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Applications
Introduction

• Monte-Carlo methods and integration can be applied in several fields:


• Deep Learning


• Imaging


• Computer Graphics


• Finance


• Chemistry


• Physics



A 2D Problem: Image Filtering



The Bilateral Filter
Introduction

• The bilateral filter is a non-linear filter for images and videos.


• It works in spatial domain and intensity/range domain of an image/video.


• Basically, it is an adaptive linear filter:


• It behaves as a linear filter in flat regions;


• At strong edges (step-edge), filtering is “limited”.
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Introduction
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The Bilateral Filter
Introduction

•  (Spatial function): a Gaussian function


•  (Range function): a Gaussian function


• How large is the kernel?


• If the spatial function is a Gaussian:


 .

fs

gr

N = M =
5
2

σs



The Bilateral Filter
Example
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The Bilateral Filter
Computational Complexity

• The main problem of the filter is its high computational complexity for real-time 
applications:


,


where  is the number of pixels of an image/video, and  is the size.


• Compared to a Gaussian filter:


• Not separable;


• No Fourier domain.


𝒪(nk2)

n k



The Bilateral Filter
Monte-Carlo

• In this case, we can solve with Monte-Carlo!


• Basic idea:


• We draw sample according the spatial Gaussian:


• Box-Muller method.


• We limit the number of samples to  or ; with  a constant.k ck c < k
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Pattern 1 Pattern 2 ... Pattern 3 n

...

Regular patterns (RPS)

...

Monte-Carlo patterns (MCS)

...

Monte-Carlo Stratified (jittering) patterns (SMS)

...

Poisson-disk patterns (PDS)

Figure 4: An example of pre-computed patterns for each of the
tested sampling strategies.

of the original image. Moreover, these sampling patterns are
quite fast to compute, the most computationally expensive
tiles are generated from the PDS which requires only a few
milliseconds using Bridson’s algorithm.

A visual comparison between the different sampling
strategies is shown in Figure 2. A straightforward strategy
such as RPS produces structured noise (Figure 2.c). There-
fore, a randomization is needed to remove these kind of ar-
tifacts. However, a completely random selection of samples
such as in MCS leads to noise (Figure 2.d), the same happens
for the SMS strategy (Figure 2.e). Due to these problems, we
chose to get samples that are generated using a Poisson-disk
distribution (Figure 2.b).

The proposed algorithms can work for videos as well. The
only difference between the 2D images and videos (or 3D
images) is that Poisson-disk samples are computed respec-
tively in 2D and in 3D. This cannot be extended trivially
to n-dimensions like other approaches since it is not guar-
anteed that the Poisson-disk sampling strategies could work
well for any dimension. This depends heavily on the nature
of the dimension we subsample, for example subsampling
the support of a non-local means filter, whose components
are formed by PCA components, could give unpredictable
results in terms of quality of the approximation.

Due the straightforwardness of our approach, we imple-

Figure 5: An example of video denoising applied to a 640⇥ 480
video sequence. (Left) A frame of the video sequence before the fil-
tering. (Right) The filtered frame with the application of our filter. A
kernel 40⇥ 40⇥ 5 was used, 16.5ms are necessary to render each
frame.

mented the proposed algorithm directly with a GLSL shader
on an OpenGL framework [Khr10]. This allows to have effi-
cient implementations even on low-end graphics hardware.

3.1. Analysis of the sample required (Nsamples)

Since the number of samples of the patterns used plays a
fundamental role in the quality of the approximation of the
proposed algorithm, we report here an analysis of the impact
of the variation of this parameter with respect to the quality
obtained using Gaussian functions as attenuation functions
( fs with variance ss, fr with variance sr). In particular, we
tested the accuracy of our approximation by using different
sample densities. For a kernel of N ⇥N pixels, kN samples
for k = 1,2, . . . ,7 are used and the accuracy evaluated (the
PSNR is computed as described in Section 6). Six different
HDR images of our dataset (Section 6) are used in this test
varying either sr or ss. Firstly, ss is fixed to 60 pixels and sr
is varying in the range [0.05,0.8]. Then, sr is fixed to 0.2 and
ss is varying in the range [10,80] pixels. As it can be noticed
from the graphs in Figure 3 to use N . . .2N samples for a ker-
nel of size N⇥N is reasonable in terms of decibels obtained.
Higher accuracy can be achieved for Nsamples = 3N samples
at a cost of increased computational time, while using more
samples do not increase in a significant way the accuracy of
the algorithm. Observing the left graph in Figure 3 it is in-
teresting to note that for a fixed PSNR value, for example 28
dB, the needed samples for large kernel decrease. This re-
duction follows the shape of an rectangular hyperbola with
the coordinate axes parallel to their asymptotes. From fitting
data in this graph into an hyperbola, it can be elicited that
small kernels (ss < 20 pixels) need 2.5N samples, medium
kernels (20  ss  40 pixels) need between 0.75N and 2.5N
samples, and large kernels (ss > 40 pixels) need 0.75N sam-
ples.

