Segmentation with Machine Learning

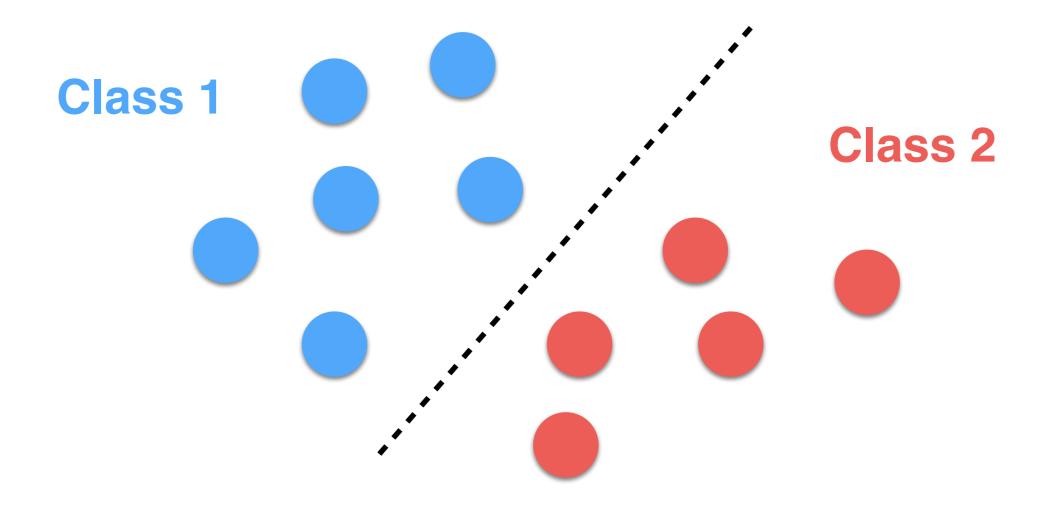
Francesco Banterle, Ph.D. francesco.banterle@isti.cnr.it

Machine Learning

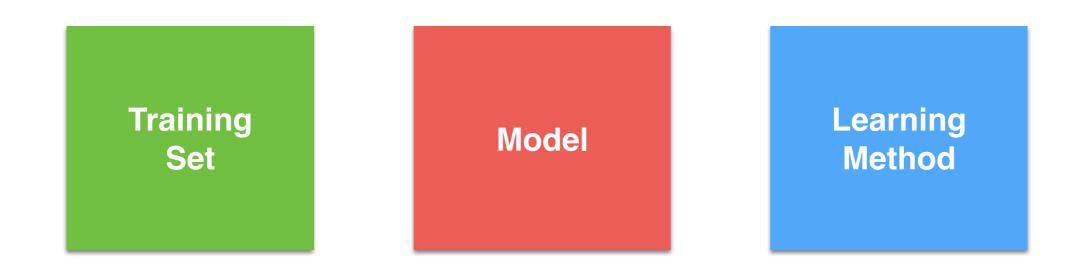
- Machine learning algorithms:
 - The use of computers algorithm that may improve automatically through experience and/ or the use of data.
 - **Unsupervised**: we do not have labels.
 - **Supervised**: we have labelled data:
 - Neural Networks.

Machine Learning

- Machine learning algorithms work very well for classification: drawing a plane or hyperplane to divide samples into classes.
- Similarly to k-Means (unsupervised) this works for segmentation too!



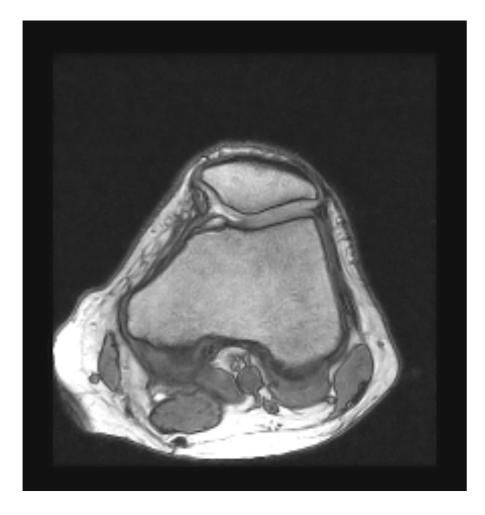
Machine Learning



Machine Learning: Training Set

- **Training set**: a dataset of *n* couples: input and output.
 - The larger the better:
 - at least 10,000 couples for high-quality segmentation.
 - This represents a **knowledge** to be trained. "Learn by example"; i.e., supervised learning.

Machine Learning: Training Set



Input

Machine Learning: Model

- Model: a mathematical model, i.e. a function, that can store the knowledge of the dataset into its parameters or weights.
- For example:
 - A neural network;

Machine Learning: Learning Method

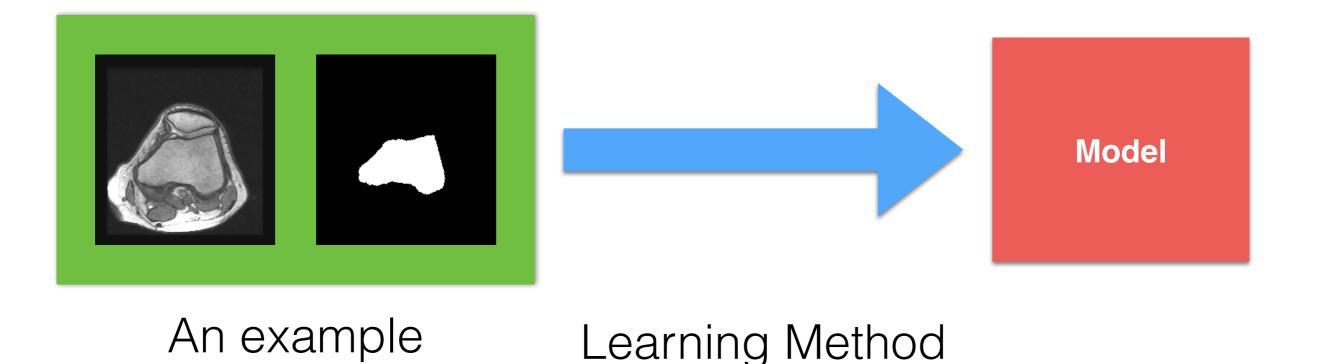
- Learning Method: a mathematical model/function that transfers the knowledge of the training set to the model:
 - It is a mix between:
 - Minimization method; i.e., Gradient Descent;
 - Loss function; i.e., how to minimize the differences.

Machine Learning: Supervised Learning

- There are two steps:
 - Learning
 - Prediction/Inference

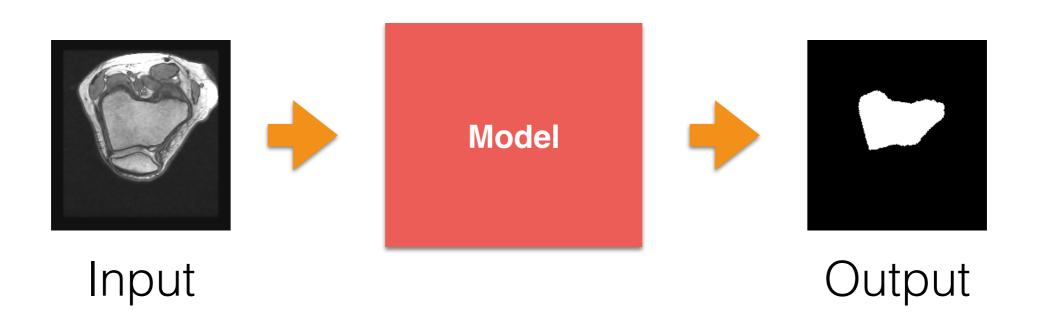
Machine Learning: Supervised Learning

• We need to collect examples and transfer that knowledge into a model.

