YCK06], Shen et al. [SC09] proposed a simpler solution
to the separation of the reflection components that is based
on the assumption that the MSF image is similar to the dif-
fuse one, and this allows to assume that the chromaticity of
the two images is close. In this way, the specular component
can be seen as related to a scalar value. The authors found
that a single scale is sufficient to adjust all pixels in an image.
This specular scale can be determined using a least-square
technique [SC09].

3.2.2. The PDE Approach

The main idea of this approach is to achieve the separation
by iteratively eroding the specular component at each pixel.
The approach starts with a partial separation provided by
illumination-dependent colour space (SUV) [MZK*06], and
afterwards the separation is completed by multi-scale erosion
using partial differential equations (PDEs).

The definition of illuminant-dependent colour space aims
at defining transformations that exploit knowledge of the
illuminant colour to provide more direct access to the diffuse
information in an image. Once we have a direct access to the
diffuse information, the separation process is not anymore an
ill-posed problem as it was defined in Section 2.

The main advantage of an illuminant-dependent colour
space is that it can be derived as a linear combination of
the three colour channels of an RGB image to obtain one or
two diffuse channels. The SUV colour space is characterized
by having two channels, UV , purely diffuse, while the S-
channel contains both specular and diffuse components and
it is aligned with the illuminant colour [MZK*06].

This partial specular/diffuse separation is completed using
a family of non-linear PDEs that define multi-scale erosion.
This method may be used on different images sources such
as still and sequence (video) images.

Before defining the PDE, it is necessary to re-formulate
the problem through a re-parametrization of the SUV colour
space using a combination of cylindrical and spherical coor-
dinates.

If I is the input RGB image and ISUV is its SUV represen-
tation with the components IS, IU and IV , the parametrization
of SUV is

ρ =
√

I 2
U + I 2

V , θ = arctan

(
IU

IV

)
, φ = arctan

(
IS

ρ

)
.

(40)

The properties of this parametrization are simple to de-
rive; because the components U and V are purely diffuse,
the new components ρ and θ are also purely diffuse, that
is, independent from the specular component. θ is called
the generalized hue. Finally, φ can be viewed as a linear

combination of specular and diffuse components: φ = φs +
φd.

Now the problem is reduced to the estimation of φd(x, y),
the diffuse contribution to φ at each pixel. This is achieved
by solving a PDE that iteratively erodes the specular contri-
bution to φ and converges to an estimate of φd.

The PDE governing the evolution of φ, ε(x, t) at scale t, is
defined as [MZBK06]

εt = −s(ρ,∇ρ)(∇εTM∇ε)1/2, (41)

where M is a matrix that is different for each case, and s is a
stopping function depending on ρ and its gradient.

Given an input image parametrized according to Equa-
tion (40), at the beginning for scale t = 0 we have ε(x, 0) =
φ(x). The solution to Equation (41) obtained at scale t corre-
sponds to the erosion of φ.

This means that the value of φ at each image pixel is
replaced by the minimum value of the neighbourhood region.

The parameter t defines the shape and size of the region.
Since φd(x) ≤φ(x), if the region has at least one purely diffuse
pixel, then ε(x, t) evaluated at t will converge to φd(x).

3.2.3. Inpainting techniques

Inpainting is a procedure that modifies an image in an un-
detectable way. It is often used to restore damaged paintings
and photographs and add or remove elements and objects.
Usually, an inpainting technique fills in a damaged region by
propagating information from the region boundaries.

Tan et al. [TLQS03] noticed that highlights pixels con-
tain useful information for guiding the inpainting process.
In fact, in highlights regions, we have typically a single il-
lumination colour and making use of chromaticity analysis
we can recover information about the illuminant colour. An-
other important information, in the highlights regions, is that
the colour is the sum of diffuse and specular reflection com-
ponents. As noticed by Tan et al. [TLQS03], an inpainting
technique can be subject to illumination constraints.

This is illustrated in Figure 9 where the illumination con-
straints force the diffuse components of highlight pixels to
lie on corresponding parallel lines whose orientations are
specified by the illumination colour Cs, and whose positions
depend on the observed radiance values Io. The distance that
separates the parallel lines represents shading differences be-
tween the pixels.

An illumination-constrained inpainting technique should
not be applied across texture edges, where a more appro-
priate inpainting technique should be used. For this purpose
a stopping function is introduced that approaches zero for
large gradient preventing inpainting across edges [TLQS03].
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Figure 9: A graphical representation of the illumination
constraints. These constraints are used in the separation
process. They define the position of the diffuse component
of the specular pixels. (After Tan et al. [TLQS03].)

Inpainting calculates the energy function E in the highlight
region �

E =
∫

(x)ε�
s(‖∇N (x)‖)

(γ (∇r(x))2 + γ (∇g(x))2 + (∇‖Id(x)‖)2)

+ (1 − s(‖∇N (x)‖))‖∇ (I (x) − Id(x)) ‖ dx. (42)

The energy function consists of two parts. The first part,
governed by the stopping function s, is the part used outside
texture edges. The second part, governed by the negated
stopping function 1 − s, is used across texture edges.

