Monte Carlo

 Quasi Monte-carlo (QMC)

 Quasi Monte-carlo (QMC)}

Francesco Banterle, Ph.D.

Quasi Monte-Carlo

Introduction

- In Monte-Carlo, we have seen that we use randomness to estimate averages, quantiles, and ratios.
- The justification why this works is thanks to the Law of Large Numbers.
- In Quasi Monte-Carlo or QMC, our goal is to "bend" this law using deterministic samples.
- We may get better results than the ones of classic Monte-Carlo!

Quasi Monte-Carlo

Motivation

Quasi Monte-Carlo

Motivation

Quasi Monte-Carlo

Motivation

Cluster

Gaps

Quasi Monte-Carlo

Introduction

- We still estimate:

$$
\hat{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right) p\left(\mathbf{x}_{i}\right)
$$

- Now, our samples, \mathbf{x}_{i}, are deterministic points that fill $[0,1]^{d}$ in an even way:
- We are half-way between regular grids and Monte-Carlo.
- In QMC, how to measure the uniformity of our samples is important, and measures are typically called discrepancies.

Quasi Monte-Carlo

The Start Discrepancy

- Let's define an interval in d dimension as:

$$
\prod_{i=1}^{d}\left[a_{i}, b_{i}\right)=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid \forall_{j \in[1, d]} \quad x_{j} \in\left[a_{i}, b_{i}\right)\right\}
$$

$$
\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d} \wedge \forall_{i} a_{i} \leq b_{i}
$$

- The local discrepancy of n samples \mathbf{x}_{i} is defined as:

$$
\delta(\mathbf{a})=\frac{1}{n} \sum_{i=1}^{n} 1_{\mathbf{x}_{i} \in[\mathbf{0}, \mathbf{a})}-\prod_{i=1}^{d} a_{j} .
$$

Quasi Monte-Carlo

The Start Discrepancy

- Let's define an interval in d dimension as:

$$
\prod_{i=1}^{d}\left[a_{i}, b_{i}\right)=\left\{\left.\mathbf{x} \in \mathbb{R}^{d}\right|_{j \in[1, d]} \quad x_{j} \in\left[a_{i}, b_{i}\right)\right\}
$$

$\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d} \wedge \forall_{i} a_{i} \leq b_{i}$.

- The local discrepancy of n samples \mathbf{x}_{i} is defined as:

$$
\delta(\mathbf{a})=\frac{1}{n} \sum_{i=1}^{n} 1_{\mathbf{x}_{i} \in[\mathbf{0}, \mathbf{a})}-\prod_{i=1}^{d} a_{j} .
$$

Quasi Monte-Carlo

The Start Discrepancy

- Let's define an interval in d dimension as:

$$
\prod_{i=1}^{d}\left[a_{i}, b_{i}\right)=\left\{\left.\mathbf{x} \in \mathbb{R}^{d}\right|_{j \in[1, d]} \quad x_{j} \in\left[a_{i}, b_{i}\right)\right\}
$$

$$
\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d} \wedge \forall_{i} a_{i} \leq b_{i}
$$

- The local discrepancy of n samples \mathbf{x}_{i} is defined as:

$$
\delta(\mathbf{a})=\frac{1}{n} \sum_{i=1}^{n} 1_{\mathbf{x}_{i} \in[\mathbf{0}, \mathbf{a})}-\prod_{i=1}^{d} a_{j} .
$$

Quasi Monte-Carlo

The Start Discrepancy: Example

Quasi Monte-Carlo

The Start Discrepancy

- When $\delta(\mathbf{a})=0$ there is the perfect balance.

$$
D_{n}^{\star}=D_{n}^{\star}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\sup _{\mathbf{x} \in[0,1)^{d}}|\delta(\mathbf{x})|
$$

- A sequence, $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, is low discrepancy when:

$$
D_{n}^{\star}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=O\left(\frac{(\log n)^{d}}{n}\right), n \rightarrow \infty
$$

Quasi Monte-Carlo
 Trade-offs

- When we use low discrepancy sequences, $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, we cannot use the CLT anymore.
- We have Koksma-Hlawka Theorem:

$$
\left\lvert\, \frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right)-\int_{[0,1)^{d}} f\left((x) d \mathbf{x} \mid \leq D_{n}^{\star} \cdot V_{H K}(f),\right.\right.
$$

where $V_{H K}$ is the Hardy and Krause total variation.