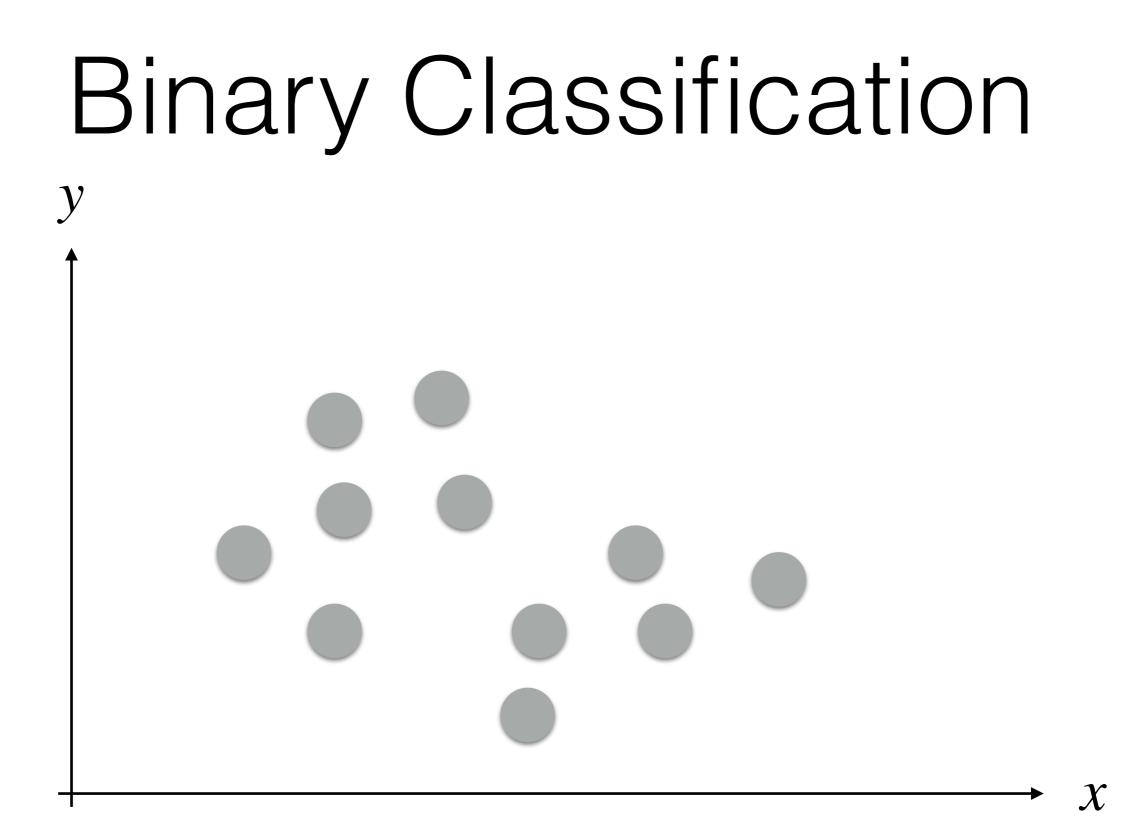


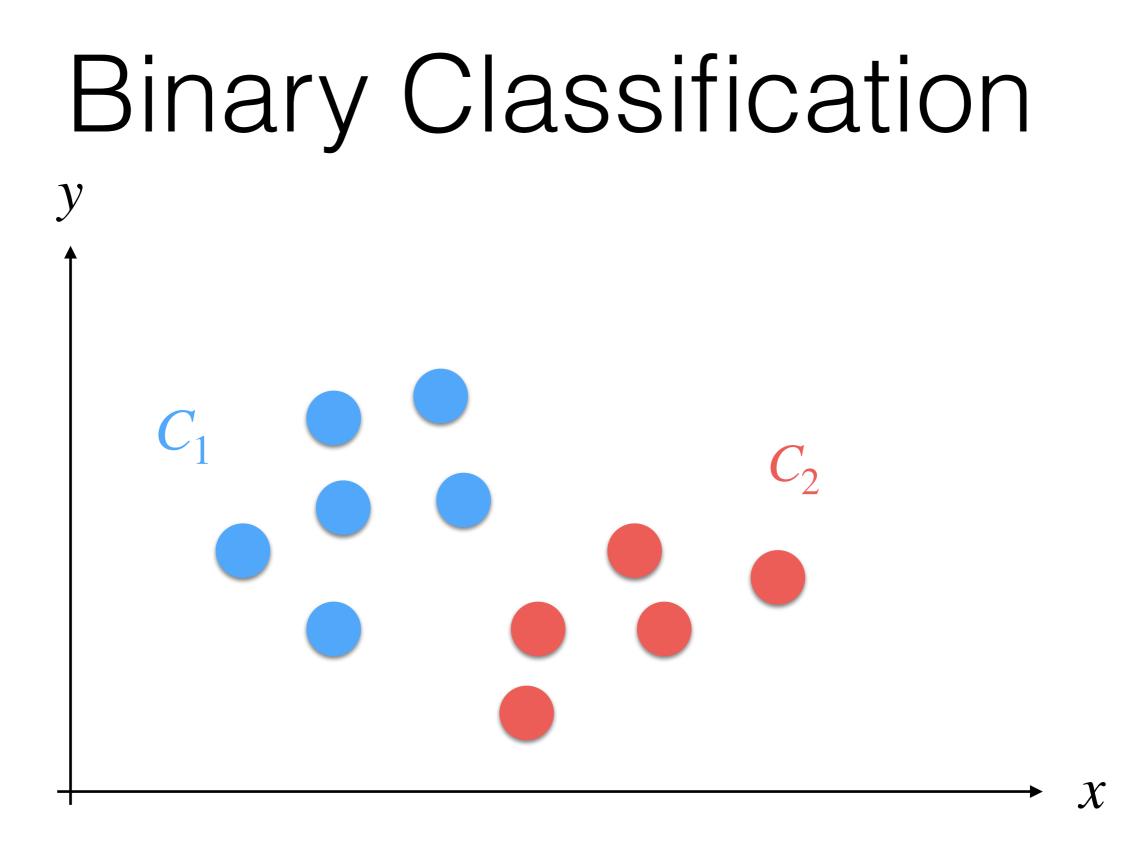
Machine Learning: Supervised Prediction/Evaluation

 After learning the dataset, we just need to pass data to the model (i.e., we evaluate it) to get results:

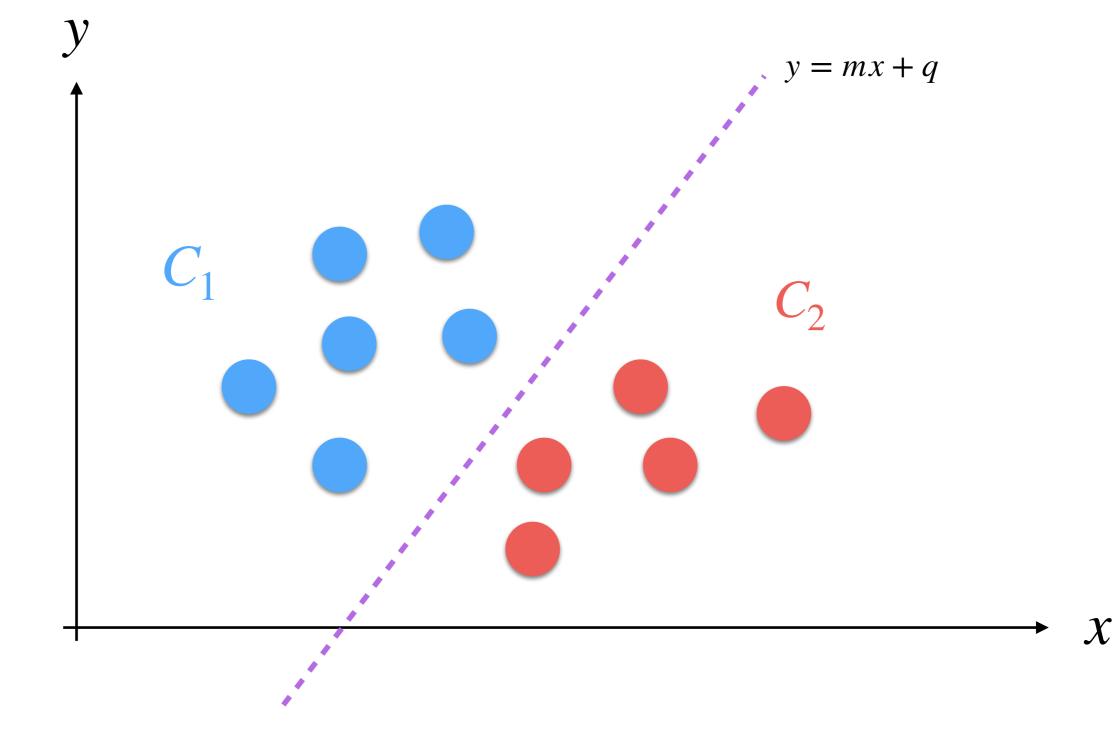


A Simple Example: Binary Classification

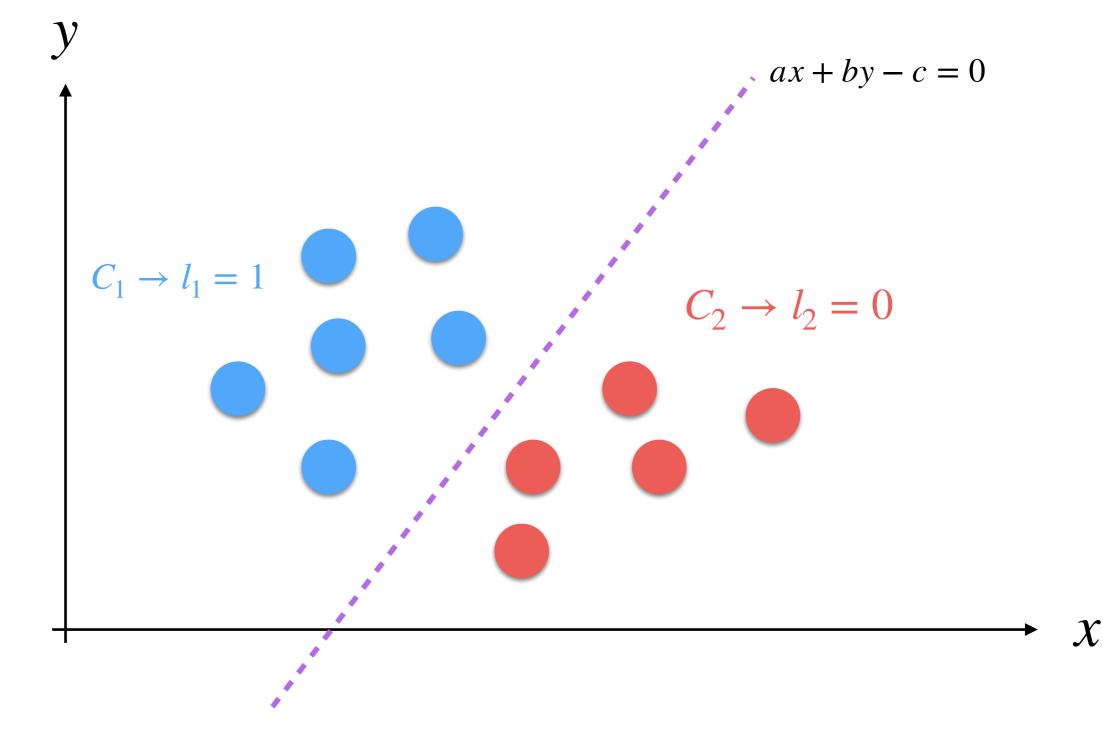




Binary Classification



Binary Classification



Binary Classification

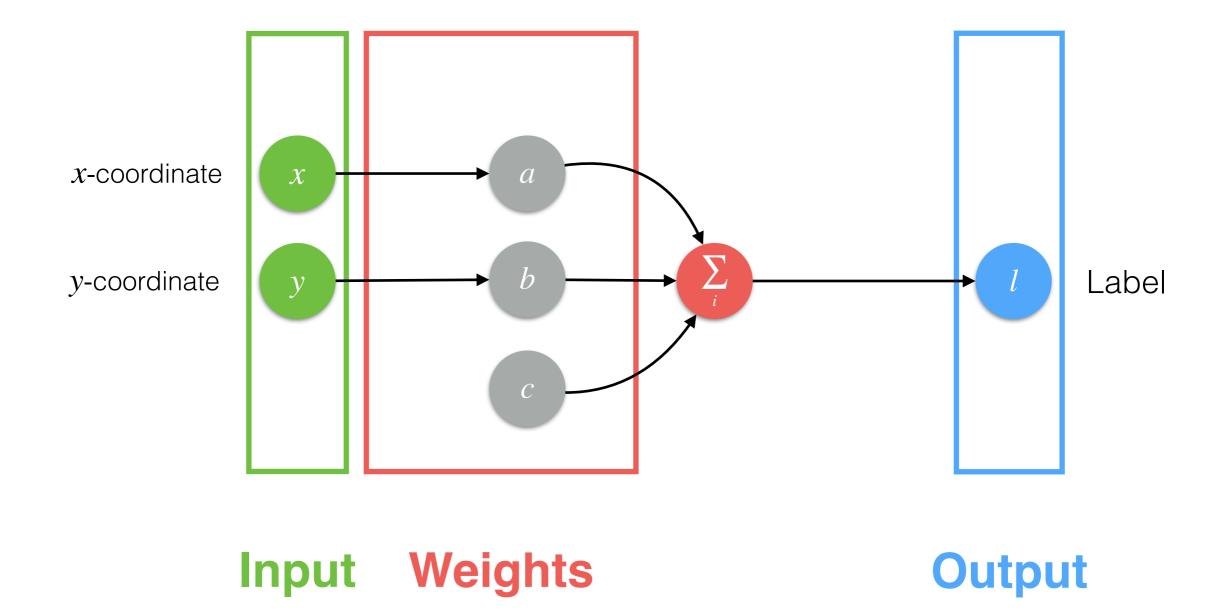
• Now, if we get a new sample $\mathbf{p}^{i} = (x^{i}, y^{i})$ belongs C_{1} we have:

$$ax^i + by^i - c \ge 0$$

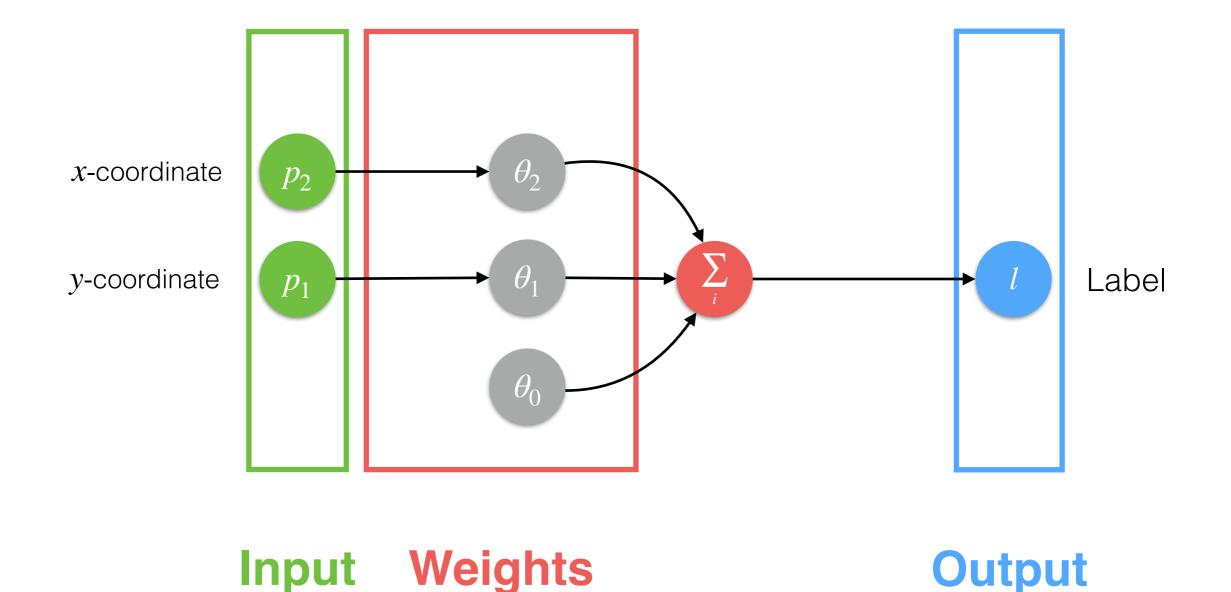
• If it belongs to C_2 we have:

$$ax^i + by^i - c < 0$$

Binary Classification: Our Model *h*



Binary Classification: Our Model *h*



Binary Classification: Our Model *h*

• Our model can be so defined as:

$$h(\mathbf{p}, \theta) = [\mathbf{p}, 1]^{\mathsf{T}} \cdot \theta$$

Neural Networks: Supervised Learning

- We need to collect *m* couples (\mathbf{p}^{j}, l^{j}) .
- We need to minimize an error function:

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} \left(h(\mathbf{p}^{j}, \theta) - l^{j} \right)^{2}$$

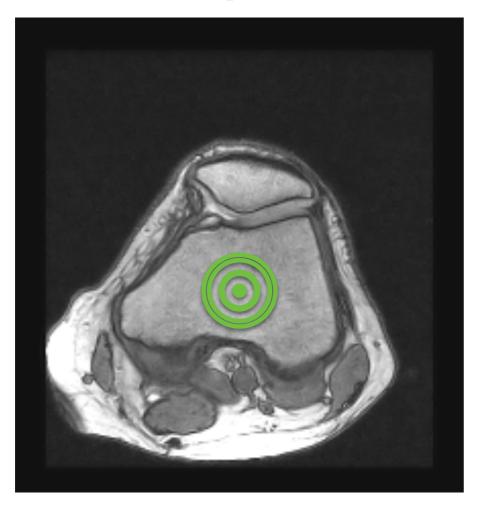
- How do we minimize it?
 - Gradient descent.
 - Starting solution for θ ? Random values in [-1,1].