γ is a weight to tune the chromaticity smoothness. N(x) is
the normal direction of the plane defined by the origin and
the illumination constraint line of (x), which passes through
the image I(x). Id(x) represents the diffuse component. It can
be written, from Equation (18), as Id(x) = I(x) − ms(x)
,
where 
 is the illuminant colour. The components r and g
are the chromaticities. The illuminant colour is obtained by
determining the value of 
 that results in the smallest energy.
Once the illuminant colour has been found, the pixels are
inpaintend by Id(x) = I(x) − ms(x)
. When the pixel to
be painted is saturated, a standard TV inpainting is used
[TLQS03].

In Figure 10 are shown the steps for an initial inpainting
estimation that allows to reduce the computation time to
achieve the minimum energy equation (42). This technique is
not completely automatic because user indication of highlight
regions is needed.

Figure 10: Initial Inpainting estimation Tan et al.
[TLQS03].

3.2.4. Separation of highlight reflections on textured
surfaces

Tan et al. [TLQ06] introduced a method based on a sim-
ple idea to overcome the limitations, discussed in Section 5
of the colour-space analysis and neighbour-based methods.
The idea is based on the following concept: if a diffuse colour
outside the highlight region is used as representative of the
diffuse colour inside, diffuse colour textures can serve as ex-
emplars of their spatial distribution. When no distinct texture
data is identified for a pixel, the method does the separation
in the same way as the conventional colour-space techniques.

How is the texture constraint formulated? Let p be a high-
light pixel in a highlight region and p′ a diffuse pixel candi-
date lying outside the highlight region and having a diffuse
colour D. An n × n window centred on p is compared with
the windows centred on all possible candidate diffuse pixels
p′ outside the highlight region. The texture distance between
the windows of p and p′ defines the texture constraint. This
distance is computed as the average of the distances between
their corresponding elements [TLQ06]

E(p, p′) = 1

n2

n2∑
k=1

dist[Dp′ (k), Ip(k), 	S], (43)

where k is the pixel index within the window, and dist is
the minimum angular distance between D′

p(k) and the illumi-
nation constraint line defined by Ip(k) and the illumination
colour direction 	S.

The texture constraint is applied in the following way (Fig-
ure 11 ). For each highlight pixel, starting with texture scale
1 × 1, a set of diffuse pixel candidates along the illumination
constraint line is obtained. The ambiguity level of the can-
didates is measured as the maximum chromaticity distance
between pairs of diffuse colours within the candidate set. If
the ambiguity level is below the ambiguity threshold (thr1),
the set is declared consistent. In this case, the candidate with
the smallest angular distance is selected.
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Figure 11: Texture constraint application [TLQ06].

In case the set of the possible candidates is not consistent,
that is, the ambiguity level is above the ambiguity thresh-
old (thr1), the texture scale (size) of the candidate windows
is increased by 1. To determine if a diffuse image area is
a match for the highlight pixel, the distance according to
Equation (43) is calculated. If this distance is below a certain
threshold (thr2), a match is found [TLQ06].

With this operation, the original set of diffuse pixel can-
didates is iteratively pruned, and the ambiguity computation
is repeated with the new set. The method is not completely
automatic as the candidate regions (specular and diffuse) are
selected by the user.

3.2.5. Use of colour information and classifier

Tappen et al. [TFA05] decompose an image into shading
and reflectance images by classifying each image derivative
as being caused by a shading or a reflectance change. The
assumption made here is that the input image I can be ex-
pressed as the product of the shading and reflectance images.
In the logarithmic domain the derivative of the input im-
age is the sum of the derivatives of these two images. To
avoid the case when both shading and reflectance occur at
the same point, the authors use the assumption that every
image derivative is caused by either shading or reflectance.
The problem is thus reduced to binary classification of image
derivatives. The method of Weiss [Wei01] is then used to re-
cover each intrinsic image from its derivatives. Two different
kinds of classifiers were used to classify the derivatives, uti-
lizing colour and grey-scale information, respectively. Using
only colour information is not sufficiently robust and pre-
cise. Changes in colour intensity could be caused by either
shading or reflectance variations [TFA05]. Using only local
colour information, colour intensity changes can not be clas-
sified properly. Because the shading patterns have a unique
appearance which can be discriminated from reflectance pat-
terns. This allows the use of the local grey-scale information;
so the classifier that uses grey-scale information yields more
robust results.

After the derivative classification, some areas may still
contain ambiguous local information. To solve this problem,

a mechanism is used to propagate information from the ar-
eas where the classification is clear, into the areas where the
local evidence is ambiguous. To propagate the evidence a
Markov Random Field (or Markov Random Network) is ap-
plied, where each node is represented by a derivative with two
possible states representing shading and reflectance changes
[TFA05].