- What does this mean?
- If $V_{H K}(f)<\infty$ and we approximate $D_{n}^{\star}=o\left(n^{-1+\epsilon}\right)$ with $\epsilon>0$, we have:

$$
|\hat{\mu}-\mu|=o\left(n^{-1+\epsilon}\right) .
$$

Low Discrepancy Sequences

Low Discrepancy Sequences

Radical Inverse Function

- The radical inverse function is a simple function defined as:

$$
\Phi_{b}(i)=\sum_{k=0}^{\infty} d_{k, b}(i) b^{-k-1} \quad b \geq 2 \wedge d_{k, b}(i) \in\{0, \ldots, b-1\} .
$$

- This function is based on the fact that we can encode a number i as a sequence of digits:

$$
i=\sum_{k=0}^{\infty} d_{k, b}(i) b^{k}
$$

- Φ_{b} transforms a positive integer into a floating-point in $[0,1)$ by reversing its digits:

$$
\Phi(i)_{b}=0 . d_{i, 0} d_{i, 1} \ldots d_{n} .
$$

- Van Der Corput's sequence is a simple 1D sequence that is based on the radical inverse function using base 2 :

$$
x_{i}=\Phi_{2}(i) .
$$

Low Discrepancy Sequences

Radical Inverse Function: Example

$$
\begin{gathered}
n=1=1 \times 2^{0}+0 \times 2^{2}+\ldots=(\ldots 001)_{2} \\
\Phi(1)_{2}=(0.100 \ldots)_{2}=1 \times 2^{-1}=0.5 \\
n=2=0 \times 2^{0}+1 \times 2^{1}+0 \times 2^{2}+\ldots=(\ldots 0010)_{2} \\
\Phi(2)_{2}=(0.010 \ldots)_{2}=0 \times 2^{-1}+1 \times 2^{-2}=0.25
\end{gathered}
$$

Low Discrepancy Sequences

Radical Inverse Function: Example

i	Binary	Reversed	$\Phi_{2}(i)$
$\mathbf{1}$	1	0.1	0.5
$\mathbf{2}$	10	0.01	0.25
$\mathbf{3}$	11	0.11	0.125
$\mathbf{4}$	100	0.001	0.0625

Low Discrepancy Sequences

Halton Sequence

- The Halton sequence employs the radical inverse base.
- In this case, we use a different base for each dimension:
- Each base needs to be co-prime with the others!
- A popular choice is to use the first d-prime for generating a d-dimension vector:

$$
\mathbf{x}_{i}=\left(\Phi_{2}(i), \Phi_{3}(i), \ldots, \Phi_{p(d)}(i)\right)
$$

where $p(k)$ is the k-th prime number.

Low Discrepancy Sequences

Halton Sequence: Example

Base $X=2$; Base $Y=3$

Base $X=2$; Base $Y=3$; Base $Z=5$

Low Discrepancy Sequences

Halton Sequence: Example

Base $X=2$; Base $Y=6$

Low Discrepancy Sequences

Halton Sequence

- The discrepancy when generating a d-dimensional vector is:

$$
O\left(\frac{(\log n)^{d}}{n}\right),
$$

where n is the number of samples.

Low Discrepancy Sequences

Hammersley Sequence

- The Hammersley sequence employs as well the radical inverse base.
- Again, we use a different base for each dimension:
- Each base needs to be co-prime with the others!
- As before, we use the first $(d-1)$-prime for generating a d-dimension vector. The vector, compared to Halton's one, has the following change in the generation:

$$
\mathbf{x}_{i}=\left(\Phi_{2}(i), \Phi_{3}(i), \ldots, \Phi_{p(d-1)}(i), \frac{i}{n}\right)
$$

- Note: the number of samples, n, has to be known in advance!

