
3D from Volume:  
Part II

Francesco Banterle, Ph.D. 
francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it


The Processing Pipeline

Enhancement

RAW Volume

Segmentation



The Processing Pipeline

Mesh 
Extraction

Points 
Extractions

3D Mesh



The Processing Pipeline

Enhancement

RAW Volume

Segmentation



2D/3D Segmentation



Segmentation
• Segmentation is a process after which we obtain a 

mask of a structure in an/a image/volume. 

• A mask is binary image/volume; i.e., its values can 
be only either 0 or 1. 

• 1 —> the pixel/voxel belongs to a structure of our 
interest 

• 0 —> the pixel/voxel does not!



Segmentation Example



Segmentation Example



Segmentation Example



Segmentation Example



Segmentation

• Obviously, if we need to segment  objects in the 
image/volume we have two ways to proceed: 

1. We create -masks, one for each object. 

2. We create an unsigned integer mask in which 
each object as label a number in . 
Background is always !

k

k

[1,k]
0



3D Segmentation

• There are typically two approaches: 

• 2D segmentation for each slice  

• 2D segmentation of a slice and propagation of 
the segmentation



Manual Segmentation



Manual Segmentation: 
Painting Approach

• We manually paint the mask using a GUI. 

• Obviously, the segmentation mask is created in a 
different layer and not on the input image!



Manual Segmentation: 
Painting Approach
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Manual Segmentation: 
Boundary Definition

• We manually define the mask boundary using a 
GUI (e.g., GIMP, Adobe PhotoShop, etc.). 

• We either define it using polygons or free-hand. 

• We can use image gradients and Laplacian to stick 
polygons to our object of interest.



Manual Segmentation: 
Boundary Definition



Manual Segmentation: 
Boundary Definition



Thresholding



• We assume that each object in an image/volume has 
a unique intensity value 

•

Thresholding Example

Object Value

Skull 255

Grey Matter 153

Veins 77



• This means: 

  

• We can have different distance functions: 

  

   

 

M(i, j) = {1 if d(I(i, j), It) < t
0 otherwise

d(x, y) = |x − y |

d(x, y) = (x − y)2

d(x, y, σ) = exp(−
(x − y)2

2σ2 )2

Thresholding
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• This means: 

  

• We can have different distance functions: 

  

   

 

M(i, j) = {1 if d(I(i, j), It) < t
0 otherwise

d(x, y) = |x − y |
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Thresholding
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Thresholding Example

It = 1 t = 0.1



Thresholding Example

It = 0.6 t = 0.1



Thresholding Example

It = 0.6 t = 0.1



Thresholding: 
Connected Components

• After segmentation we may 
end up with different pieces 
that are not connected.



Thresholding: 
Connected Components

• A two-pass algorithm that works in scan order (from 
left to right and from top to bottom). 

• 1-Pass: it creates labels to groups of pixel. 

• 2-Pass: it merges groups that are connected.



Thresholding: 
Connected Components

Scan order



First Pass



Thresholding: 
Connected Components

We check up and 
left neighbors to 
see if they 
have a label.



Thresholding: 
Connected Components

If not we create a 
new one.



Thresholding: 
Connected Components

Then, we move 
right, and we 
repeat the 
process.



Thresholding: 
Connected Components

In this case, the 
left neighbor has a 
label, so we reuse 
it.
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Thresholding: 
Connected Components

1

2
In this case, we 
choose the lowest 
label, and we store 
that 1 is equivalent 
to 2



Thresholding: 
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Thresholding: 
Connected Components



Thresholding: 
Connected Components



Second Pass



Thresholding: 
Connected Components

1

2

3

4

We go through all 
pixels. For each 
pixel we set the 
value of lowest 
equivalent.



Thresholding: 
Connected Components
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Thresholding: 
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Thresholding: 
Connected Components
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Thresholding: 
Connected Components
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Thresholding: 
Connected Components Example



Thresholding
• It works if each object has a unique intensity value/

color; this is a very limiting constraint! 

• However, it could be used as a starting point for 
other algorithms. 

• The user needs to set the threshold!  

• The It value for each class may be inferred by 
analyzing the histogram of the input image. 

• Its 3D extension is trivial! 