4. Applications

We now apply our algorithm to some applications in com-
puter graphics and image processing in order to show the
effectiveness of our proposal. These applications are: image
and video filtering, iterative filtering, cross/joint bilateral fil-
tering, edge-aware image editing, and tone mapping.

submitted to COMPUTER GRAPHICS Forum (3/2011).
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Figure 1: This figure shows the main idea of our algorithm. When a bilateral filter needs to be performed on a pixel of an image (e.g. red
square in the left image), instead of evaluating all samples around a window, W, a subset of them, L, is used (e.g. center image), and their
contributions with their respective weights are summed up obtaining the final value (e.g. left side image).

a) Full b) PDS c) RPS d) MCS e) SMS

Figure 2: An example of different sampling strategies for implementing function getSample applied to the Greek Dome image with ss = 60
pixels and sr = 0.15: a) all samples (standard bilateral filter). b) 60 samples using Poisson-disk sampling. c) 60 samples using a regular pattern
sampling. d) 60 samples using pure Monte-Carlo sampling. e) 60 samples using stratified Monte-Carlo sampling (jittering). Note that the use
of Poisson-disk sampling produces the closest approximation to the full bilateral filter. The other sampling strategies create visual artifacts and
pattern-like artifacts, particularly when a regular sampling pattern is used. (Please, refer to the electronic version for the proper readability of
the images.)

Algorithm 2: The proposed fast bilateral filter algorithm. I is
a k-dimensional image, fr and gs are attenuation functions, W is
a nk window. getSample is a function which gets a sample from
W. All the n samples are defined as L.

Data: I, x

Result: B
B 0;
K 0;
for i 1 to Nsamples do

xi getSample(W);
w fr(kI(xi)� I(x)k)gs(kxi�xk);
K K +w;
B B+ I(xi)w;

B B
K ;

In our test we use Bridson’s algorithm [Bri07] to gener-
ate Poisson-disk distribution of samples. In order to avoid
structured noise and improve randomness a set of different
patterns is pre-computed, then for each pixel a random pat-
tern from the pre-computed ones is applied. See Figure 4 for
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Figure 3: Approximation error obtained varying the number of
samples used (Nsamples = kN) applied on six HDR images of our
dataset (Section 6). (Left) sr is varying and ss = 80 pixels. (Right)
ss is varying and sr = 0.2. Note that the evaluation is stopped when
kN reaches the 25% of kernel samples (N2).

some examples of the patterns’ sets. In the case of PDS, 64
tiles are sufficient to obtain unbiased results in terms of ran-
domness [Lag07]. The storage of the set of patterns produces
a small overhead in memory, for example a 256⇥ 256 ker-
nel needs only 64Kb of memory independently of the size

submitted to COMPUTER GRAPHICS Forum (3/2011).
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some examples of the patterns’ sets. In the case of PDS, 64
tiles are sufficient to obtain unbiased results in terms of ran-
domness [Lag07]. The storage of the set of patterns produces
a small overhead in memory, for example a 256⇥ 256 ker-
nel needs only 64Kb of memory independently of the size
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A Recursive Problem: Rendering



Path-Tracing
Introduction

• A classic problem in Computer Graphics is given:


• Camera;


• 3D Geometry;


• Light sources’ description;


• Materials’ description.


• To compute the color of each pixel in the image plane of our plane by 
simulating the light transport in a physically based manner.



Path-Tracing
The Rendering Equation

Lo(x, ⃗ωo, λ) = Le(x, ⃗ωo, λ) + ∫Ω
fr(x, ⃗ω i, ⃗ωo, λ)Li(x, ⃗ω i, λ) | ⃗n ⋅ ⃗ω i |dωi

⃗ωo⃗ω i

x

⃗n
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Path-Tracing
The Rendering Equation: BRDF

fr(x), ⃗ω i, ⃗ωo, λ) =
ρλ

π

⃗ω i

⃗ωo



Path-Tracing
The Rendering Equation: Light Sources

Ie(x, ⃗ωo) =
Φλ

πA

⃗ωo
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Introduction

Lo(x, ⃗ωo, λ) = Le(x, ⃗ωo, λ) + ∫Ω
fr(x, ⃗ω i, ⃗ωo)Li(x, ⃗ω i, λ) | ⃗n ⋅ ⃗ω i |dωi



Path-Tracing
Introduction

• In a deterministic way, we should shoot  rays at each bounce for each location:


,


and this highly impractical.


