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Variance Reduction

Introduction

• Main techniques:


• Antithetic Sampling


• Stratification


• Russian Roulette


• Importance Sampling


• Metropolis Sampling



Antithetic Sampling



Antithetic Sampling
Main Idea

• Monte-Carlo leads to error cancellation; and this is our aim when we do antithetic 
sampling; i.e., we are trying to balance samples with their opposites.


• We look for a value of  that gives us an opposite value ; one time low and the 
other high.


• How?


• If the  is symmetric (e.g., the uniform), we can generate  as:


,


where  is the center point of the domain.

f(x) x⋆

p(x) x⋆

x⋆ = 2c − x

c



Antithetic Sampling
Main Idea

• The estimate, for averages, changes into:


,


where  is even.


• The variance here is defined as:


.


•  is the correlation between  and . Note that in the best case, , we have the exact 
answer, otherwise in the worst case, , we doubled the variance!

̂μ⋆
n =

1
n

n
2

∑
i=1

(f(xi) + f(x⋆
i ))

n

Var( ̂μ⋆
n ) = Var( 1

n

n
2

∑
i=1

f(xi) + f(x⋆
i )) =

σ2

n (1 + ρ)) ρ ∈ [−1,1]

ρ f(x) f(x⋆) ρ = − 1
ρ = 1



Antithetic Sampling
Example: Integration

• Let’s integrate


.


• We create antithetic samples as:


  

f(X) = − ((x1 − c1)2 + (x2 − c2)2) + 4 x ∈ [0,2]2, c = (1,1)

x⋆
i = 2c − xi = (2,2) − xi



Antithetic Sampling
Example: Integration
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Antithetic Sampling
Example: Stocks

• Let’s assume we have a return of a portfolio, , with  stocks with investment 
proportional to  (they are normalized):


.


• Let’s assume that equally invested in each stock; i.e., , and 
. We create antithetic samples as:


 

X n
αi ≥ 0

f(X) = log(
n

∑
i=1

αi exp(Xi))
αi = n−1

Xi ∼ N(μ = 0.001,σ = 0.03)

X⋆
i = 2μ − Xi = 0.002 − Xi



Stratification



Stratification
Main Idea

• This strategy is the follow:


• To split the domain of  into different regions.


• To sample points in each region


• To combine the results of each region; e.g., to estimate .


• If each region get an equal number of samples, we should improve the quality 
of our estimate.

X

𝔼( f(X))



Stratification
Main Idea

• So our goal is to compute:


.


• We partition  into  regions, , where:


 where 


• For the -th region, we generate  samples, , according to .


.

𝔼( f(X)) = ∫Ω
f(x)p(x)dx

Ω K Ω1, …, ΩK

ωj = P(X ∈ Ωj) pj(x) = ω−1
j p(x)1x∈Ωj

j nj Xj,1, …Xj,nj
pj(x)

̂μ =
K

∑
j=1

ωj

nj

nj

∑
i=1

f(Xi,j)



Stratification
Main Idea

• This sampling is unbiased:


 


 

𝔼( ̂μ) =
K

∑
j=1

ωj𝔼( 1
nj

nj

∑
i=1

f(Xj,i)) =
K

∑
j=1

ωj ∫Ωj

f(x)pj(x)dx

=
K

∑
j=1

∫Ωj

f(x)p(x)dx = ∫Ω
f(x)p(x)dx = μ



Stratification
Main Idea

• A typical allocation for  is proportional to :


.


• This leads to:


.


• Note that:


.


• This means that: .

nj ωj

nj = ⌈nωj⌉

̂μ =
1
n

K

∑
j=1

nj

∑
i=1

f(Xi,j)

̂μj =
1
nj

nj

∑
i=1

Yi,j s2
j =

1
nj − 1

nj

∑
i=1

(Yi,j − ̂μj)2 ̂Var( ̂μ) =
K

∑
i=1

ω2
j

s2
j

nj

̂μ ± 2.58 ̂Var( ̂μ)



Stratification
Example
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Stratification
Example
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Stratification
Example
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Stratification
Example
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Stratification
Example
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Stratification
Example
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-Rooks Samplingn



-Rooks Samplingn
Main Idea

• Stratification has an issue; the curse of dimensionality:


• If we divide our domain with sub-cubes with side  and we place just a 
sample per cube,  we need  samples.