3.2.6. Specular highlights detection based on fresnel
reflection coefficient

To simplify the separation of diffuse and specular compo-
nents, a common practice is to approximate the colour of
highlights for dielectric material with the colour of incident
light. On the other hand, Equation (12) expresses the re-
flectance ratio as a function on wavelength, and the index
of refraction is as well wavelength dependent. This implies
that the colour of highlights and the colour of the incident
light are not necessarily the same. Angelopoulou [Ang07] has
shown that the Fresnel coefficient changes with wavelength,
and this change can be significant for specularity detection
techniques. Moreover, the dependence of the Fresnel term
on the wavelength affects the colour of specular highlight
making it distinct from that of the incident light. Based on
this observation, the ability to extract the Fresnel coefficient
allows to describe the colour of the specular highlight. The
author has shown that for the specular reflection the spec-
tral derivative is a measure of how the Fresnel term changes
with wavelength. In fact, for specularities the spectral deriva-
tive of an image is primarily a function of the Fresnel term,
and this is independent of the particulars of its derivation.
The spectral gradient is obtained by computing the spectral
derivative for a multispectral image, in a logarithmic scale
for each colour band, and subtracting pairs of consecutive
bands. This encodes the Fresnel term changes over a range
of wavelengths, and it can be considered a good descriptor
for the colour of specular highlights. In this way, an easy
segmentation step can be performed based on the spectral
gradient computation to a pixel level and making use of a
high-dimensional mean-shift segmentation algorithm.

4. Multi-Image Methods

These techniques use information contained in an image se-
quence of the same scene taken either from different points
of view or with different light information. Such sequence
contains much more information on specularity than a single
image since the specular reflection varies through the im-
ages. In the case of a sequence of images taken from different
points of view, scene points showing specular reflection in
a view can exhibit purely diffuse reflection in other views.
By matching specular pixels to their corresponding diffuse
points in other views, it is possible to determine the diffuse
components of the specularities. Early work using images
from different points of view was done by Lee et al. [LB92],
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where a spectral differencing algorithm allows to avoid seg-
mentation.

More recently, Lin et al. [LYK*03] presented a method
based on colour analysis and multi-baseline stereo that makes
use of sequence of images to achieve the separation of spec-
ular reflection. Lin et al. [LS01] presented a technique that
makes use of two photometric images without calibrated
lighting. This technique does not assume any dependencies
among pixels, such as regionally uniform surface reflectance.
Using recent work on the statistics on natural images, Weiss
[Wei01] formulated the separation problem as a maximum
likelihood estimation problem. Some techniques proposed
in literature use colour and polarization [NFB97, KLHS02,
USGG04, MPC*07]. In this case, the scene needs to be cap-
tured under different polarization orientations. These meth-
ods rely on the fact that the specular reflection component
tends to be polarized.

Using the intensity histogram and a thresholding strategy,
Chen et al. [CGS06] were able to reconstruct the specular
field. They defined the gradient histogram as the difference
between the histograms of two different intensities. Using the
gradient threshold, the associated threshold for each intensity
is then found and used for the threshold step. To reconstruct
the whole specular field almost 200 images are required mak-
ing the method unpractical. Lamond et al. [LPD07] have in-
troduced a separation technique based on the work by Nayar
et al. [NGR06]. As explained in [NGR06], the direct and indi-
rect illumination can be separated by shifting high-frequency
illumination and afterwards computing the maximum (peak)
and minimum (average) pixel values, the specular reflection
can be computed as difference of these two values. Finally,
the diffuse reflection is computed as the difference between
the full-lit image (summation of the all four patterns) and the
specular image of the scene.

Moreover, the use of flash images have been explored to
separate specular and diffuse reflections. In particular, Feris
et al. [FRTT04] presented a method that makes use of a
sequence of n images taken from the same point of view
but with different flash position. Agrawal et al. [ARNL05]
instead analyse the use of flash/no-flash images to achieve
the reflections separation goal.

4.1. Diffuse-specular separation from image sequences

Using multi-baseline stereo, Lin et al. [LYK*03] defined cor-
respondence constraints between specular and diffuse pixels
based on the following assumptions: diffuse reflection sat-
isfies the Lambertian property; specular reflection varies in
colour from view to view; scene points having specular re-
flection exhibit purely diffuse reflection in some other views.
The algorithm can be summarized in two steps: the identifica-
tion of the specular pixels and finding stereo correspondences
for the specular pixels.

Figure 12: A graphical representation of the operation of the
colour histogram difference (CHD). H1 and H2 are colour
histograms for different views. The colour of the specular
reflection is changing from view 1 to view 2, and this helps
to localize the specular regions as the difference of the two
histograms. (After [LYK*03].)

To identify the specular pixels, the colour histogram dif-
ference (CHD) is used in the context of multi-baseline stereo.
This is based on colour changes of specular reflection from
view to view.

As is illustrated in Figure 12, these view-dependent colour
variations of specular reflection can be detected by histogram
differencing [LYK*03]. Two major obstacles may arise when
using the standard CHD: histogram clutter and colour occlu-
sion resulting in diffuse pixels detected as specular. Lin et
al. [LL97], integrated the use of CHD with polarization to
reduce the correlation of specularities between views. To
solve these problems, the standard CHD has been modified
[LYK*03] to make use of the Epipolar geometry, which al-
lows to reduce the number of histogram points by differenc-
ing in image rows (scanlines) rather than the entire image.
The colour occlusion problem is solved using three images
(left IL, central IC, right Ir) to obtain a tri-view CHD. In this
way, if a diffuse reflection in a scanline of the central image
IC is geometrically or specularly occluded in either IL or Ir, it
is still present in the combined histogram HL ∪ Hr. The set of
the histogram points in HC that contains specular reflections
is easily determined. These points are back-projected to the
image to locate the specular pixels. They can be represented
as a binary mask image SC, where 0 indicates a diffuse pixel
and 1 a specular pixel.

