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Variance Reduction

Introduction

 Main techniques:
* Antithetic Sampling
o Stratification
* Russian Roulette
* Importance Sampling

* Metropolis Sampling



Antithetic Sampling



Antithetic Sampling

Main Idea

e Monte-Carlo leads to error cancellation; and this is our aim when we do antithetic
sampling; i.e., we are trying to balance samples with their opposites.

» We look for a value of f(X) that gives us an opposite value X*; one time low and the
other high.

e How?
» If the p(X) is symmetric (e.g., the uniform), we can generate x* as:
x* =2¢ — X,

where ¢ is the center point of the domain.



Antithetic Sampling

Main Idea

* The estimate, for averages, changes into:

L 1Y o
fir =~ Z (f(xi) f(x: >>,

where 71 I1s even.

e The variance here Is defined as:

A ] ¢ o*
Var(fiy) = Var(— 2. (%) f(x;*)) =— (1 + p)) pel-11].
n = n
» p is the correlation between f(x) and f(x*). Note that in the best case, p = — 1, we have the exact

answer, otherwise in the worst case, p = 1, we doubled the variance!



Antithetic Sampling

Example: Integration

* |et’s integrate

fX)==((x;—c)*+(xm—c)H+4 x€[02]%, c=(1,1)

* \We create antithetic samples as:

X’ =2¢c-x;=(22) —x,



Antithetic Sampling

Example: Integration
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Antithetic Sampling

Example: Stocks

« Let’s assume we have a return of a portfolio, X, with n stocks with investment
proportional to a; > 0 (they are normalized):

J(X) = log< Z a; eXp(Xi)) -
=1

» Let’s assume that equally invested in each stock; L.e., a; = n_l, and

X ~ N(u = 0.001,6 = 0.03). We create antithetic samples as:

X* =2u—X,=0.002 - X



Stratification



Stratification

Main Idea

* This strategy is the follow:

» To split the domain of X into different regions.

* o sample points in each region

» To combine the results of each region; e.g., to estimate E( f(X)).

* |f each region get an equal number of samples, we should improve the quality
of our estimate.



Stratification

Main Idea

* So our goal is to compute:

—(J(R)) = J J(X)p(x)dx.
9)

 We partition €2 into K regions, €2, ..., (¢, where:
w; = P(X € Q)) where p(x) = a)j_lp(X)lxegj

. For the j-th region, we generate n; samples, X',1» X]n according to pj(X).

Z Zf(X, ).

= Jll



Stratification

Main Idea

* This sampling is unbiased:

K n; K
() = ) o (2 D fX;) ) 2 wjj fx)p(x)dx
j=1

= ) [ JX)p(x)dx = J SX)p(x)dx = p
9)

j=1 "%



Stratification

Main Idea

« A typical allocation for n; IS proportional to w::

 This leads to:

e Note that:

. This means that: ji & 2.58\/VAar(/2).

] &
fi=— Y,
G

J

13y
a=—), ) fX;).
n - "
j=1 i=1
2 1 S (Y _ A)Z
T 1 ij ~
i =l

Var(/2)



Stratification

Example
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Stratification

Example




Stratification

Example
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Stratification

Example
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Stratification

Example
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Stratification

Example
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n-Rooks Sampling



n-Rooks Sampling

Main Idea

o Stratification has an issue; the curse of dimensionality:

» |If we divide our domain with sub-cubes with side 1/m and we place just a
sample per cube, we need n = m¢ samples.

* [his becomes a very large numbers when we start to have many
dimensions in our problem!

* This is a similar problem that we have when dealing with regular grids.

* A solution is to draw a sample for each dimension component for

X ~ U(0,1)%



n-Rooks Sampling

Main Idea




n-Rooks Sampling

Main Idea

* How do we generate samples?

n

1

- Where 7; is a uniform random permutations of the set {0,...,n—1} and Ui,j ~ U][0,1).

 The name comes from a chess analogy: we place a sample as it were a rook controlling
the rows and columns where it is placed on the chess board.

e This method has been discovered several times In different fields and it has different
names: Latin Hypercube Sampling, Lattice Sampling, etc.



n-Rooks Sampling

Main Idea

i




n-Rooks Sampling

Main Idea

-----




n-Rooks Sampling

Main Idea

* This sampling works best when we have additive functions:

d
0 = fo+ ) fix).
=1

e This means that its variance is:

o1 , c* (1)
Var(f) = — Jr(x) dx < +o| — r(x) = f(x) — f,(X).

n n—1 n

* |In the worst case, this sampling increases the variance by:

n

n—1



n-Rooks Sampling

Main Idea




n-Rooks Sampling

Main Idea




Russian Roulette



Russian Roulette

Main Idea

 VVon Neumann and Ulam introduced this method that removes samples with
low probabillity.