• This becomes a very large numbers when we start to have many 
dimensions in our problem!


• This is a similar problem that we have when dealing with regular grids.


• A solution is to draw a sample for each dimension component for 
.

1/m
n = md

X ∼ U(0,1)d



-Rooks Samplingn
Main Idea



-Rooks Samplingn
Main Idea

• How do we generate samples?





• Where  is a uniform random permutations of the set  and .


• The name comes from a chess analogy: we place a sample as it were a rook controlling 
the rows and columns where it is placed on the chess board. 


• This method has been discovered several times in different fields and it has different 
names: Latin Hypercube Sampling, Lattice Sampling, etc.

Xi,j =
1
n (πj(i − 1) + Ui,j) i ∈ [1,n], j ∈ [1,d]

πj {0,…, n − 1} Ui,j ∼ U[0,1)



-Rooks Samplingn
Main Idea



-Rooks Samplingn
Main Idea



-Rooks Samplingn
Main Idea

• This sampling works best when we have additive functions:


.


• This means that its variance is:


.


• In the worst case, this sampling increases the variance by:


.

fa(x) = f0 +
d

∑
i=1

fi(xi)

Var( ̂μ) =
1
n ∫ r(x)2dx ≤

σ2

n − 1
+ o( 1

n ) r(x) = f(x) − fa(x)

n
n − 1



-Rooks Samplingn
Main Idea



-Rooks Samplingn
Main Idea



Russian Roulette



Russian Roulette
Main Idea

• Von Neumann and Ulam introduced this method that removes samples with 
low probability.


• Firstly, we need to split our domain into  sub-regions.


• For each sub-region, we need to know the probability, , of that region to be 
picked.


• We generate a sample, , for that region with probability .


• NOTE: This method can be used in both integration and simulations. 

n

pi

xi pi



Russian Roulette
Example

Light source

Photons

We emit photons with power E.



Russian Roulette
Example

We have a media that absorb the photon , 
Beer’s Law, where  is a constant of the media and  is 
the travelled distance.

exp(−c0x)
c x

x



Russian Roulette
Example



Russian Roulette
Example



Russian Roulette
Example

exp(−c0x)



Russian Roulette
Example

• In this case, we want to estimate the mean energy reaching the end of the 
media, which absorbs photons’ energy.


• If we reduce the power of each photon, we are left with low energy photons, 
so we start to have tiny values —> numerical issues with floating point 
numbers!


• We use Russian Roulette to avoid to sum tiny values up:


• We keep photons with probability:


.u < e−c0x u ∈ U(0,1)



Importance Sampling



Importance Sampling
In Integration

• Importance sampling can be a powerful tool for reducing variance quickly.


• Let’s recap how we estimate our averages:


 .


• How can we speed this up?


• Drawing samples with a PDF that is close to our function  that we want to integrate.


• We need to do this with care, it may backfire badly; e.g., infinite variance for a 
problem with finite variance!

̂μn =
1
n

n

∑
i=1

g(xi) =
1
n

n

∑
i=1

f(xi)
p(xi)

xi ∼i.i.d. p

f



Importance Sampling
Main Idea: The Ideal Distribution

• The ideal distribution for sampling would be 


 .


• This means:


 .


• Note that this require to know the integral that we want to estimate!

p(xi) ∝ f(xi) → p(xi) = cf(xi)

c =
1

∫
𝒟

f(x)dx



Importance Sampling
Main Idea

• More in general, in our usual estimation:


 ,


we would like to speed estimation using , where  is a PDF. So, we 
have to:


 .

𝔼( f(x)) = ∫𝒟
f(x)p(x)dx

X ∼ q q

𝔼( f(x)) = ∫𝒟
f(x)p(x)dx = ∫𝒟

f(x)p(x)
q(x)

q(x)dx = 𝔼( f(x)p(x)
q(x) )



Importance Sampling
Main Idea

• This leads to the importance sampling estimator:


 .