Using a longer stereo sequence, it is possible to obtain a
more robust detection procedure called multi-CHD. For the
central reference image IC, it is possible to form n different
uniform-interval triplets (Ik

L, Ik
C, Ik

R) for k = 1, 2 , . . . , n. The
tri-view CHD can be computed on each of these triplets
producing n specular point sets Sk

C. These sets are used to
vote for the final detection results. A pixel is selected as
specular if the number of votes from SC,k exceeds a given
threshold [LYK*03].

Once the specular pixels have been detected in an
image, the separation is done by associating them to
their corresponding diffuse points in other images. The
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correspondences cannot be computed directly because of
large differences in intensity and colour. However, they can
be obtained under the constraint of their disparity relation-
ship to the specular pixel in the reference image [LYK*03].
Once the correspondence between the specular pixel PS and
the diffuse pixel PD has been obtained, the separation process
is simple. Often, it is necessary to take into account noise and
mismatches. In this case, for each PS all possible correspond-
ing diffuse points in the data set are found, then the value of
PD is obtained as the average mean of the corresponding
colour measurements.

4.2. Deriving intrinsic images from image sequences

As discussed by Weiss [Wei01], the relationship between the
input image I(x), the reflectance image R(x) and the lumi-
nance image L(x) can be written as

I (x) = L(x)R(x). (44)

The author focuses on a problem that is easier than the
complete separation problem: Given a sequence of K im-
ages where the reflectance is constant over time, and only the
illumination changes, recover K illumination images and a
single reflectance image. In the logarithmic domain, the log-
arithm of the input image, i(x), is the sum of the logarithm
of the illumination, l(x), and the logarithm of the reflectance,
r(x). Weiss used a robust property of natural images, namely,
that when derivative filters are applied to such images, the
filter outputs tend to be sparse. This observation is valid for
a wide range of natural images [OF96, Sim97].

For two different images the histograms of the horizontal
derivative filter outputs have similar shapes closely resem-
bling the Laplacian distribution [OF96, Sim97]. Using this
observation, Weiss formulates the separation problem as a
maximum-likelihood (ML) estimation problem. For a bank
of N filters f n, denote the sequence of output images by on(x,
k) = i ∗ f n, where ∗ is the convolution operation and k = 1,
2 , . . . , K. The reflectance image filtered by the nth filter will
be rn = r ∗ f n. The ML estimation gives the ML estimate of
the filtered reflectance image r̂n. In [Wei01], this estimate is
shown to be the median of the filter outputs.

The logarithmic reflectance image r(x) is then recovered
by simply solving a linear problem using a pseudo inverse
solution. Once r(x) has been estimated, an estimate of l(x) is
easy to obtain.

4.3. Polarization

Following the model in Section 2.5, the separation problem
can be viewed as that of solving a linear system [NFB97]

Ii = fiv, (45)

where f i is the ith filter setting and v the unknown vector:

Figure 13: Decomposition of Imin in each pixel into Ig and
Il

min in RGB colour space. Image courtesy of Steven Lin
[KLHS02].

v = (IC, Isv cos 2α, Isv sin 2α) (46)

with IC = Id + Isc.

From the above equation it is easy to see how to deter-
mine Ic, Isv and α applying three different filters. Now it is
necessary to separate the diffuse component from the spec-
ular constant term Isc contained in IC. The minimum and
maximum values of the image brightness are determined as

Imin = IC − Isv, (47)

Imax = IC + Isv, (48)

and the degree of polarization ρ is measured as

ρ = Imax − Imin

Imax + Imin
, (49)

ρ can be used to classify points into those that are only diffuse
and those that contain a specular component. In the latter
case, further processing is necessary to extract the specular
component. This procedure uses constraints on the reflection
component in each image point [NFB97].

As an extension of the work in [NFB97], Kim et al.
[KLHS02] presented an approach to separate the specular
reflection. Based on Equation (13), in each pixel they divide
the colour space into two subspaces: the specular line space
and the diffuse plane space, as illustrated in Figure 13 .

It can be observed in Figure 13 that, as predicted by Equa-
tion (13), the colour of a specular pixel seen through dif-
ferent polarized angles will lie on a line in the RGB space
(line space). The line space is parallel to the constraint line
of polarization in each pixel, whereas the diffuse plane space
is perpendicular to the specular direction. For a user-defined
threshold t, a pixel is considered to be specular when

Imax − Imin = 2Isv > t. (50)

The specular constraint line in Equation (13) can be written
in parametric form L(p) (Figure 13). The half line space I l

is the specular direction line and I g is a vector in the plane
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orthogonal to I l and L(p).I g is a constant vector independent
of the polarization angle θ in each pixel. To separate the
specular reflection from Imin, it is necessary to locate pd

pd = ∣∣I l
min

∣∣ − ∣∣I l
d

∣∣ = |Imin − Id|. (51)

This allows to determine Il
d, then specular and diffuse

reflections can be separated using simple vector calculations.
To locate Il

d, the I l space is employed with the initial value
of Il

min at each pixel.

