Monte Carlo

Non-Uniform Random Numbers

Francesco Banterle, Ph.D.

Non-Uniform Random Numbers

Introduction

- Typically, to draw random numbers in a non-uniform way following a given distribution is not an easy task; and it needs to be crafted for each distribution!
- A solution is to convert uniform random number into a non-uniform one.
- How?
 - All the information that we need about how a random variable X is distributed is inside its CDF:

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(x) dx.$$

Main Idea

- How do we extract this information from the CDF?
- Let's say we generate a random value $u \in \mathbf{U}(0,1)$, and we set $X = F_X^{-1}(U)$, we obtain:

$$P(X \le x) = P(F_X^{-1}(u) \le x) = P(F_X(F_X^{-1}(u)) \le F_X(x)) =$$

$$P(u \le F_X(x)) = F_X(x).$$

• In this way, we can have X values with ${\cal F}_X$ as distribution!

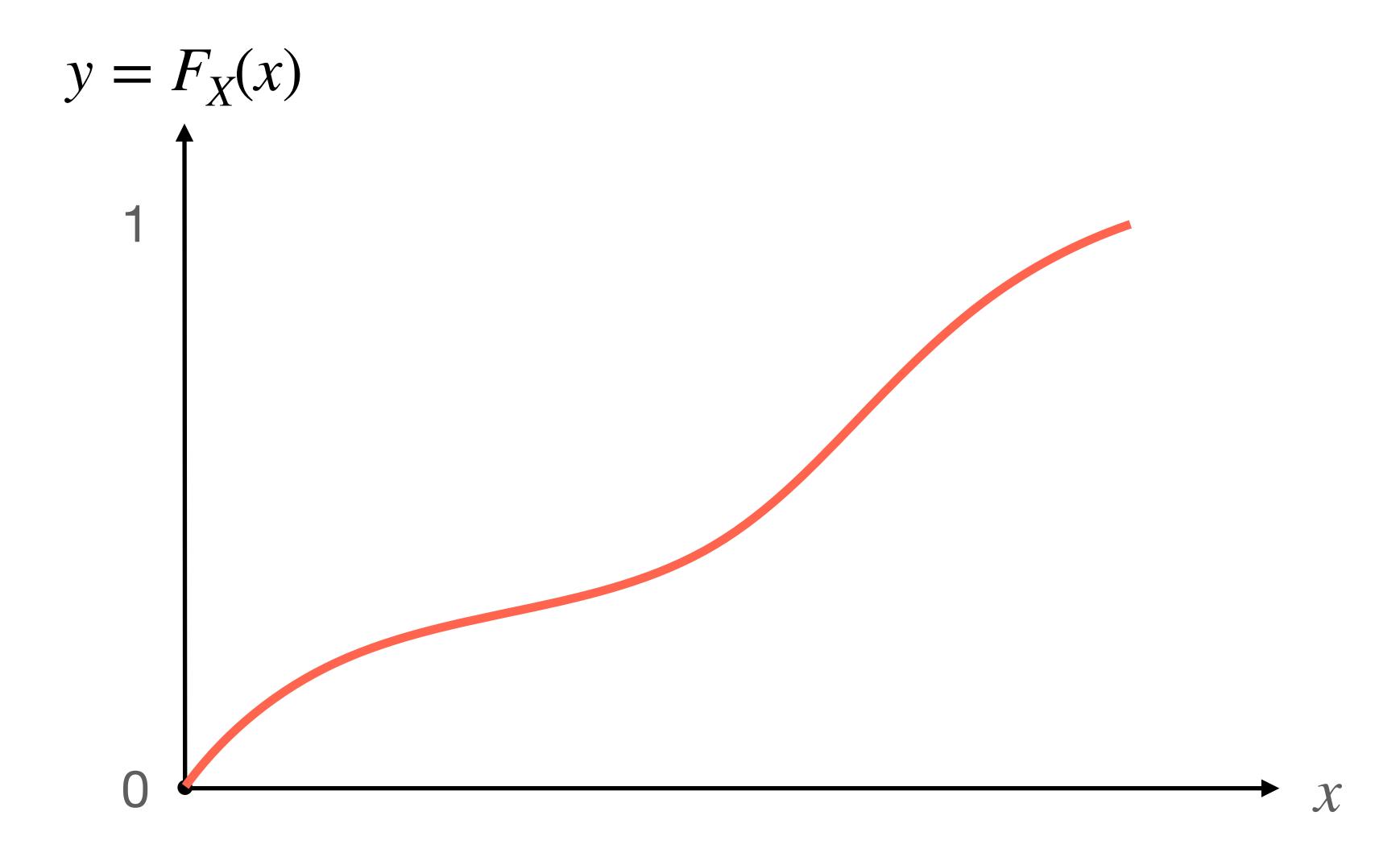
Main Idea

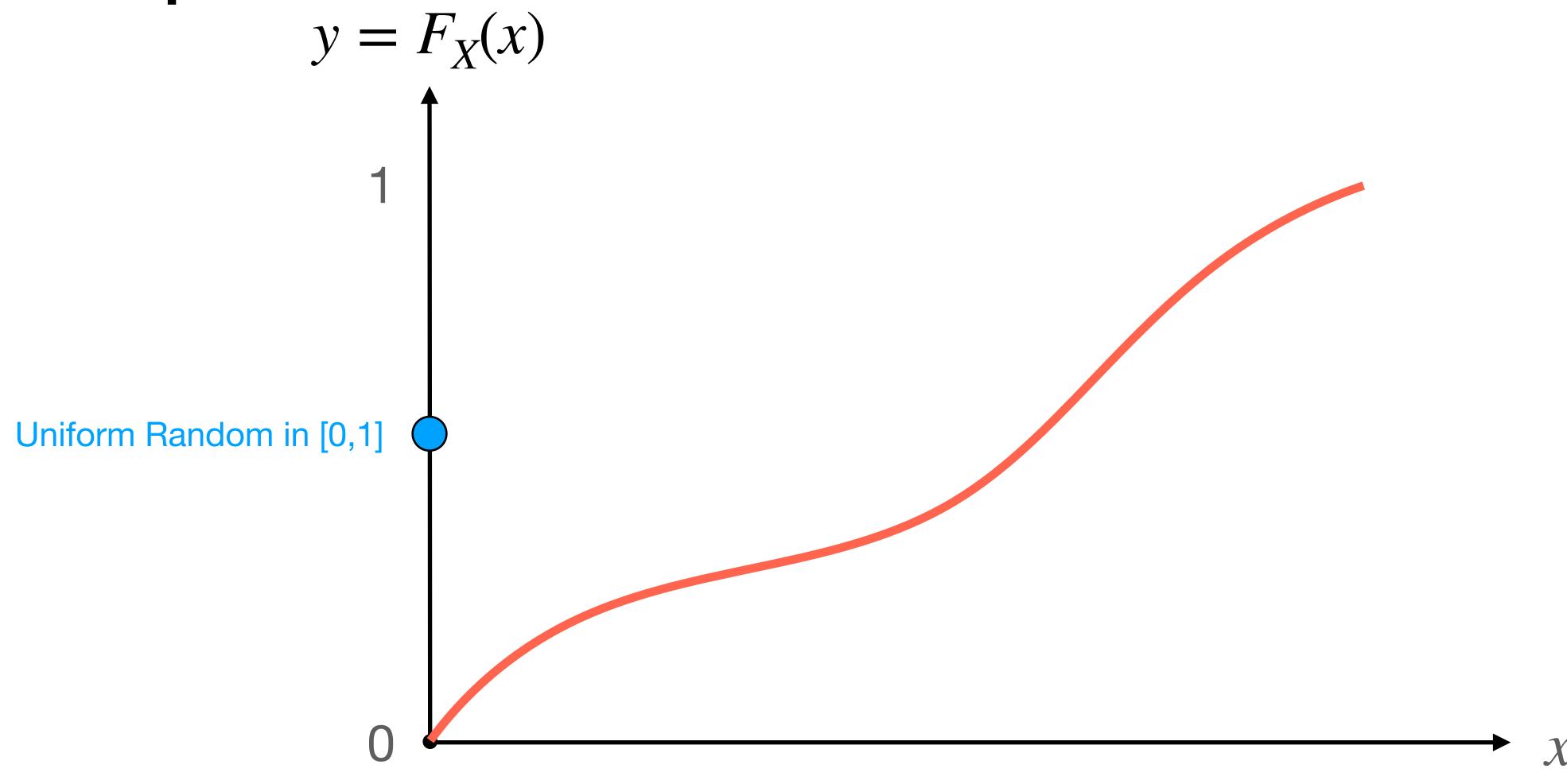
Given the CDF of a distribution:

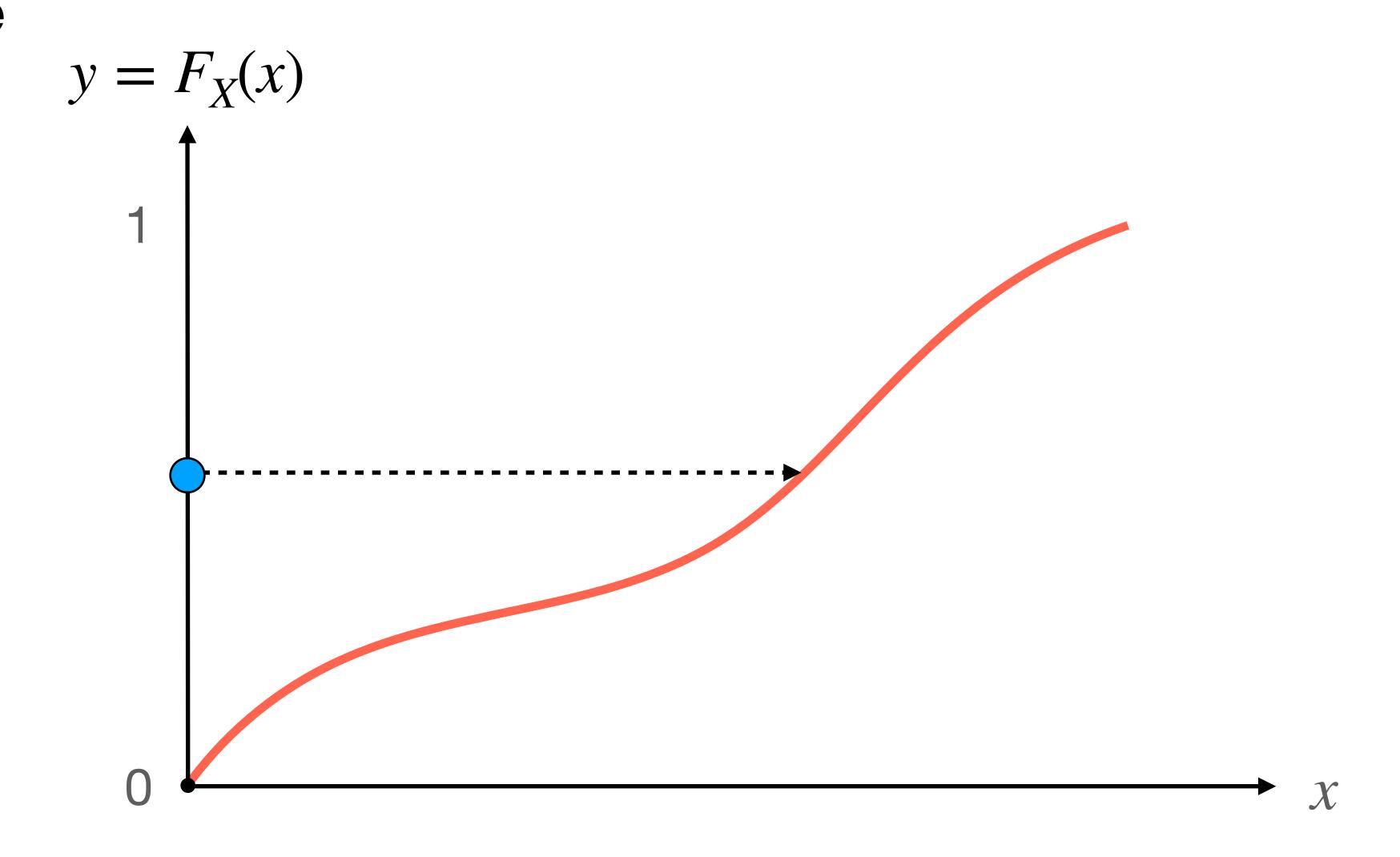
$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} p_X(x) dx.$$