Low Discrepancy Sequences

Hammersley Sequence: Example

Hammersley Sequence

Low Discrepancy Sequences

Halton Sequence

- The discrepancy when generating a d-dimensional vector is:

$$
O\left(\frac{(\log n)^{d-1}}{n}\right),
$$

where n is the number of samples.

Low Discrepancy Sequences

Limitations

- Both Halton sequence and Hammersley sequence have some issues:
- We may have regular patterns.
- They are not ideal for parallel applications:
- All threads will generate the same sequence!
- A possible solution is to randomize such sequences:
- We apply a random permutation for the digits of a number.

Low Discrepancy Sequences

Other Sequences

- Faure: is based on Van der Corput's sequences, but there is only a base for different dimensions. This is a large prime number:
- We have permutations with each dimension.
- Sobol: based on algebra of polynomials in \mathbb{F}_{2} :
- It can be computed using Gray codes.

Poisson-Disk Sampling

Poisson-Disk Sampling

Main Idea

- Poisson-disk sampling is a sequential random process for generating samples in a domain.
- Each generated sample/point has to be "disk-free" for a minimum distance r :

Poisson-Disk Sampling

Main Idea

- Poisson-disk sampling is a sequential random process for generating samples in a domain.
- Each generated sample/point has to be "disk-free" for a minimum distance r :

Poisson-Disk Sampling

Main Idea

- This method does not guarantee low-discrepancy, but it creates point-sets without regularity.
- The goal of this sequence is to generate samples with blue noise properties; i.e., the spectrum of a sequence has certain properties:
- uniformity.
- isotropic.

Poisson-Disk Sampling

Main Idea

- To achieve Poisson-Disk Sampling, there are a huge literature: 2D, nD, spatially varying radius according a PDF, different distributions, etc.
- The most famous algorithms:
- Dart Throwing: we draw a sample, \mathbf{x}_{i}, we accept it if its neighbors are at a minimum distance $d \geq r$.
- Samples removal: we draw a huge number of samples, we remove that samples that close to others; i.e., $d \leq r$.
- Spatial data structures helps in reducing computational complexity:
- Bridson 2007 algorithm.

Possin-Disk Sampling

Example

Randomized QMC

Randomized QMC

Main Idea: Cranley-Patterson Rotation

- One problem of QMC is that if we run it on parallel, all threads will start to generate exactly the same samples!
- Another issue is that we cannot have the error estimation that we have in classic Monte-Carlo.
- A solution is to apply a random shift to the sequence:

$$
\mathbf{x}_{i}^{\prime}=\mathbf{x}+\mathbf{u} \bmod 1 \quad \mathbf{u} \in \mathbf{U}(0,1) .
$$

- This solution is called Cranley-Patterson rotation.

Main Idea: Cranley-Patterson

Example

Main Idea: Cranley-Patterson

Example

Main Idea: Cranley-Patterson

Example

Randomized QMC

Main Idea: Scrambling

- Cranley-Patterson rotation works and is low discrepancy. However, it does not preserve stratification properties of a sequence.
- A solution is scrambling the digits of numbers in a sequence. For example in 1D:

$$
x=\sum_{i=0}^{\infty} x_{i} b^{-i-1} \rightarrow x^{\prime}=\sum_{i=0}^{\infty} x_{i}^{\prime} b^{-i-1}
$$

- Where we apply random permutations:

$$
\begin{array}{lc}
x_{0}^{\prime}= & \pi\left(x_{0}\right) \\
x_{1}^{\prime}= & \pi_{x_{0}}\left(x_{1}\right) \\
x_{2}^{\prime}= & \pi_{x_{0}, x_{1}}\left(x_{2}\right)
\end{array}
$$

and π are permutations of $\{0, \ldots, b-1\}$.

Bibliography

- Art Owen. "Chapter 15: The Quasi-Monte Carlo parts" from the book "Monte Carlo theory, methods and examples". 2019.
- Paolo Brandimarte. "Handbook in Monte-Carlo Simulation". Wiley. 2014.
- Matt Pharr, Greg Humphreys. "Chapter 7: Sampling and Reconstruction" from the book "Physically Based Rendering - Second Edition". Morgan Kaufmann. 2010.

Thank you for your attention!