An energy function is used to smooth the spatial varia-
tion of the specular component [KLHS02]. The direction of
smoothness is controlled by gradient information in the dif-
fuse plane. The narrow dynamic range of the camera can
cause saturation in some areas of the input image and can
generate erroneous line constraints. This problem is solved
using an inpainting technique [CS01].

Umeyama et al. [USGG04] make use of polarization and
statistical analysis of images. As explained earlier in this sec-
tion, an image obtained through a polarizer is a linear sum of
diffuse and specular reflection components. The coefficient
of the specular component depends on orientation of the po-
larizer, the geometric configuration of light source, object
and camera. As observed in [USGG04], if one of these pa-
rameters is unmeasurable, the value of the coefficient is also
unknown. The problem of separating diffuse and specular
reflections requires isolating signals from mixture of signals.
The authors proposed to use the Independent Component
Analysis to separate the two types of reflections.

Ma et al. [MPC*07] make use of linear (similar to
[DHT*00]) and circular polarization filters placed on the
camera, blocking all the specularly reflected light, and on
the light sources. This will held an image that is the linear
combination of diffuse and specular reflections. Placing the
polarization filter on the camera, is equivalent to acquiring
an image as I1 = 1/2ID free of the specular component. Plac-
ing the polarization filter on the light sources, is equivalent
to acquiring an image as I2 = 1/2ID + IS, in case of linear
polarization, and as I2 = 1/2(ID + IS), in case of circular
polarization. Then, with simple arithmetic operations, the
specular and diffuse reflections can be easily separated.

4.4. Multi-flash methods

These methods rely on the observation that the shift of the
highlights in a sequence of images, taken from fixed view-
point with varying light source positions, is generated by the
shift of the light source that produces the highlights. Fig-
ure 14 shows a diagram that illustrates the technique by
Feris et al. [FRTT04]. Given an image sequence taken by a
fixed camera for varying flash-light positions, an image with
reduced highlights is built; then, making use of the Imax the
final output image is improved during the matting process.

Figure 14: Diagram of the multi-flash method presented by
Feris et al. [FRTT04].

Figure 15: Diagram of the multi-flash method presented by
Agrawal et al. [ARNL05].

Imax is computed as the maximum composite of the input
images.

The median of the intensity gradients of the individual
images is used to reconstruct an image with the specular-
ity reduced compared to the original sequence. A Poisson
solver is applied for this step. The matting process uses the
difference between the reconstructed image and the Imax (as
alpha channel) to replace the specular regions of Imax by
the corresponding specularity-reduced regions in the recon-
structed image. If the highlights do not move among images,
the method cannot remove them [FRTT04].

In Figure 15 is depicted the diagram that describes the
technique by Agrawal et al. [ARNL05].

The authors use the flash imaging model, as described
in Section 2.6, Equation (14), to capture the illumination-
invariant parts of the input image. A coherence model is
applied based on the orientation of the image gradient vec-
tor. As observed by the authors, the gradient orientation
in the flash image should be coherent with the gradient
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orientation in the ambient image. The only exception are
the regions with flash artefacts and ambient shadow edges.
The method calculates the gradient magnitude and orienta-
tion for the two images (flash and ambient), then a gradient
orientation coherency map is obtained as

M = |∇φ · ∇α|
(|∇φ||∇α|) , (52)

where M encodes the angular similarity between the two
gradient images at pixel level. On the other hand, the two
gradient magnitudes are different, and they are related by an
unknown scalar k

∇φ = k∇α. (53)

In an ideal case no artefacts appear in the ambient and
flash images, but in a typical case artefacts may appear in
both images. This can be modeled as unknown noise, and the
new gradient is computed as

∇α′ = ∇α + ∇ηA, (54)

where ηA is the unknown noise in the ambient image. For the
flash image, the new gradient is

∇φ′ = ∇φ + ∇ηF = k∇α + ∇ηF . (55)

where ηF is the unknown noise in the flash image. This
decomposition of the flash image φ is an ill-posed problem.
It is solved by analysing the gradient coherence and using
gradient projections to compute the new gradient field for the
flash image corrupted by the unknown noise ηF.

5. Discussion

In this section we present a detailed comparison of the tech-
niques surveyed in this paper, highlighting their advantages
and disadvantages.

5.1. Characteristics analysis

Several factors may influence which approach is superior to
another one, such as the number of images to be captured,
automatic operation versus manual help, light constraints
and the reflectance model used, merits of quality, and the
hardware used during the acquisition phase. Table 2 provides
a comparative summary of the specular removal methods
discussed in this survey. Later, we discuss each of the factors
in more detail.