A Segmentation Example

Segmentation: Dataset Set (1)

Input

Output



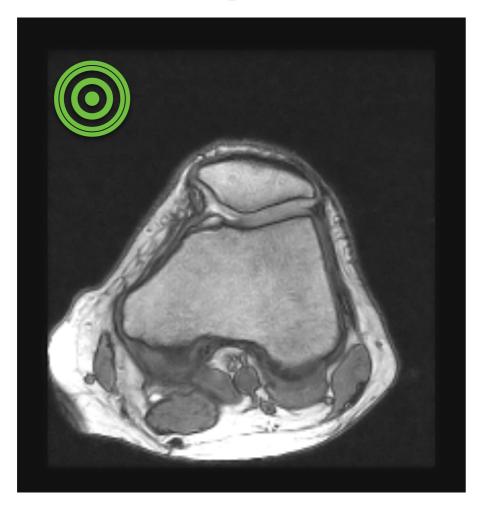
$\mathbf{p}^1 = (100, 100, 0.67)$

 $l^1 = 1$

Segmentation: Dataset Set (2)

Input

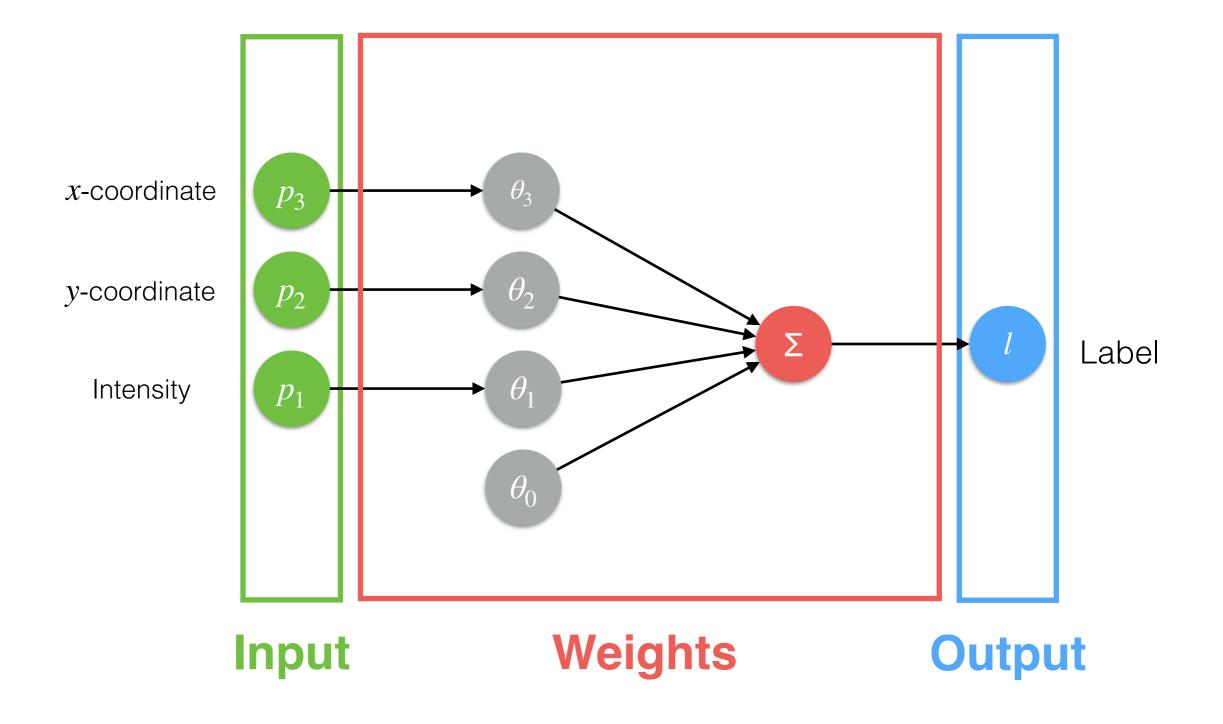
Output



 $\mathbf{p}^2 = (20, 20, 0.01)$

 $l^2 = 0$

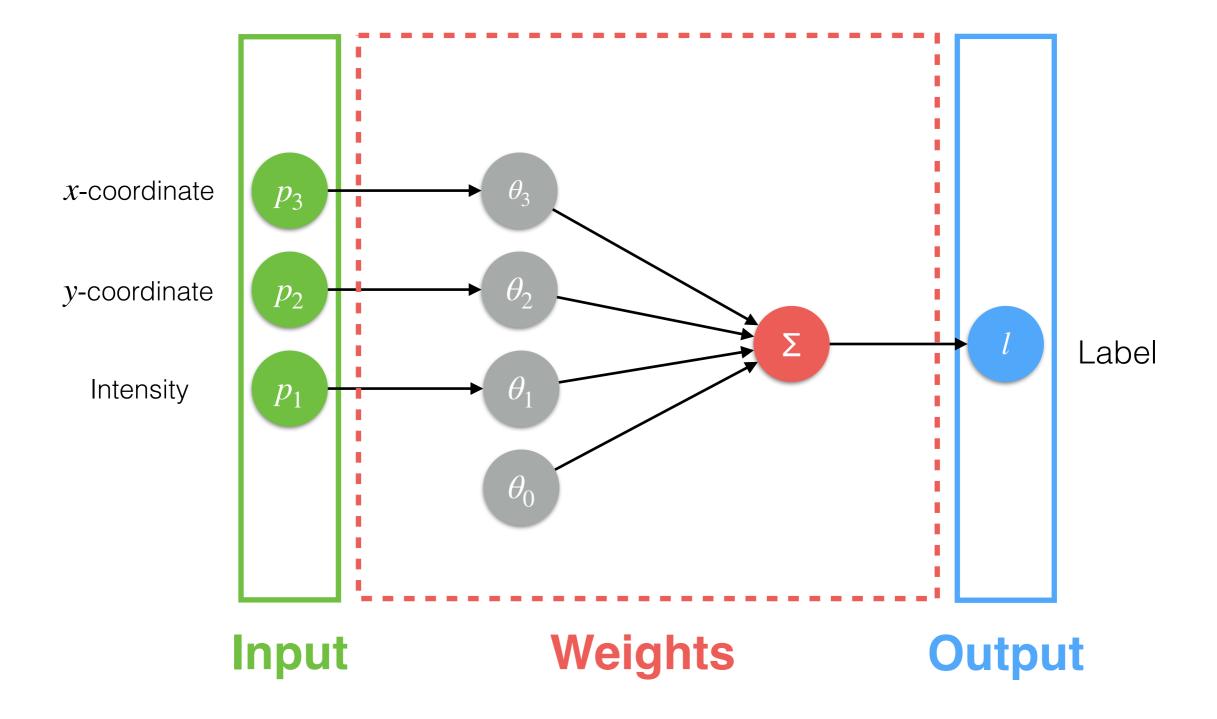
Segmentation: The Model



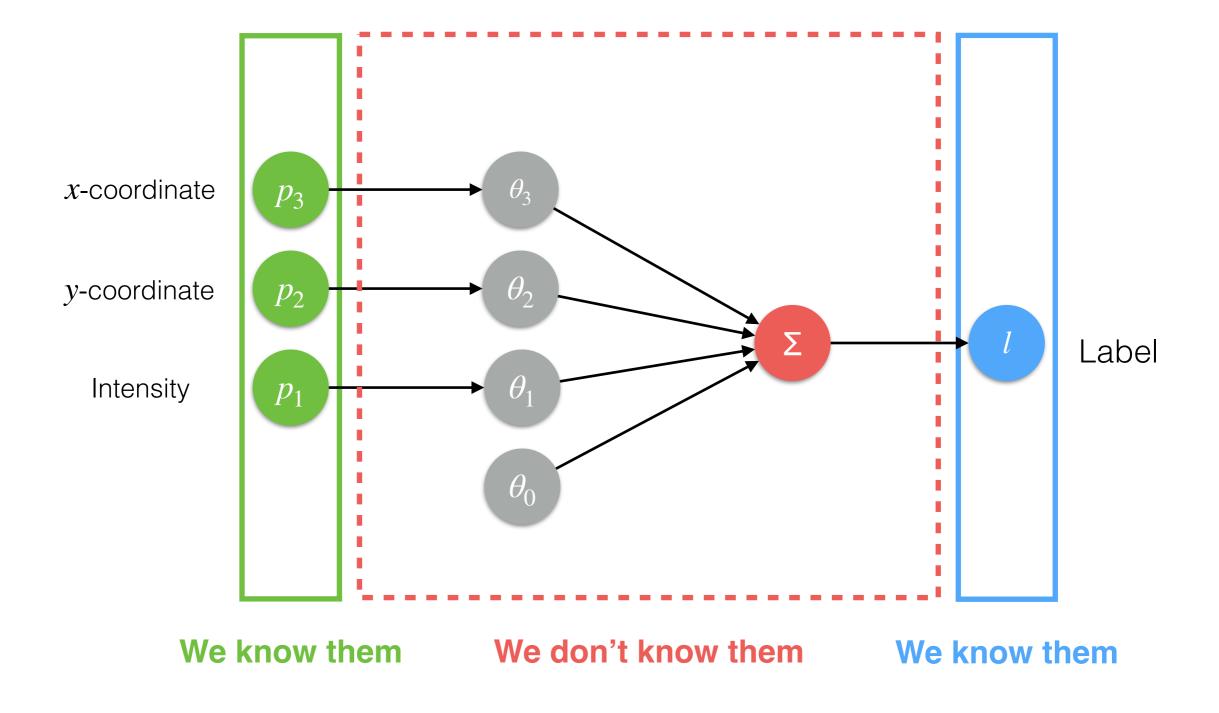
Segmentation: Dataset Set (3)