• The important thing here is that we can compute the term:


 .

̂μq,n =
1
n

n

∑
i=1

( f(Xi)p(X)i

q(Xi) ) Xi ∼ q

f(Xi)p(X)i

q(Xi)



Importance Sampling
Main Idea

• When  and , we have that:


, where:


.


• A good  helps us to reduce variance! 

•  is small when . 

• Small values of  destroys being proportional to .

q(Xi) > 0 f(Xi)p(X)i ≠ 0

𝔼( ̂μq,n) = μ Var( ̂μq,n) = σ2
q

σ2
q = ∫𝒬

( f(x)p(x))2

q(x)
dx − μ2 = ∫𝒬

( f(x)p(x) − μq(x))2

q(x)
dx 𝒬 = {x |q(x) > 0}

q

( f(x)p(x) − μq(x))2 q(x) ∝ f(x)p(x)

q(x) f(x)p(x)



Importance Sampling
Main Idea

• When  and , we have that:


, where:


.


• A good  helps us to reduce variance! 

•  is small when . 

• Small values of  destroys being proportional to .

q(Xi) > 0 f(Xi)p(X)i ≠ 0

𝔼( ̂μq,n) = μ Var( ̂μq,n) = σ2
q

σ2
q = ∫𝒬

( f(x)p(x))2

q(x)
dx − μ2 = ∫𝒬

( f(x)p(x) − μq(x))2

q(x)
dx 𝒬 = {x |q(x) > 0}

q

( f(x)p(x) − μq(x))2 q(x) ∝ f(x)p(x)

q(x) f(x)p(x)



Importance Sampling
Main Idea

• When  and , we have that:


, where:


.


• A good  helps us to reduce variance! 

•  is small when . 

• Small values of  destroys being proportional to .

q(Xi) > 0 f(Xi)p(X)i ≠ 0

𝔼( ̂μq,n) = μ Var( ̂μq,n) = σ2
q

σ2
q = ∫𝒬

( f(x)p(x))2

q(x)
dx − μ2 = ∫𝒬

( f(x)p(x) − μq(x))2

q(x)
dx 𝒬 = {x |q(x) > 0}

q

( f(x)p(x) − μq(x))2 q(x) ∝ f(x)p(x)

q(x) f(x)p(x)



Importance Sampling
Main Idea

• Another insights is that a zero variance  means that we just need  and 
 to compute our estimate!


• How does this help us?


• We should design  to follow energy peaks when  does!


• To achieve this, we have to know the specific problem.

q(x) f(x)
p(x)

q(x) f(x)p(x)



Importance Sampling
Example

• We want to integrate  in 
[0,2].


• We use as guiding PDF:

.


• With 10,000 sample we get a 
, and this is less 

than  using uniform 
sampling.

N(0,1)

q(x) =
15
7 ( 2

5
−

x
6 )

σ = 0.0445
σ = 0.2291
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Metropolis Sampling



Metropolis Sampling
Markov Chain

• A Markov Chain is a sequence of random variables, .


• Such random variables have to satisfy the following:


,


where , the space state. 


• This means that a Markov Chain does not have a memory; i.e., the next state 
depends only on the previous one.

Xi

P(Xi+1 = xi+1 |Xi = xi, …, X1 = x1) = P(Xi+1 = xi+1 |Xi = xi)

Xi ∈ Ω



Metropolis Sampling
Markov Chain

• When we have  states, we can define a  matrix called the transition matrix:


.


Note that  and .

n n × n

P =

0.0 0.5 0.25 0.25
0.1 0.05 0.8 0.05
0.9 0.05 0.0 0.5
0.2 0.35 0.45 0.0

∀i,jP(i, j) ≥ 0
n

∑
j=1

P(i, j) = 1



Metropolis Sampling
Markov Chain

• A distribution, , over  is stationarity when:


, this means , 


where , , and .