-Meansk



-Meansk
• -means is a clustering algorithm for clustering n-D 

vectors/points in an -D space: 

• A pixel with position  and intensity  is a 3D 
vector:  

• A voxel with position  and intensity  is a 4D 
vector:  

• Let’s assume we have  objects in the image. 

• So we have to determine -clusters.

k
n

(x, y) l
< x, y, l >

(x, y, z) l
< x, y, z, l >

k

k



-Means: How it Worksk

• A 2D example



-Means: Initializationk

• Let’s assume  

• We make a random 
guess on the          
-centroids; i.e., the 

stars. 

k = 3

k
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-Means: Iterationk

• We now assign a 
sample to a cluster 
if the distance (L1, 
L2, etc.),  between 
a centroid is the 
minimum.



-Means: Iterationk

• We re-compute the 
centroid as the 
mean of samples of 
a cluster.



-Means: Iterationk

• We repeat the 
process until 
convergence (no 
more changes) or 
after  iterations.m



-Means: Iterationk

• We repeat the 
process until 
convergence (no 
more changes) or 
after  iterations.m



-Means Examplek



-Means: Outliersk

Cluster A Cluster B



-Means: Outliers 
Solution 1

k

Cluster A Cluster B Cluster C



-Means: Outliers 
Solution 2

k

Cluster A Cluster B



-Means: Oscillationk

Even Iteration



Odd Iteration

-Means: Oscillationk



Even Iteration

-Means: Oscillationk



Odd Iteration

-Means: Oscillationk



-Means: Advantagesk

• The method is fully automatic. 

• This works for 2D and 3D volumes. 

• This can “understand” neighbors in an implicit way.



-Means: Disadvantagesk
• We need to know how many objects (including the 

background) are in the image: 

• We may run k-means multiple times until a certain criterion 
is met; e.g., reaching the 80% of percentage of explained 
variance. 

• Outliers: 

• better initialization (sampling). 

• The method may not converge. 

• We need to set a maximum number of iterations.



Region Growing



Region Growing

• This algorithms expands a painted initial mask until 
it reaches strong edges 

• Therefore, we need to compute edges first!



Region Growing

Structure 
Edge



Region Growing

Seed



Region Growing



Region Growing



after a while…



Region Growing



Region Growing



Region Growing
• It is straightforward to extend to 3D! 

• This algorithm depends on: 

• The threshold of edge detection. 

• It may be slow: 

• From an initial seed, the growing region needs to reach 
the farthest edge pixel/voxel. 

• Computational complexity is a function of the area/
volume of the object we want to segment.



Region Growing: 
Epic Fail



Region Growing: 
Epic Fail



Region Growing: 
Epic Fail



Active Contour Model 
aka Snakes



Snakes
• A snake is a parametric curve: 

  

• Typically, it is a spline (original paper), but for sake 
of simplicity let’s assume a piecewise linear curve. 

v(t) = [x(t); y(t)] t ∈ [0,1]



• The snake curve is defined by a set of control point 
that is defined as: 

  C = {vi | i ∈ [1,n]} vi = [xi, yi]

Snakes

vi vi+1

vi-1



Snakes

• A first step, we draw 
a snake close to the 
boundary of the 
object we want to 
segment.



Snakes

• Then, we deform its 
control points in order 
to move them 
towards the object’s 
boundary.



Snakes
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Snakes

• Then, we deform its 
control points in order 
to move them 
towards the object’s 
boundary.



Snakes

• How do we deform the control points? 

• An energy function  is associated with the curve. 

• We deform control points by minimizing ; i.e., we 
solve an optimization problem.

E

E



Snakes

• How do we define the energy function? 

• The energy of a snake has three components: 

 E = Einternal + Eexternal + Econstraint



Snakes: Internal Energy
• This energy represents the internal energy of the 

cure due to bending. It is defined per point as 

• The total energy is defined as 

Einternal =

Z 1

0
Einternal(v(t))dt

Einternal(v(t)) =
1

2

✓
↵(t)

����
dv(t)

dt

����
2

+ �(t)

����
d2v(t)

d2t

����
2◆
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Snakes: Internal Energy
• This energy represents the internal energy of the 

cure due to bending. It is defined per point as 

• The total energy is defined as 

Einternal =

Z 1

0
Einternal(v(t))dt

Elasticity Stiffness

Einternal(v(t)) =
1

2

✓
↵(t)