- The dataset needs to be balanced:
 - The same amount of examples for both classes: ROI and background.
- The dataset needs to be divided into:
 - Training set —> samples to train the network
 - Evaluation set —> samples to check if the model is not overfitting or under fitting.

Segmentation: Training Phase

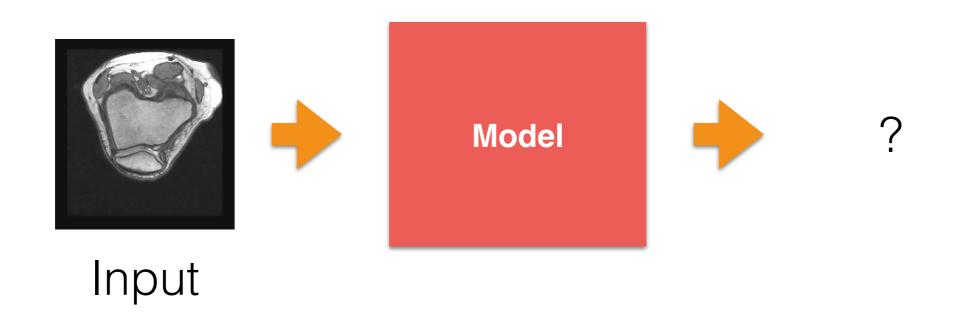


Segmentation: Training Phase



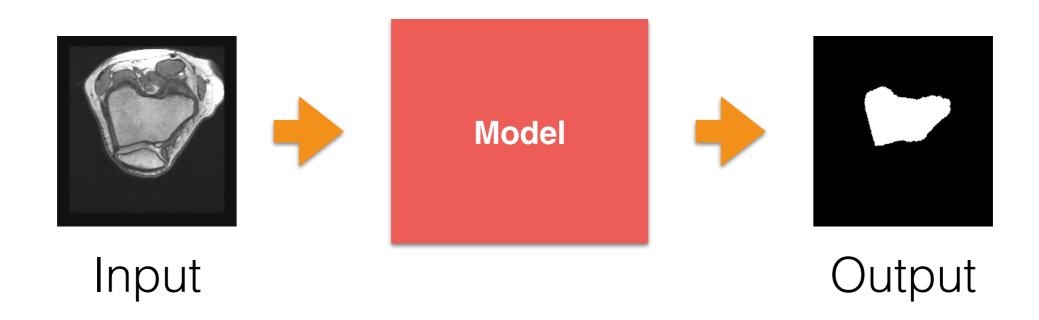
Segmentation: Prediction/Inference Phase

• After learning, we can use our network on new images to segment the image:

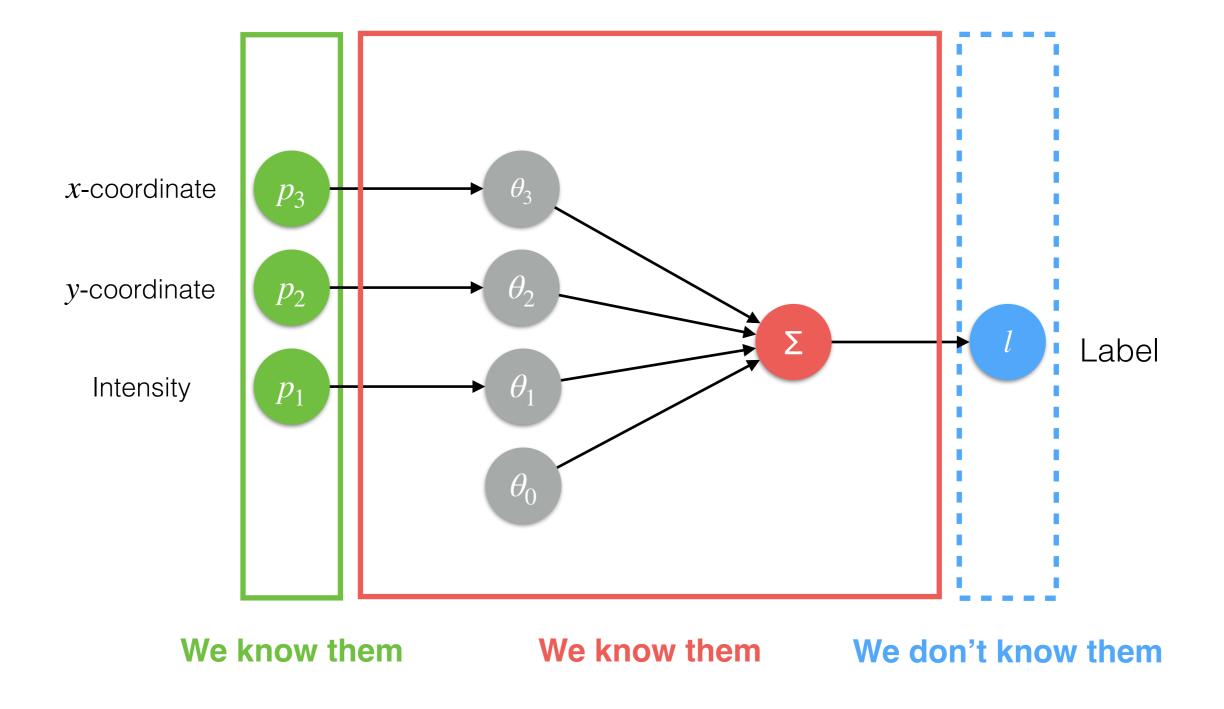


Segmentation: Prediction/Inference Phase

 After learning, we can use our network on new images to segment the image:



Segmentation: Prediction Phase



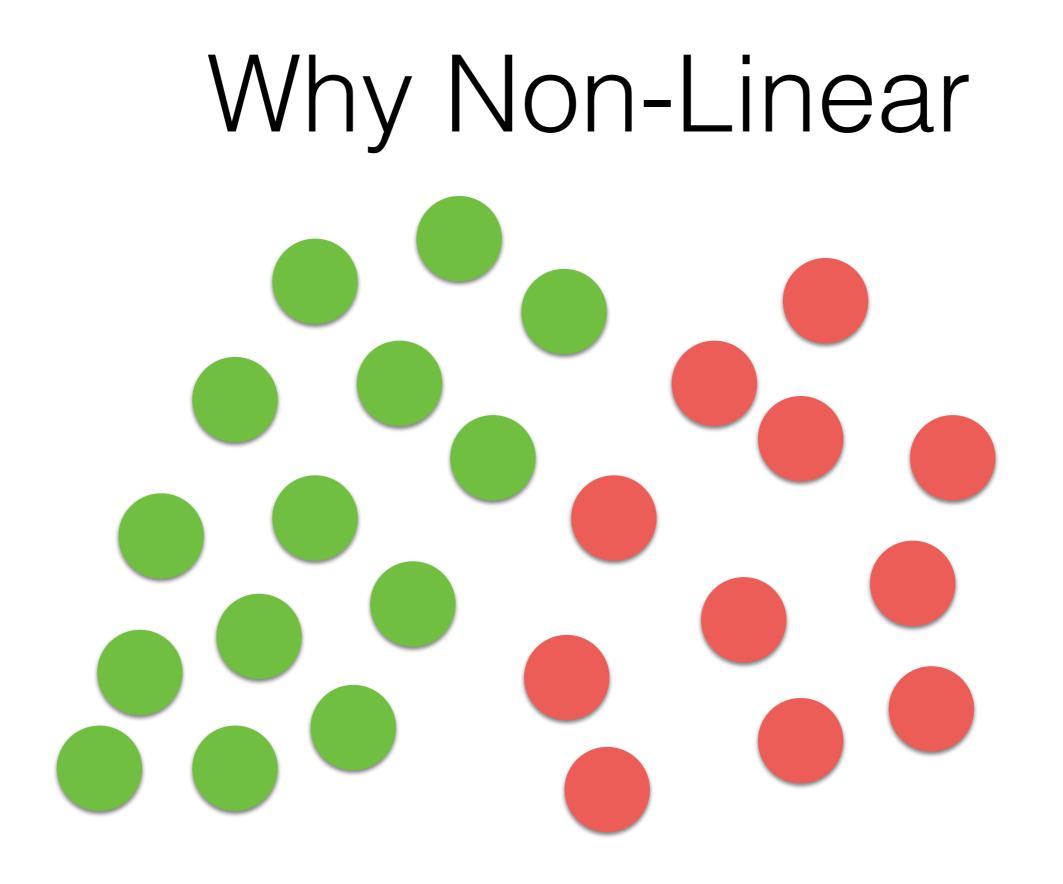
Going Non-Linear

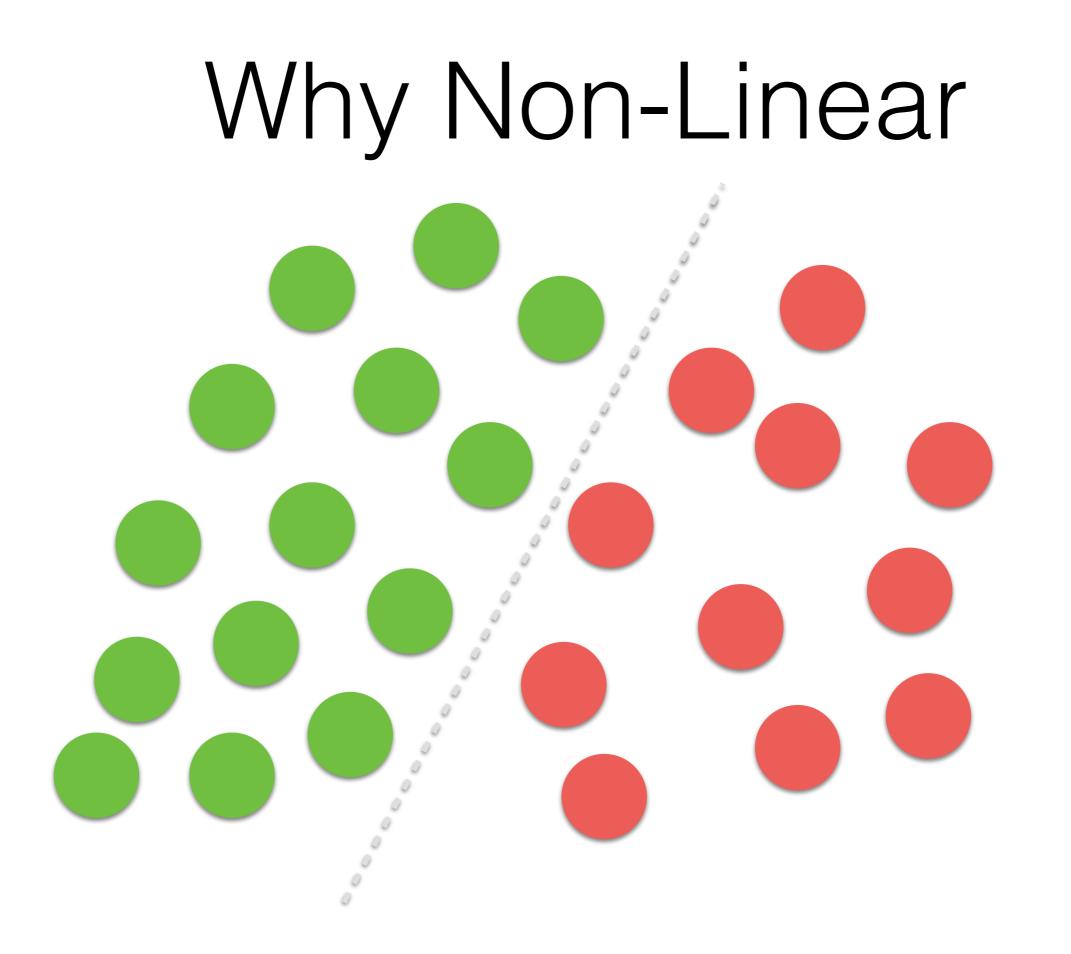
Why Non-Linear

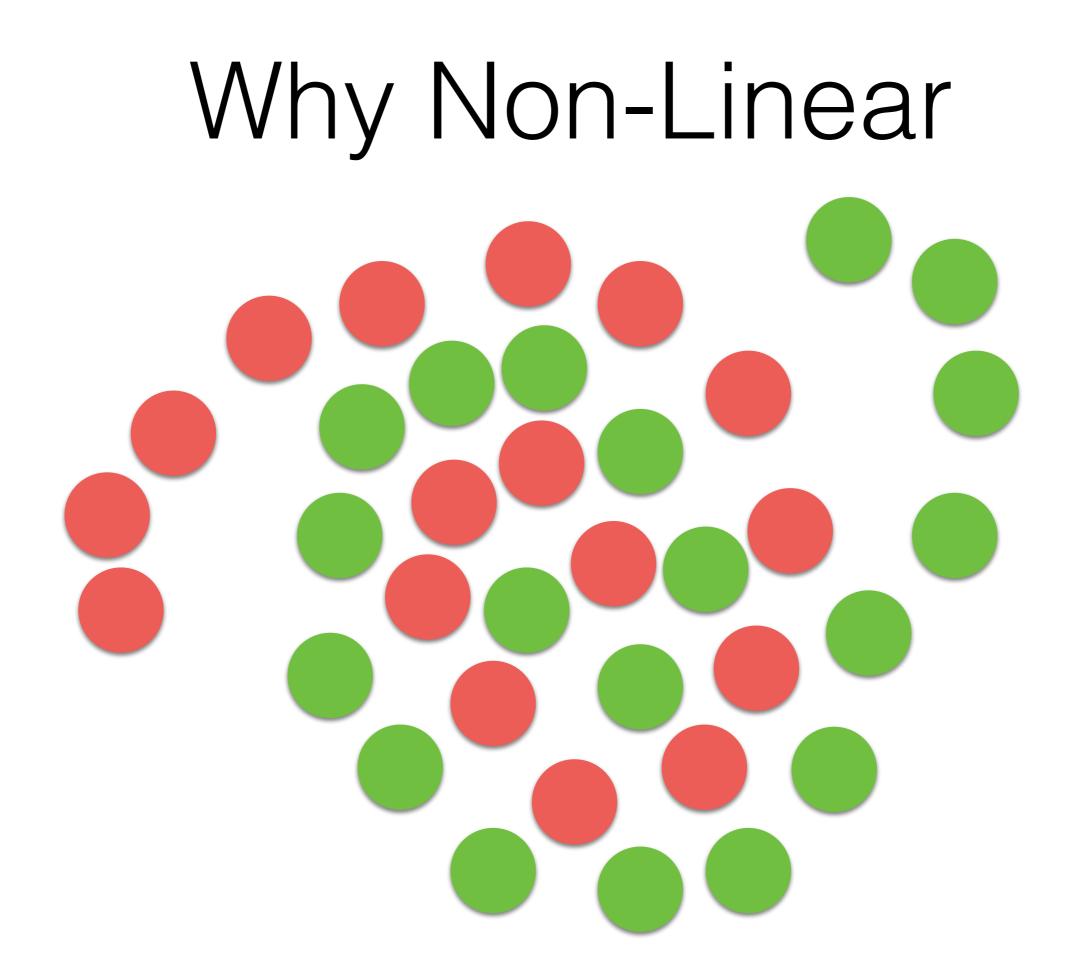
• The model that we have seen so far is:

$$h(\mathbf{p}, \theta) = [\mathbf{p}, 1]^{\mathsf{T}} \cdot \theta$$

• This model can only capture linear models; i.e., we can classify/segment by separating data using a plane/hyper-plane.