π Ω

∀x∈Ωπ(x) = ∑
Ω

π(y)P(y → x) π = πP

P(x, y) = P(x → y) ∑
Ω

π(x) = 1 ∀xπ(x) ≥ 0



Metropolis Sampling
Main Idea

• Metropolis-Hastings Sampling draws samples by knowing only our PDF  
or  in Markov Chain theory. Requirements:


•  has to be positive;


• We can evaluate .


• No need to:


• Compute the CDF;


• Invert the CDF.

p(x)
π(x)

π(x)

π(x)



Metropolis Sampling
Main Idea

• In MH, we accept/use a new generated sample  as:


,


where:


.

xi+1

u ≤ A(xi → xi+1) u ∈ U(0,1)

A(xi → xi+1) = min(1,
π(xi+1)T(xi+1 → xi)
π(xi)T(xi → xi+1) )



Metropolis Sampling
Main Idea

• If the distribution is already at equilibrium we have detailed balance. This is defined as:


.


• Note that our problem is:


,


and our classic estimator is:


.

π(xi+1)T(xi+1 → xi)A(xi → xi+1) = π(xi)T(xi → xi+1)

𝔼( f(x)) = ∫𝒟
f(x)π(x)dx

̂μ =
1
n

n

∑
i=1

f(xi) xi ∼ π



Metropolis Sampling
Main Idea: Generating New Samples and the Transition Function

• How do we generate ?


• We start from , and we modify/mutate it:


• For this mutation, we have to know how to compute its PDF or:


 .


• Note that if , we can simplify  as:


.

xi+1

xi

T(xi+1 → xi)

T(xi+1 → xi) = T(xi → xi+1) A

A(xi → xi+1) = min(1,
π(xi+1)
π(xi) )



Metropolis Sampling
Main Idea: Mutations

• How do we mutate samples?


• We should perturb samples with big changes rather than small ones:


• We have to explore as fast as possible the entire domain to find peaks.


• We do not want to explore a local minima: 


• Variance will increase as well if we do not move our samples around.


• We also have to find a balance because too large mutations may be rejected 
more easily:


• We can rely on more than one mutation strategy.



Metropolis Sampling
Main Idea: Start-up Bias

• How do we pick ?


• Warm-up: We may start with a random , run some iterations of MH, and then we have to 
hope for the best. How many?  . So our estimator becomes:


.


• Weighting: We sample , and then we need to take into account of this PDF by scaling 
the samples that we will draw by:


.

x0

x0
b = n/2

̂μ =
1

n − b

n

∑
i=b+1

f(xi) b < n

x0 ∼ p

π(x0)
p(x0)



Metropolis Sampling
Main Idea: Error

• To have an estimate of the error interval of our estimate, we use batching.


• We get  samples in total, which are the sum of  batches with  consecutive samples. We analyze 
our batches:


.


• So our error interval is given by


,


where  is the Student’s  function

n l k

∀j∈[1,k] yj =
1
k

jk

∑
i=( j−1)k+1

yi yi = f(x)

y ± t0.995
k−1 s s2 =

1
k(k − 1)

k

∑
i=1

(yi − y)2

t t



Some Extra Stuff



Common Random Numbers
Main Idea

• In some cases, we have to estimate:


. 


• Therefore, we can do our estimate in two ways:


.


• Note that the variance varies:


.

𝔼( f(x) − g(x)) = 𝔼( f(x)) − 𝔼(g(x)) x ∼ p

̂μC
n =

1
n

n

∑
i=1

f(xi) − g(xi) ̂μI
n =

1
nf

nf

∑
if=1

f(xif) −
1
ng

ng

∑
ig=1

g(xig)

Var( ̂μC
n ) =

1
n (σ2

f + σ2
g − 2ρσfσg) ρ ∈ [−1,1] Var( ̂μI

n) =
1
n (σ2

f + σ2
g)



Moment Matching
Main Idea

• In some cases, we know .  When this happens, we can improve:


,


by adjusting samples mean as:


.


• This can be extended to variance as well if we have it.

𝔼(X) = μX

̂μn = 𝔼( f(x))

x̂i = xi − x + μX
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Thank you for your attention!