����
dv(t)

dt

����
2

+ �(t)

����
d2v(t)

d2t

����
2◆



• The first term is an elastic energy: 

• The second term is a bending energy: 

 

Snakes: Internal Energy

d2v(t)

d2t
⇡ vi+1 � 2vi + vi�1

dv(t)

dt
⇡ vi+1 � vi



• The first term is an elastic energy: 

• The second term is a bending energy: 

 

Snakes: Internal Energy

d2v(t)

d2t
⇡ vi+1 � 2vi + vi�1

dv(t)

dt
⇡ vi+1 � vi



• The first term is an elastic energy: 

• The second term is a bending energy: 

 

Snakes: Internal Energy

d2v(t)

d2t
⇡ vi+1 � 2vi + vi�1

dv(t)

dt
⇡ vi+1 � vi



Snakes: External Energy
• This energy determines how well the snake matches 

with the image locally! 

• How can we achieve this? 

• Gradients magnitude 



• It is defined per point as 

• The total energy is defined as 

Snakes: External Energy

Eexternal(v(t)) = �krI(v(t))k2

Eexternal =

Z 1

0
Eexternal(v(t))dt



Snakes: Constraint Energy
• This energy is meant for interactive systems. 

• The user interactively monitors the minimization, and 
she/he can push/pull vertices using the mouse cursor’s 
position: 

• Repulsion forces or “vulcano”:  

• Spring forces:  

1
r2

−k∥x1 − x2∥2



Snakes: Constraint Energy



Snakes: Constraint Energy

x1

x2



Snakes: Constraint Energy



Snakes: Constraint Energy



Snakes: Constraint Energy



How do we solve ? E
E = Einternal + Eexternal + Econstraint



Gradient Descent
• It is a first-order iterative optimization method: 

  

•  is a “good” guess. 

• It will find a local minimum! 

•  has to be differentiable.

xi+1
j = xi

j − α
∂

∂xj
f(xi)

x0

f x0
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Gradient Descent

x0x0



Gradient Descent
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Gradient Descent

x0x0



Gradient Descent

x0x0



Snakes: Gradient Descent

• What is our x0 in the snake minimization? 

• We need to click a few points in the image around 
our object of interest!



Snakes An Example



Snakes

• Extension to the 3D case: 

• Instead of a curve we have a parametric surface; e.g., we 
can start using a sphere. 

• Disadvantages: 

• We may have an over-smooth boundaries when using splines 

• How many n control points? 

• Not trivial to avoid self-intersection!



Stroke-Based



Stroke-Based

• Stroke-based algorithms are based on the idea to 
define with a stroke what is foreground (i.e., our 
object of interest) and what is background. 

• These strokes are roughly painted. 

• However, they have to be placed in areas where 
we are 100% sure how to classify the image.



Stroke-Based

+1

-1



Stroke-Based

+1

-1



Stroke-Based

C s



Stroke-Based: Grow-Cut

• Grow-cut is a stroke-based method. 

• The idea is to propagate the label of the current 
pixels if its neighbors are “similar”.



• For each pixel, we have: 

• Initialization for pixels not covered by a stroke ( ): 

  

• Initialization for pixels covered by a stroke ( ): 

 

s

< li = 0; θi = 0; Ci = I(xi, yi) > ∀is(xi, yi) = 0

s

< li = s(xi, yi); θi = 1; Ci = I(xi, yi) > ∀is(xi, yi) ≠ 0

Stroke-Based: Grow-Cut

< li; ✓i;Ci >



• For each pixel, we have: 

• Initialization for pixels not covered by a stroke ( ): 

  

• Initialization for pixels covered by a stroke ( ): 

 

s

< li = 0; θi = 0; Ci = I(xi, yi) > ∀is(xi, yi) = 0

s

< li = s(xi, yi); θi = 1; Ci = I(xi, yi) > ∀is(xi, yi) ≠ 0

Stroke-Based: Grow-Cut

< li; ✓i;Ci >Label
Strength

Intensity



Stroke-Based: 
A Single Grow-Cut Pass

• For each pixel I in the image: 

• We copy the previous status: 

 

• For each neighbor j of i: 

• if  then 

< lt+1
i , θt+1

i , Ct+1
i > = < lt

i , θt
i , Ct

i >

g(Ct
i − Ct

j ) ⋅ θt
j > θt

i

lt+1
i = ltj

✓t+1
i = g(kCt

i � Ct
jk2) · ✓tj



Stroke-Based: 
A Single Grow-Cut Pass

• Note that  is a decreasing function. For example: 

  

• This means that if the two pixels, which we compare, are close in 
intensity/color values they should have the same label l. 