5.1.1. Number of input images

Comparing the single-image techniques to the multiple-
image ones, we observe that the latter can be limited by
the high number of input images needed to achieve satis-
factory results. However, some of these methods need only
a limited number of input images, and this may be a good
compromise between feasibility and quality (e.g. polarization
[NFB97, KLHS02, MPC*07, USGG04], high low frequency
separation [LPD07, NGR06] and the method by multi-flash
[FRTT04, ARNL05]). Requiring large number of input im-
ages and/or using a special hardware reduce the feasibility
of the method making it complicated to implement (to repro-
duce the setup). Also, it may increase the acquisition time
which is limited in certain applications. The single-image
methods need just one image which can make them more
attractive.

Table 2: Comparison of the highlight removal techniques by their characteristics.

Technique Images User interaction Light requirement Hardware

Colour Space [KSK87, KSK88, ST95b, SK00, BLL96] 1 Manual segmentation IC–DM Single camera
Specular-Free Image [TI05b, YCK06, SC09] 1 Automatic IC–DM Single camera
Inpainting [TLQ06] 1 Manual segmentation IC–DM Single camera
PDE [MZK*06] 1 – IC–DM Single camera
Textured Surfaces [TLQ06] 1 Manual segmentation IC–DM Single camera
Colour Classifier [TFA05] 1 – – Single camera
Fresnel Coefficient [Ang07] 1 Manual segmentation No IC–DM Single camera

Multi-Baseline Stereo [LB92, LYK*03, LS01] 50–70 No segmentation DM Multiple cameras
Deriving Intrinsic Images [Wei01] 40–70 No segmentation Illumination changes Single camera
Polarization [NFB97, KLHS02, MPC*07, USGG04] 6–10 No segmentation DM Polarized filters
Histogram [CGS06] 200 No segmentation – Single camera
High-Low Frequency Separation [LPD07, NGR06] 4, 32 No segmentation – Single camera
Multi-flash [FRTT04, ARNL05] 4–8, 2 No segmentation FM Flash system

The methods are grouped into the single-image category (top) and the multiple-image category (bottom). IC, illuminant compensation; DM,
dichromatic reflectance model and FM, flash model.
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5.1.2. Hardware and user interaction

Typical problems in the setup of multiple-image methods
are as follows. In polarization techniques, the spatial shift
between images due to the motion of polarization filter,
the chromatic abberation of lenses and the camera noise of
charge-coupled device sensors can generate errors in polar-
ization fitting, which leads to artefacts in scene boundaries.
In multi-baseline methods, the positions of the cameras in the
acquisition step play an important role in the ability to detect
specular regions. Specular colour may not vary substantially
for very small intervals, while visibility may often vary for
large baselines. This makes it difficult to build a universal
setup that can be used in many different cases; this is even
more difficult for data acquisition outside laboratory.

In some cases, user intervention is not considered as a
weak point. It is mainly used for segmentation step in the
neighbour-based and colour space methods. Accurate seg-
mentation is hard to achieve automatically when specular-
ities are present. When doing this step manually may help
increase the selection precision for the regions to be pro-
cessed. A typical example is the colour space analysis tech-
niques discussed in Section 3.1. These techniques need to
group each highlight pixel with non-highlight pixels hav-
ing the same diffuse colour. This is a difficult task because
one can have colour-blended pixels at texture boundaries and
texture colours mixed with highlight components. Also, it of-
ten happens that some highlights do not have corresponding
diffuse pixels outside of the highlight region. Polarization
methods can also be difficult to tune due to the large number
of parameters, thresholds, which may influence the ability to
separate the reflection components. Selecting the thresholds
must be done carefully because a bad threshold may label
specular pixel as diffuse and may cause other pixels to be
labelled wrongly as well. This may also influence the com-
putation time, which usually happens for scenes with very
large highlights in planar regions [NFB97].

5.1.3. Light constraints

The light constraints and the reflection model used by a sep-
aration technique play a major role in the ability of detecting
specularities in the input image. The assumptions made by
the reflection model may not be satisfied in some cases mak-
ing the technique unable to detect the specularities regions
properly. One typical assumption is that the spectral distribu-
tion of the incident light is the same as that of the highlights.
However, Angelopoolou [Ang07] has shown that the error
introduced by this approximation is not negligible. This is a
typical assumption of most of the methods presented in this
survey and based on the dichromatic reflection model. For
example, this applies to the neighbour-based methods pre-
sented in Sections 3.2.1 and 3.2.3 as well as the colour-space
analysis described in Section 3.1. In the neighbour-based

methods, the diffuse information is mainly propagated from
outside to inside a highlight. Such approach may face prob-
lems for discontinuities in surface colours, across which dif-
fuse information cannot be accurately transferred [TLQ06].
As discussed in Section 3.2.1, the main advantage of these
techniques is their simplicity and fast computation. On the
other hand, for the above reasons the original surface colour
is not preserved, and this can lead to problems when it is
essential to preserve colour. The methods based on colour-
space analysis (Section 3.1) can suffer from ambiguity that
arises during the separation process. The main idea of these
techniques is to project the highlight colour along the illumi-
nation colour direction onto a point having the same diffuse
component.