• Our estimator is the classic estimator seen so far:


 .

n

∑
k

nk

̂μ =
1
N

n

∑
i=1

Yi



So We Generate Different Paths 
and We Sum Them Up
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Path-Tracing
Monte-Carlo Techniques

• Techniques used:


• Russian roulette —> to limit the length of paths.


• Stratification.


• Importance sampling:


• 1D/2D distribution of light sources;


• BRDF.


• Metropolis.



Path-Tracing
Sampling the BRDF

• To sample the BRDF, we generate  directions randomly chosen according 
to its PDF:


.


• So, we compute our estimate as:


.

⃗ω i

p( ⃗ω i) ∝ fr(x, ⃗ω i, ⃗ωo)

Lo(x, ⃗ωo) ≈
fr(x, ⃗ω i, ⃗ωo)Li(x, ⃗ω i)

p( ⃗ω i)



Path-Tracing
Sampling the BRDF

⃗ω i

⃗ωo

fr(x, ⃗ω i, ⃗ωo)

x



Path-Tracing
Sampling the BRDF

Image by Eric Veach



]
Sampling the Light Source

• To sample the light source, we generate random points, , on the light source 
according to its PDF:


.


• So, we compute our estimate as:


.

xl

p(xl)

Lo(x, ⃗ωo) ≈
fr(x, ⃗ω ′ i, ⃗ωo)Li(x, ⃗ω ′ i)

p(xl)
⃗ω ′ i =

xl − x
∥xl − x∥



Path-Tracing
Sampling the BRDF

⃗ω i

⃗ωo

x

xl



Path-Tracing
Sampling the Light Source

Image by Eric Veach



Path-Tracing
Multiple Importance Sampling (MIS)

• The naive solution would be to average the two estimations:


• However, variance is additive, so we do not decrease it!


• The main idea of Multiple Importance Sampling (MIS) is to:


• Draw samples from different distributions;


• Mix all these samples using weights:


• These weights should remove large peaks of variance when we have 
differences between our estimation and the distribution.


.



Path-Tracing
MIS

• In general, we may have  distributions, , and we generate  samples  for each distribution.


• In this case, our estimation is:


.


• The weighting function, , is normalized:


.


• Balance heuristic :


 .

K qi nj xi,j ∼ qj

̂μ =
K

∑
j=1

1
nj

nj

∑
i=1

ωj(xi,j)
f(xi,j)p(xi,j)

qj(xi,j)

ω(x) ≥ 0
K

∑
j=1

ω(x) = 1

ωj(x) ∝ njqj(x)

ωj(x) =
njqj(x)

∑K
i=1 niqi(x)



Path-Tracing
MIS

• What’s about its variance?


.


• Other heuristics? Yes


• Power Heuristic: .

Var( ̂μBH) = Var( ̂μ) + ( 1
minj nj

−
1

∑j nj )μ2

ωj(x) ∝ (njqj(x))β β ≥ 1



Path-Tracing
MIS Example

Image by Eric Veach



Path-Tracing
Complex Light Sources

• Typically, to have convincing light sources, they have to be spatially varying 
possibly using scene-referred photographs (i.e., calibrated):


.
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∑



Path-Tracing
Complex Light Sources

∑

p(x)



Path-Tracing
Complex Light Sources

X ∼ p(x)



Path-Tracing
Complex Light Sources

p(y |x)



Path-Tracing
Complex Light Sources: Example



Path-Tracing
Metropolis Sampling
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Path-Tracing
Metropolis Sampling

Image by Eric Veach



Path-Tracing
Metropolis Sampling: Lens Perturbation
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Path-Tracing
Metropolis Sampling: Lens Perturbation



Path-Tracing
Metropolis Sampling: Light Perturbation
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Path-Tracing
Metropolis Sampling

Image by Eric Veach



Path-Tracing
Metropolis Sampling: Multi-Chains
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Path-Tracing
Metropolis Sampling: Multi-Chains

Image by Eric Veach



Bibliography

• Peter Shirley. “Ray Tracing: The Rest of Your Life”. 2018-2020. 
raytracing.github.io


• Matt Pharr, Wenzel Jakob, and Greg Humphreys. Chapter 13: “Monte Carlo 
Integration” from the book “Physically Based Rendering: From Theory To 
Implementation”. Morgan Kaufmann. 2016.


• Eric Veach and Leonidas Guibas. “Metropolis Light Transport”. ACM 
SIGGRAPH 1997.


• Francesco Banterle, Massimiliano Corsini, Paolo Cignoni, Roberto Scopigno. 
“ A Low-Memory, Straightforward and Fast Bilateral Filter Through 
Subsampling in Spatial Domain”. In Computer Graphics Forum 31(1). 2012.

http://raytracing.github.io


Thank you for your attention!