• They should also share the same label the neighbors have a higher 
strength!

g

g(x) = {1 − |x | if  |x | ≤ 1
0 otherwise



Example 1 Flat Area: 
Switching Labels
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j > θt

i

Stroke-Based: 
Example 1 - Flat Areas

Current 
neighbor

i< lt
j , θt

j , Ct
j > = < 0,0.9,1.0 >

< lt
i , θt

i , Ct
i > = < 1,0.8,1.0 >
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Stroke-Based: 
Example 1 - Flat Areas

Current 
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j > = < 0,0.9,1.0 >

< lt
i , θt
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1.0

1.0

j

0.9 > 0.8

Stroke-Based: 
Example 1 - Flat Areas

Current 
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i< lt
j , θt

j , Ct
j > = < 0,0.9,1.0 >

< lt
i , θt
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1.0

1.0

j

0.9 > 0.8

Stroke-Based: 
Example 1 - Flat Areas

Current 
neighbor

i

lt+1
i = lt

j = 0!

< lt
j , θt

j , Ct
j > = < 0,0.9,1.0 >

< lt
i , θt

i , Ct
i > = < 1,0.8,1.0 >

0.9 is greater than 0.8. So, so we assign 
the value  to .lt

j lt+1
i



Example 2 Edge: 
Maintaining Labels
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Stroke-Based: 
Example 2 - Edges

Current 
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i

0.225 > 0.8
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< lt
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0.25 ⋅ 0.9 > 0.8

Stroke-Based: 
Example 2 - Edges

Current 
neighbor

0.225 > 0.8
0.225 is not greater than 0.8. So,  for 
this neighbor remains the previous 
value!

lt+1
i

0.25

1.0

j

i< lt
j , θt

j , Ct
j > = < 0,0.9,0.25 >

< lt
i , θt

i , Ct
i > = < 1,0.8,1.0 >



Example 3 Flat Area: 
Maintaining Labels
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Example 4 Edges: 
Switching Labels
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Example 4 - Edges

Current 
neighbor

i< lt
j , θt

j , Ct
j > = < 0,0.9,0.25 >

< lt
i , θt

i , Ct
i > = < 1,0.1,1.0 >



0.25

1.0

j

0.225 > 0.1

Stroke-Based: 
Example 4 - Edges

Current 
neighbor

i< lt
j , θt

j , Ct
j > = < 0,0.9,0.25 >

< lt
i , θt

i , Ct
i > = < 1,0.1,1.0 >

lt+1
i = lt

j = 0!
0.225 is greater than 0.1. So, so we 
assign the value  to .lt

j lt+1
i



Stroke-Based: Grow-Cut
• Stopping criteria: 

• This process is iterated until either convergence; 
i.e., no changes in the labels! 

• Labels have been propagated for enough 
iterations; e.g., the number of pixels of the 
diagonal. This trick is helpful for reducing the 
total computational time.



Stroke-Based: Grow-Cut



Stroke-Based: Grow-Cut 
Example

Iteration = 0 



Stroke-Based: Grow-Cut 
Example

Iteration = 10



Stroke-Based: Grow-Cut 
Example

Iteration = 20



Stroke-Based: Grow-Cut 
Example

Iteration = 30



Stroke-Based: Grow-Cut 
Example

Iteration = 40



Stroke-Based: Grow-Cut 
Example

Iteration = 50



Stroke-Based: Grow-Cut 
Example

Iteration = 100



Stroke-Based: Grow-Cut 
Example

Iteration = 200



Stroke-Based: Grow-Cut 
Example

Iteration = 318



Stroke-Based: Grow-Cut

• This algorithm can be extended to 3D in a 
straightforward way, and it can be parallelized on 
the GPU. 

• Disadvantages: 

• It is computationally slow!



that’s all folks!