Often, the projection point becomes ambiguous because
several possible points can be selected while only one is
correct. The factors that cause this ambiguity are image noise,
colour blending at edges, roughnesses and highly textured
surface, as discussed in the study of Tan et al. [TLQ06].

For these reasons, the earlier methods have been presented
only for smooth, textureless surfaces. Extending these meth-
ods to rougher and textured surfaces would require segmenta-
tion of the surface into different diffuse colours, the existence
of purely diffuse counterparts for each highlight pixel, and
a different approach to illumination colour estimation. Im-
age geometry and material roughness can make the highlight
cluster skewed, which makes it difficult to estimate the illu-
minant colour by vector fitting. Noise and multiple diffuse
colours can make it difficult to obtain the colour distribution,
which affects the derivation of the geometry properties and
surface roughness from the histogram shape. Methods to esti-
mate the illuminant colour have been developed, but they are
sensitive to noise and often are required assumptions that are
not acceptable in practice of highlight removal applications.
Moreover, the estimation cannot be made for a highlight that
lies on a surface of a uniform colour.

The assumption that the illumination colour is uniform
throughout the highlight is also not always true. This as-
sumption is valid only when the highlight is generated by a
single-source light; however, it can be generated by multiple
interreflections making the illuminant colours non-uniform.

To resolve the ambiguities arising from illumination and
surface characteristics, one has to impose constraints that can
be additionally used in the separation problem. These con-
straints can be illumination-based, such as those proposed by
the inpainting techniques (Section 3.2.3). This helps better
recover textures obscured by highlights, which are distorted
or eliminated by traditional methods, and improve shading
in the area where the diffuse intensities within the highlight
exceed the diffuse shading at the borders [TLQS03]. A dis-
advantage with these methods is that they need segmentation
to resolve ambiguity of texture with the same appearance
as the highlights. In the case of texture-based techniques,
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the constraints are based on the higher-order colour data
(texture data) in the form of spatial colour distribution (Sec-
tion 3.2.4). This use of spatial information in the image does
not suffer from surface colour discontinuity problems that is
characteristic of the neighbour-based and colour-space anal-
ysis approaches. In employing texture-based constraints, an
issue that may arise is texture variation, where some local
diffuse texture within a highlight area may not be fully con-
sistent with outside textures. This is solved using traditional
separation methods for this type of situations.

The PDE approaches (Section 3.2.2) also rely on the
dichromatic model. During the erosion process, the pixels
that violate the dichromatic model are treated as outliers. The
resulting artefacts can be reduced using a post-processing in-
painting technique.

The primary limitation of the colour classifier technique
(Section 3.2.5) is related to the fact that the classifier needs to
incorporate knowledge about the surface structure as well as
the appearance when illuminated. This relates to the choice
of the training set of images that show reflectance and shad-
ing changes. Choosing a training set that includes enough
information may be difficult.

If a proper set of images, for the training set, is not chosen
artefacts may be accentuated.

In case of the polarization methods, if the data are not con-
sistent with the cosine model Equation (13) it is necessary
to consider outlier pixels that have a root-square-mean error
(RMSE) above a certain threshold in the polarization parame-
ter fitting problem. Polarization approaches may misidentify
specularities in diffuse reflection areas near occluding bound-
aries. This is due to the fact that in these regions the surface
normals are nearly perpendicular to the viewing directions,
and in this situation the diffuse reflection exhibits polariza-
tion [LL97]. As for the colour space analysis techniques,
similarly to polarization it is necessary to impose constraints
to provide consistency among the examined pixels.

The assumption that diffuse reflection follows the Lam-
bertian model may not be valid for some types of sur-
faces/materials, which is a typical problem for stereo match-
ing. Two typical assumptions of the multi-baseline methods
are that the specular colour changes among viewpoints, and
the specular points are moving with the views. In areas with
high curvature and large roughness, it may happen that the
highlights do not shift enough between the views. In this case
the two assumptions are violated. This problem can also be
typical for multi-flash methods. Other characteristic prob-
lems of multi-baseline methods are colour saturation, image
noise and colour blending. These problems may reduce the
accuracy in the detection of the specular regions. The CHD
performs well in detecting specularities for surface with spa-
tially varying colour under complex illumination, not requir-
ing any segmentation. However, the CHD-based methods can
face problems when the ambient and the direct illumination

colours approximately match the surface colour, or when they
have the same spectral distribution and the surface colour is
neutral. This is because in this case the specular reflections
may move insignificantly in colour space between two views,
and as a consequence the specular reflection is misidentified.
Some of these problems have been solved by either inte-
grating the CHD with polarization [LL97] or extending the
traditional CHD to the multi-CHD [LYK*03].

5.2. Comparison of images

From the discussion presented in the previous section, one
can see that several techniques have constraints that limit
their usability in real applications. For example, the appli-
cability of many of the multi-images approaches is limited
by the large number of input images required and the use of
specific hardware and careful setup. Concerning the single
image approaches, it is clear that the colour space analy-
sis approaches fails when highlights are on highly textured
or rough surfaces. The presence of noise and colour blend-
ing at edges leads to the ambiguity problem described in
Section 5.1. Also, in the single-image category, the Colour
Classifier techniques [TFA05] may result in visible artefacts
such as colour degradation, lost of texture and edge infor-
mation when compared with the original input image. Later,
we will present the results of an image comparison test for
the techniques discussed in this survey. However, based on
these observations, we have excluded from this comparison
the techniques earlier.