* Firstly, we need to split our domain into n sub-regions.

» For each sub-region, we need to know the probabillity, p;, of that region to be
picked.

» We generate a sample, X, for that region with probabillity p..

 NOTE: This method can be used in both integration and simulations.



Russian Roulette

Example

Photons

We emit photons with power E.

Light source



Russian Roulette

Example

We have a media that absorb the photon exp(—cyx),

Beer’s Law, where ¢ is a constant of the media and x is
the travelled distance.



Russian Roulette

Example

—
G:




Russian Roulette

Example




Russian Roulette

Example

exp(—coX)



Russian Roulette

Example
* |n this case, we want to estimate the mean energy reaching the end of the
media, which absorbs photons’ energy.

* |f we reduce the power of each photon, we are left with low energy photons,
so we start to have tiny values —> numerical issues with floating point

numbers!

* We use Russian Roulette to avoid to sum tiny values up:

 We keep photons with probabillity:

u < e ot u € U0,1).



Importance Sampling




Importance Sampling

In Integration

* |mportance sampling can be a powerful tool for reducing variance quickly.

* |et's recap how we estimate our averages:

f, = - i 8(X;) = ~ i sl X S
=1

* How can we speed this up?

» Drawing samples with a PDF that is close to our function f that we want to integrate.

* We need to do this with care, it may backfire badly; e.qg., infinite variance for a
problem with finite variance!



Importance Sampling
Main Idea: The Ideal Distribution

* The ideal distribution for sampling would be

p(Xx;) x f(Xx;) = p(X;) = cf(X,) .
 This means:

1
[ fxdx

* Note that this require to know the integral that we want to estimate!

C



Importance Sampling

Main Idea

 More In general, in our usual estimation:

—(f(X)) = J JX)p(x)dx,
2,

we would like to speed estimation using X ~ ¢, where ¢ is a PDF. So, we
have to:

JX)p(X)dx = J

J(X)p(x) ] (f (X)p(x) )
g 4 (X) |

—(f(x)) = J g(X)dx =
q(X)

&),



Importance Sampling

Main Idea

* This leads to the importance sampling estimator:

AX)p(X),
”q”__z( 7(X) ) Rimd

 The important thing here is that we can compute the term:
1(0:9)) 0.9}
qg(X;)



Importance Sampling

Main Idea

» When g¢(X,) > 0 and f(X,)p(X); # 0, we have that:

(1 — A D _
(ﬂq,n) — H Var(,uq,n) = 0, where:

2 B ,
o2 = J (fX)p(x)) dx — = [ (fX)p(x) — pg(x)) ix 6= i{x|qx)>0).
o 49X % q(X)

* A good g helps us to reduce variance!

» Small values of g(X) destroys being proportional to f(X)p(X).



Importance Sampling

Main Idea

» When g¢(X,) > 0 and f(X,)p(X); # 0, we have that:

(1 — A D _
(ﬂq,n) — H Var(,uq,n) = 0, where:

2 - 2
) J (fX)p(x)) dx by = [ (fX)p(x) — pg(x)) ix 6={x|ax)>0).
o 49X % q(X)

Oq

* A good g helps us to reduce variance!

» Small values of g(X) destroys being proportional to f(X)p(X).



Importance Sampling

Main Idea

» When g¢(X,) > 0 and f(X,)p(X); # 0, we have that:

A . ~ o ) .
—(f, ) = M Var(fi,, ) = o, where:

2 - 2
) J (fX)p(x)) dx by = [ (fX)p(x) — pg(x)) ix |6 = (xlax) > 0).
o 49X % q(X)

Oq

* A good ¢g helps us to reduce variance!

» Small values of g(X) destroys being proportional to f(X)p(X).



Importance Sampling

Main Idea

» Another insights is that a zero variance g(X) means that we just need f(X) and
p(X) to compute our estimate!

 How does this help us?

» We should design g(X) to follow energy peaks when f(X)p(X) does!

 Jo achieve this, we have to know the specific problem.