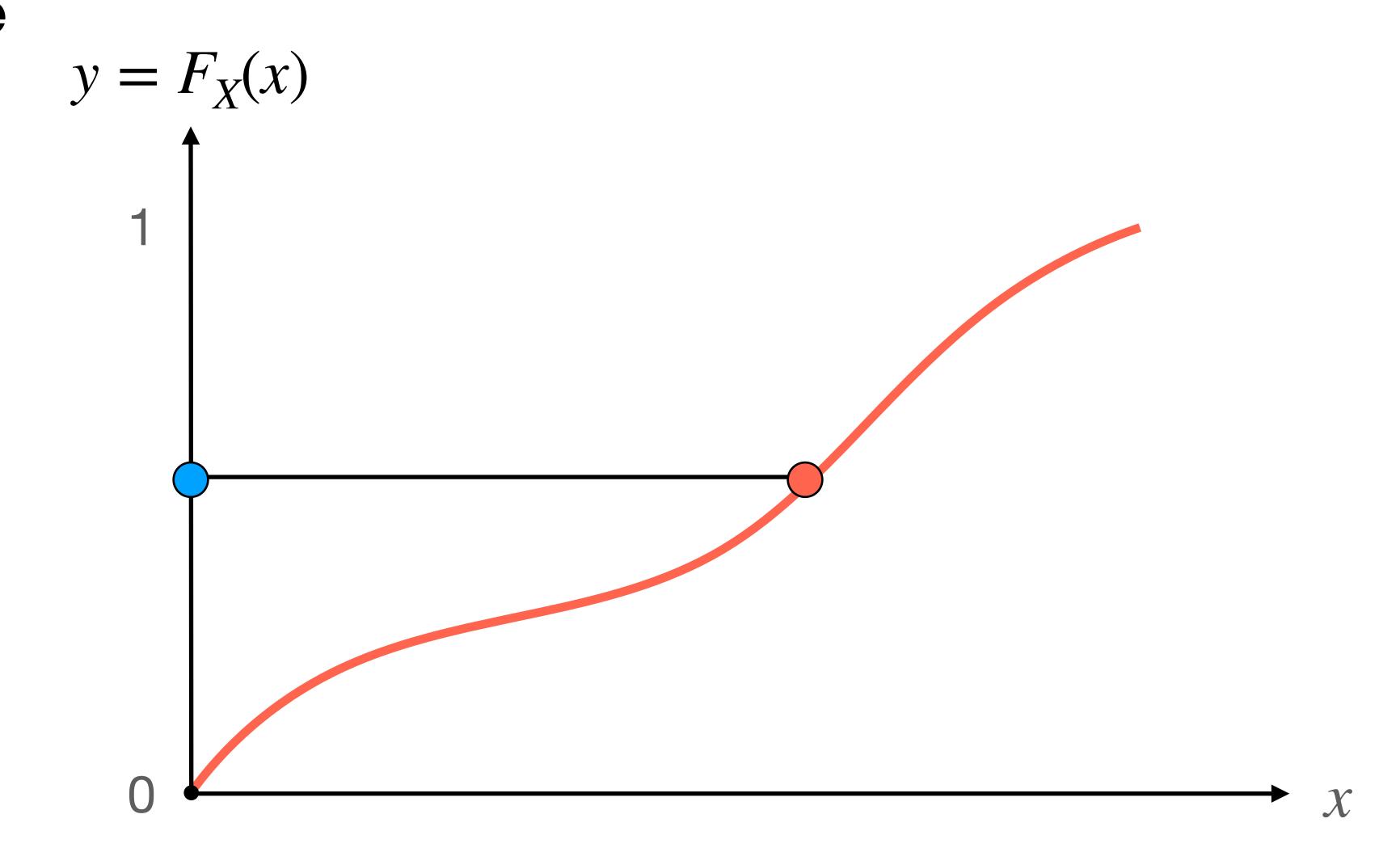
- We generate a non-uniform random numbers as:
 - We first generate a uniform random number, $u \in \mathbf{U}(0,1)$;
 - Then, we compute:

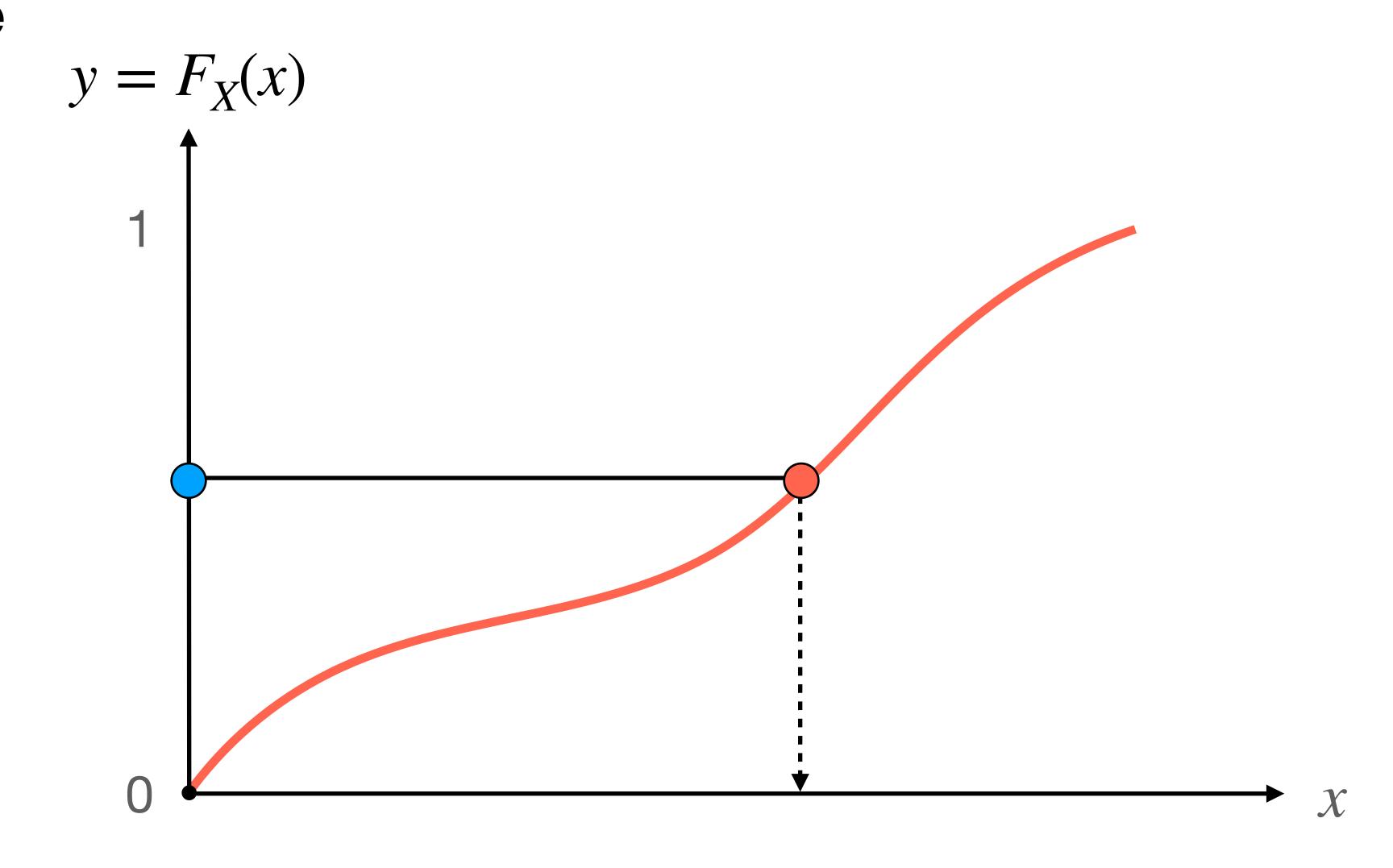
$$u' = F_X^