Why Non-Linear

• We can extend the model to

$$h(\mathbf{p}, \theta) = g\big([\mathbf{p}, 1]^\top \cdot \theta\big)$$

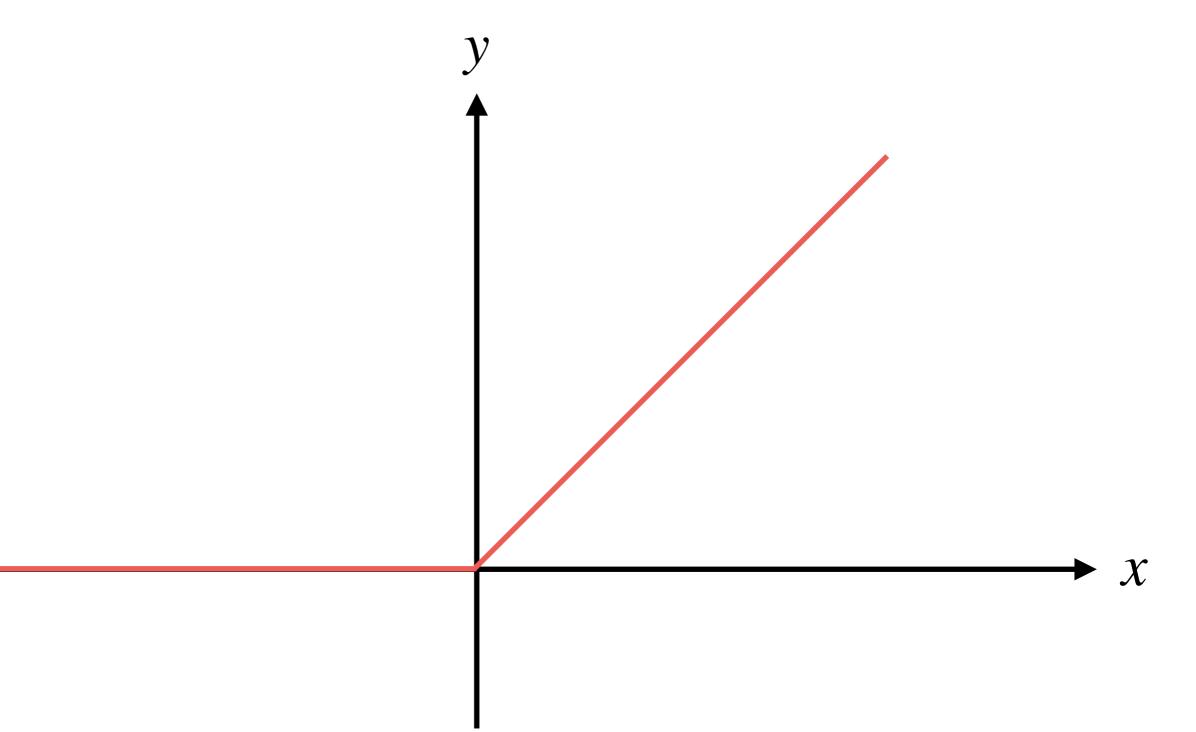
where $g(\cdot)$ is a non linear function.

Why Non-Linear: Rectified Linear Unit (ReLU)

• A simple and effective function is the rectified linear unit or ReLU:

$$g(x) = \begin{cases} x & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Why Non-Linear: Rectified Linear Unit (ReLU)

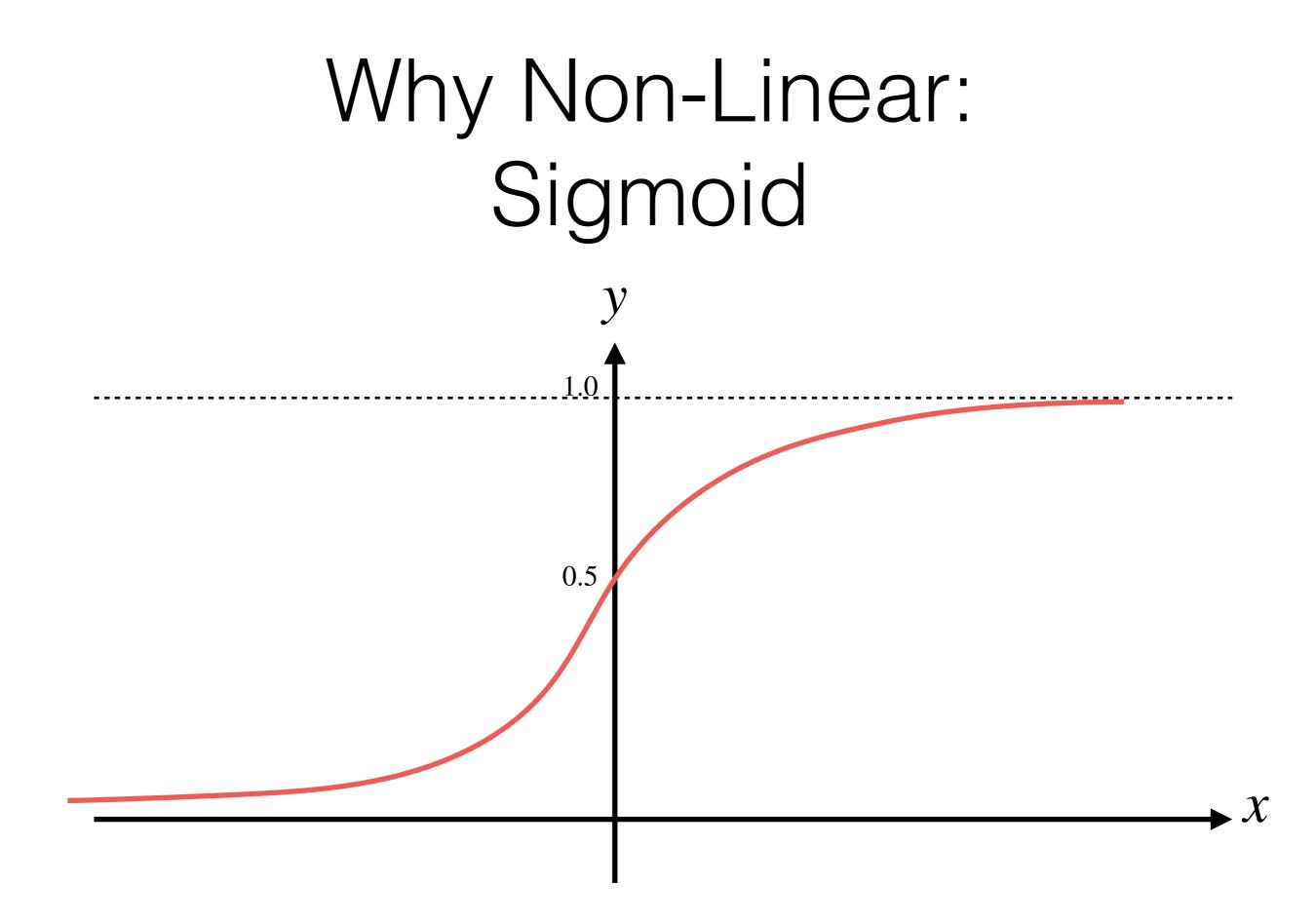


Why Non-Linear: Sigmoid

• For classification/segmentation, a more effective function is the sigmoid:

$$g(x) = \frac{1}{1 + e^{-x}}$$

- When $g(x) \ge 0.5$ —> we label as 1 our sample
- When g(x) < 0.5 —> we label as 0 our sample



Why Non-Linear: Sigmoid + Error Function

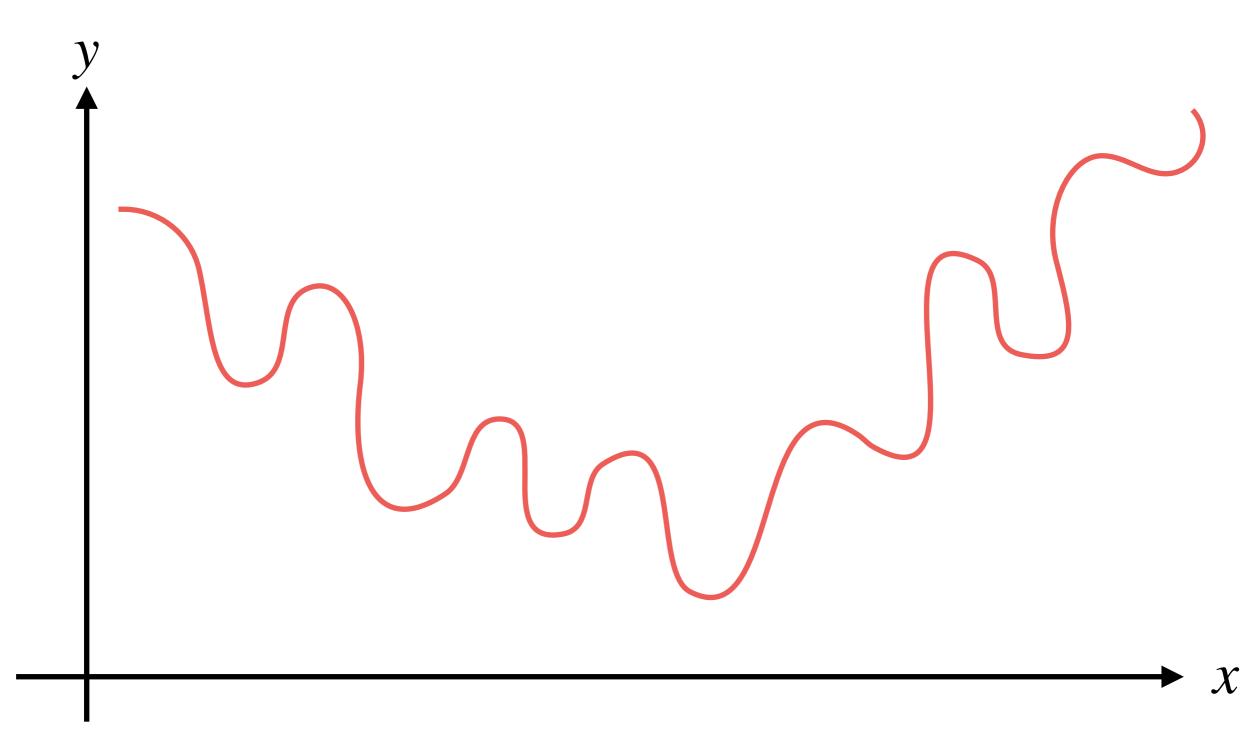
• We have our error function:

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} \left(h(\mathbf{p}^{j}, \theta) - l^{j} \right)^{2}$$

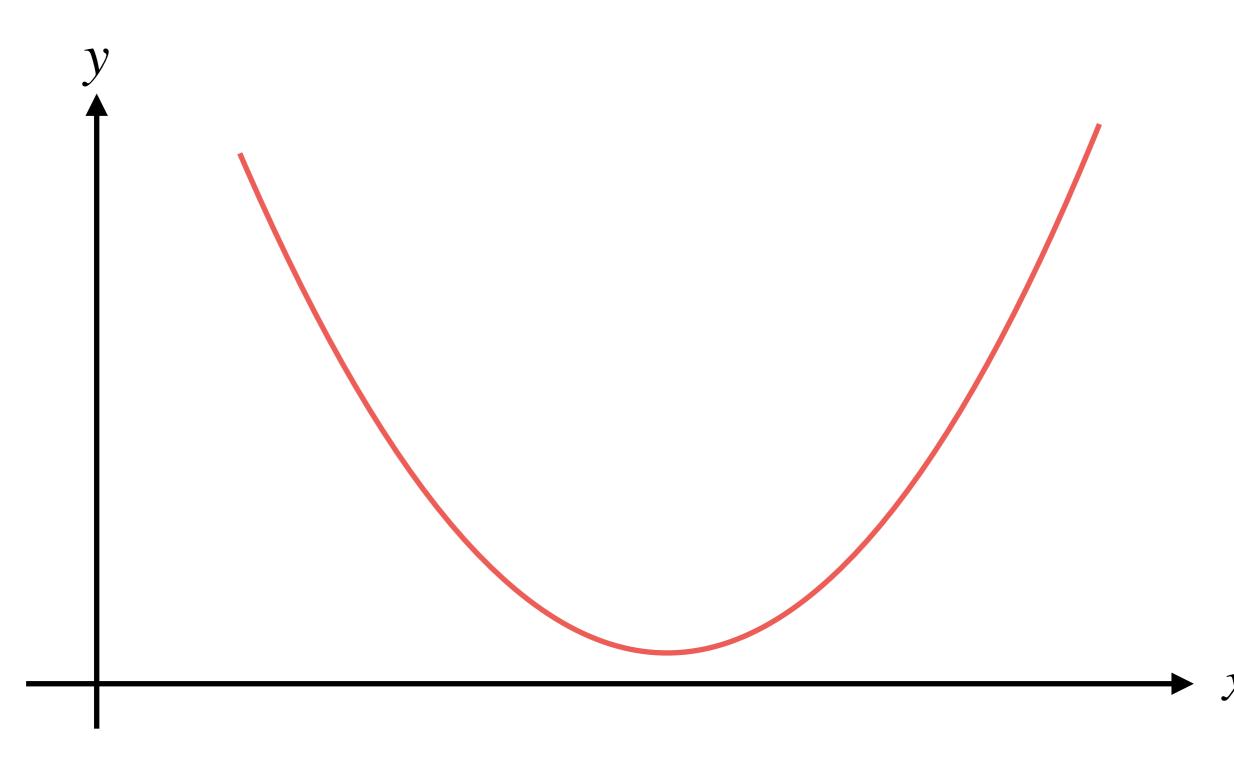
which is:

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} \left(g\left([\mathbf{p}, 1]^{\mathsf{T}} \cdot \theta \right) - l^{j} \right)^{2}$$
$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} \left(\frac{1}{1 + \exp(-[\mathbf{p}, 1]^{\mathsf{T}} \cdot \theta)} - l^{j} \right)^{2}$$

Why Non-Linear: Error Function is Non-Convex



Why Non-Linear: We Want a Convex Error Function



Why Non-Linear: Sigmoid + Error Function

• We define a cost function:

$$C(x, l) = \begin{cases} -\log(g(x)) & \text{if } l = 1\\ -\log(1 - g(x)) & \text{if } l = 0 \end{cases}$$

where:
$$g(x) = \frac{1}{1 + e^{-x}}$$
.

1

Why Non-Linear: If l = 1

y g(x) \mathcal{X} 0.01.0

Why Non-Linear: If l = 0

У

0.0

 ${\mathcal X}$

g(x)

Why Non-Linear: Sigmoid + Error Function

• Using the cost, we have our new error function:

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} C(g(x^j), l^j)$$

where $x^j = [\mathbf{p}^j, 1]^\top \cdot \theta$.

• This can be simplified into:

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} y^j \log g(x^j) + (1 - y^j) \log(1 - g(x^j))$$

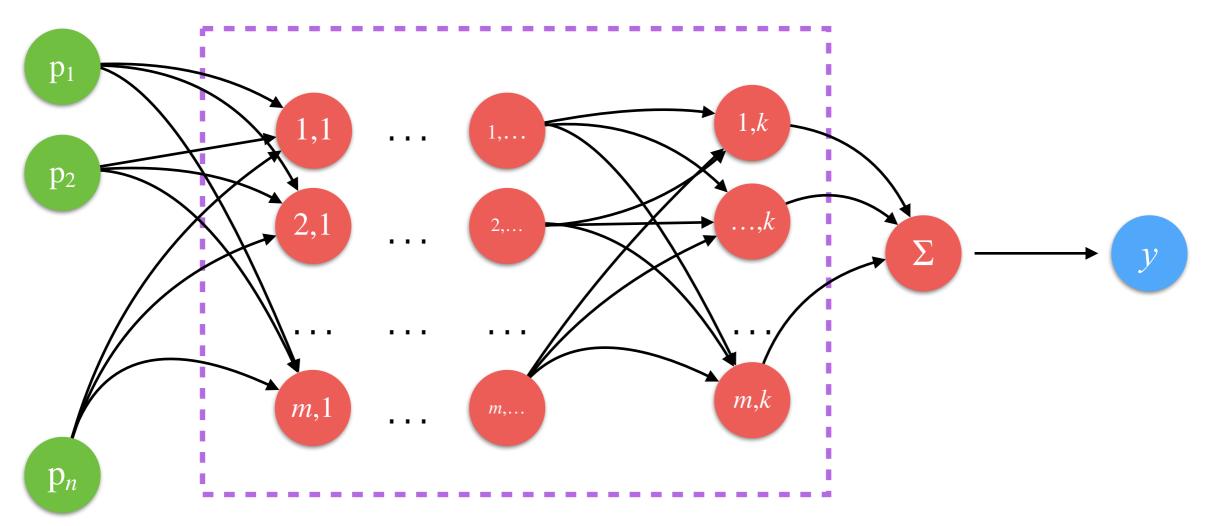
More Complex Examples

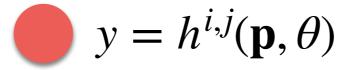
More Complex Nets

- To achieve high-quality results, a model needs to "see" and "understand" more data at the same time:
 - Not only a couple such as the pixel coordinates and its pixel intensity and its classification as in the previous example!
- We need to use more pixels/voxels at the same time:
 - How?
 - Adding and mixing more neurons

Neural Networks: Bigger Networks

Hidden Layers





Neural Networks

- Advantages:
 - fully automatic!
 - computationally fast to evaluate (not the learning though); especially using GPUs.
- Disadvantages:
 - they required many many examples:
 - more than 1,000 to get some decent results;
 - better >10,000 training example!

that's all folks!