Importance Sampling

Example

0.4

« We want to integrate N(0,1) in
[0,2]_ 0.35

0.3

 \We use as guiding PDF;

( ) 15 2 X 0.25 -
N=—[——-—=—. 5
1 7\5 6

* With 10,000 sample we get a 0.15 -
o = 0.04435, and this is less

than o = 0.2291 using uniform
Sampllng' 0.050 O.|2 O.|4 O.|6 O.|8 ‘ll 1.|2 1.|4 1.|6 1.|8 2

X

0.1
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Metropolis Sampling
Markov Chain

A Markov Chain is a sequence of random variables, X..
 Such random variables have to satisfy the following:
P(Xip1 = X 1 X = X .., Xy = xp) = P(Xi = X1 | X; = X)),
where X: € €2, the space state.

* This means that a Markov Chain does not have a memory; i.e., the next state
depends only on the previous one.



Metropolis Sampling
Markov Chain

e When we have n states, we can define a n X n matrix called the transition matrix:

0.0 05 0.25 0.25
0.1 0.05 0.8 0.05
09 005 00 05
0.2 035 045 0.0

Note that V; ;P(i,j) > 0 and Z P@,)) = 1.
j=1



Metropolis Sampling
Markov Chain

e A distribution, 7z, over €2 is stationarity when:

V. .com(x) = Z n(y)P(y — x), this means 7 = 7P,
Q

where P(x,y) = P(x — ), Z n(x) = 1,and V_z(x) > 0.
Q



Metropolis Sampling

Main Idea

» Metropolis-Hastings Sampling draws samples by knowing only our PDF p(X)
or z(X) in Markov Chain theory. Requirements:

» 77(X) has to be positive;

« We can evaluate 7(X).
* NoO need to:

« Compute the CDF;

* Invert the CDF.



Metropolis Sampling

Main Idea

 In MH, we accept/use a new generated sample X._ ; as:

u < AX; = X1 u € U(0,1),

where:

(X, )X, = X
A(X; = X, ) = min@M)_

n(X)T(X; = X, 1)



Metropolis Sampling

Main Idea

 |f the distribution is already at equilibrium we have detailed balance. This is defined as:
(X )T (X = XDAX; = X1 ) = 7(X)T(X; = X ).

* Note that our problem is:

—(f(X)) = J J(X)n(x)dx,
D

and our classic estimator Is;

1
U . izzl,f( ) l



Metropolis Sampling

Main ldea: Generating New Samples and the Transition Function

« How do we generate X, {7

« We start from X;, and we modify/mutate it:

* For this mutation, we have to know how to compute its PDF or:

» Note thatif 7(x,, ; = X;) = T(X; = X, ), we can simplify A as:

(X, 1) )

n(X;)

AX; = X ) = min(l,



Metropolis Sampling

Main ldea: Mutations

« How do we mutate samples?
* We should perturb samples with big changes rather than small ones:
 We have to explore as fast as possible the entire domain to find peaks.
* \We do not want to explore a local minima:
e Variance will increase as well if we do not move our samples around.

 We also have to find a balance because too large mutations may be rejected
more easily:

 We can rely on more than one mutation strategy.



Metropolis Sampling

Main ldea: Start-up Bias

» How do we pick X7

« Warm-up: We may start with a random X, run some iterations of MH, and then we have to
hope for the best. How many? b = n/2. So our estimator becomes:

.1
fp=— ) fix) b<n

i=b+1

» Weighting: We sample X, ~ p, and then we need to take into account of this PDF by scaling
the samples that we will draw by:

(X))

p(Xo)




Metropolis Sampling

Main Idea: Error

* Jo have an estimate of the error interval of our estimate, we use batching.

« We get n samples in total, which are the sum of [ batches with k consecutive samples. We analyze
our batches:

13
Viellk Y= T Z Vi y; = f(X).
i=(j—1k+1

* So our error interval is given by

~|

1 K
s S = s D G
=1

where f Is the Student’s 7 function



Some Extra Stuff



Common Random Numbers

Main Idea

* |n some cases, we have to estimate:

=(f(x) — g(x)) = E(f(x)) — E(g(x))

* Therefore, we can do our estimate in two ways:

< 1< 1 1
fiy = " Z}f(xi) -8(x)  f,= - D fx;) - — D, 8(x).

e Note that the variance varies:

1
Var(ﬂ,f) = — (sz + ng — 2p0fag> pel|-1,1]



Moment Matching

Main Idea

» In some cases, we know [E(X) = ux. When this happens, we can improve:

ft, = E(f(x)).

by adjusting samples mean as:

A\

e This can be extended to variance as well if we have It.
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Thank you for your attention!