{-1}(u).$$

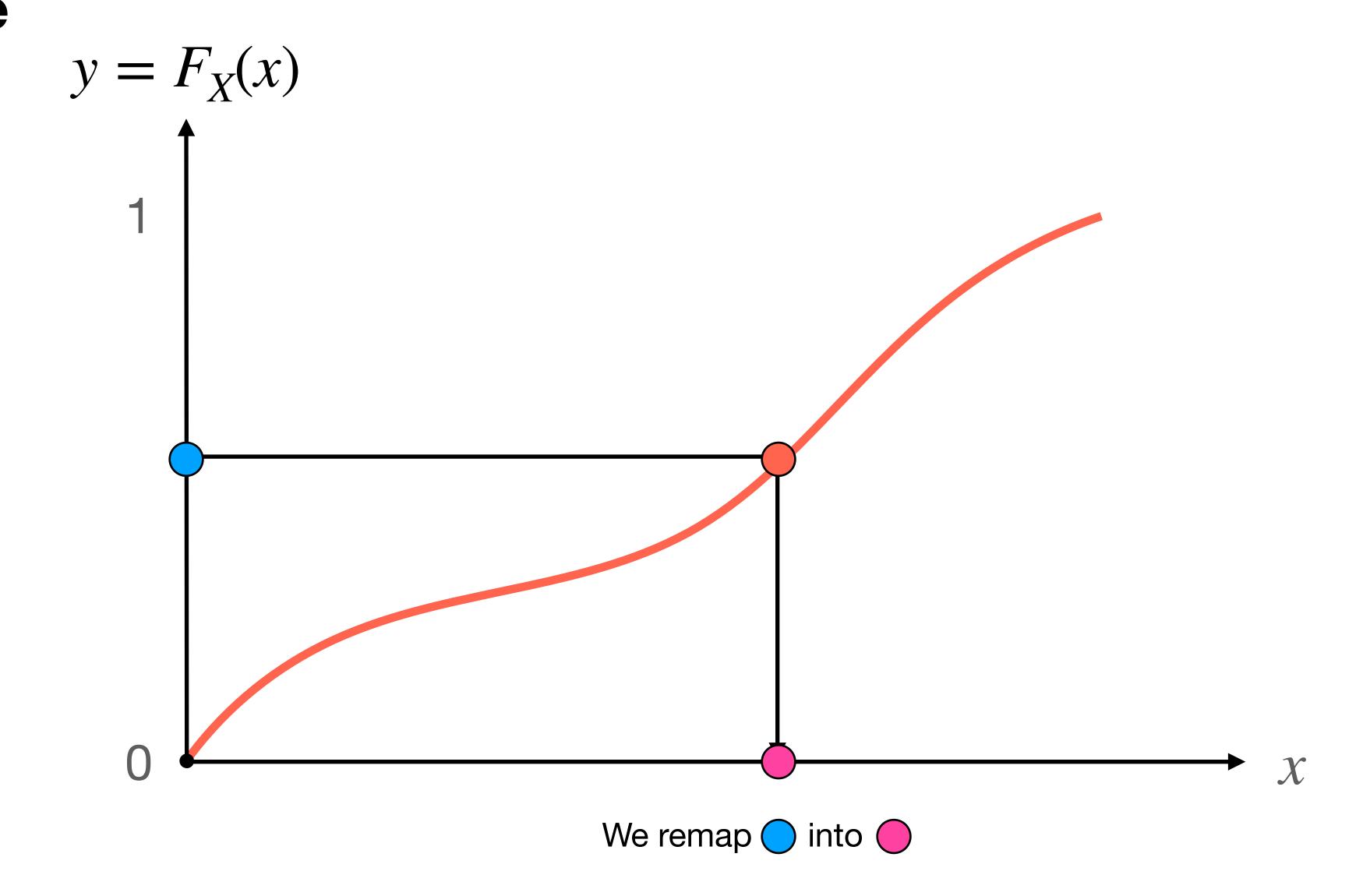