The experiment is performed on various input images start-
ing from single-colour, multi-colour and textured surfaces,
increasing the texture complexity.

We start with comparing the techniques that require a sin-
gle image as input. Figure 16 shows a comparison of two
techniques that make use of the concept of free-specular im-
age as introduced in Section 3.2.1.

These techniques work well on images with single-colour
and multi-colour surfaces, but they may face problems for
images with highly textured surfaces. In Figure 16, second
row, the diffuse output image obtained with the Yoon et al.
[YCK06] technique shows visible artefacts. Also, when the
brightness of the input images is not proportional to the flux
of the incoming light of the camera, these techniques have
difficulties in separating the highlights [Figure 16, 3rd row
(b) and (c)].

Techniques that try to be robust in case of highly textured
surfaces are the PDE [MZK*06] and inpainting [TLQS03].
In Figure 17, we compare them using an input image with a
complex texture (PDE 1st row, inpainting 2nd row). The two
techniques provide similar results. However, when the input
is a complex texture pattern, such as the one in Figure 18,
the inpainting technique cannot propagate through efficiently.
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(a) (b) (c)

Figure 16: R. Tan et al. [TI05b] vs. Yoon et al. [YCK06]:(a)
Input images, (b) and (c) diffuse output images obtained
by Tan et al. [TI05b] and Yoo et al. [YCK06] technique
respectively. Input Images courtesy of R. Tan.

(a) (b)

Figure 17: Comparison of PDE [MZK*06] (1st row) and
inpainting [TLQS03] (2nd row): (a) Diffuse component and
(b) Specular component. Images courtesy of S. P. Mallick
and P. Tan.

(a) (b)

Figure 18: Comparison of the PDE [MZK*06] (1st row)
and inpainting [TLQS03] (2nd row) techniques: (a) diffuse
component and (b) specular component. Images courtesy of
Mallick and P. Tan.

(a) (b) (c) (d)

(e)

Figure 19: Results by Feris et al. [FRTT04]. (a–d) The four
input images; (e) the output diffuse image.

The highlights are not completely removed generating visible
artefacts [Figure 18, 2nd row (a)].

Among the multi-image approaches, the most reliable
techniques, in terms of the reduced number of input images
and hardware setup required, are the Multi-Flash techniques.
As example of these techniques, we show in Figure 19 a
sequence of four input images used by the technique Fig-
ure 19(a–d) and the output diffuse image Figure 19(e).

Particular attention must be given to the way the input
images are taken, because this will influence the ability
to remove the highlights. A few examples when the Feris
et al. [FRTT04] technique fails are shown in Figure 20. In
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(a) (b)

Figure 20: Examples when the technique by Feris et al.
[FRTT04] fails. (a) Input and (b) diffuse output image.

(a) (b) (c)

Figure 21: Comparison of a multi-image technique to
single-image one: (a) input image; (b) result by Feris et al.
[FRTT04]; (c) result by the inpainting technique [TLQS03].

this case, the visible artefacts are due to the fact that the
highlights are not completely removed.

Finally, we compared the technique by Feris et al.
[FRTT04] to the inpainting technique [TLQS03]. Figure 21
(c) demonstrates that, when the illuminant colour is badly
estimated, the single-image inpainting method [TLQS03] is
uncapable to completely remove the highlights.

6. Conclusions

In this paper, we have reviewed the specular removal methods
and presented a useful classification for convenient selection
of a proper method for a specific application. Specular re-
flection is inevitable due to the characteristics of materials
existing in the real world. Despite this, approaches in many
applications rely on a pure diffuse reflection model. Such ap-
proaches can completely fail when facing the specular reflec-
tion. So far, specularity removal methods have been used to
improve the photo-consistency based image-to-surface reg-
istration as well as for 3D model reconstruction of surfaces
with specular reflection component. These methods can be
also used in photo editing to produce special effects, for ob-
ject recognition and tracking and, in general, in image pro-
cessing applications where it is desirable to remove the spec-
ular component. Although the currently available methods
achieve good component separation results, they are limited
by the conditions of their applicability. In particular, most
of the techniques rely on a specific reflection model and as-
sume that the specular reflectance varies insignificantly with
wavelength, which means that its colour is essentially the
same as that of the light source. This, together with their
noise sensitivity, reduce the range of applications where the
current methods can be used. A more general and robust
method that overcomes the limitations of the current meth-
ods is highly requested. The recent physics-based method by
Angelopoulou [Ang07], which does not use the dichromatic
model and does not assume the wavelength independence, is
a step in this direction.
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[ST95a] SCHLÜNS K., TESCHNER M.: Analysis of 2d color
spaces for highlight elimination in 3d shape reconstruc-
tion. In Proceedings of the Asian Conference on Computer
Vision II (1995), pp. 801–805.
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