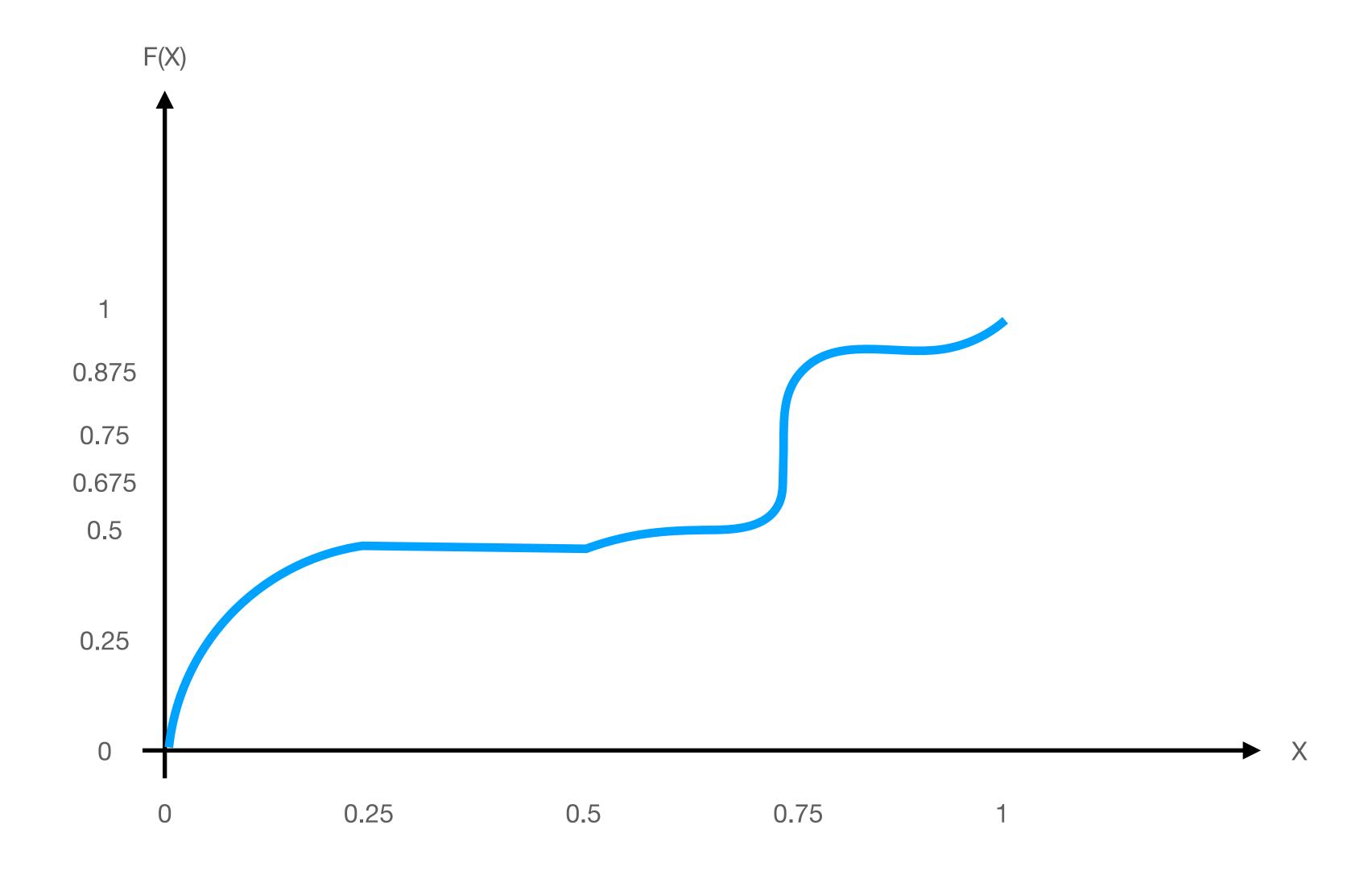


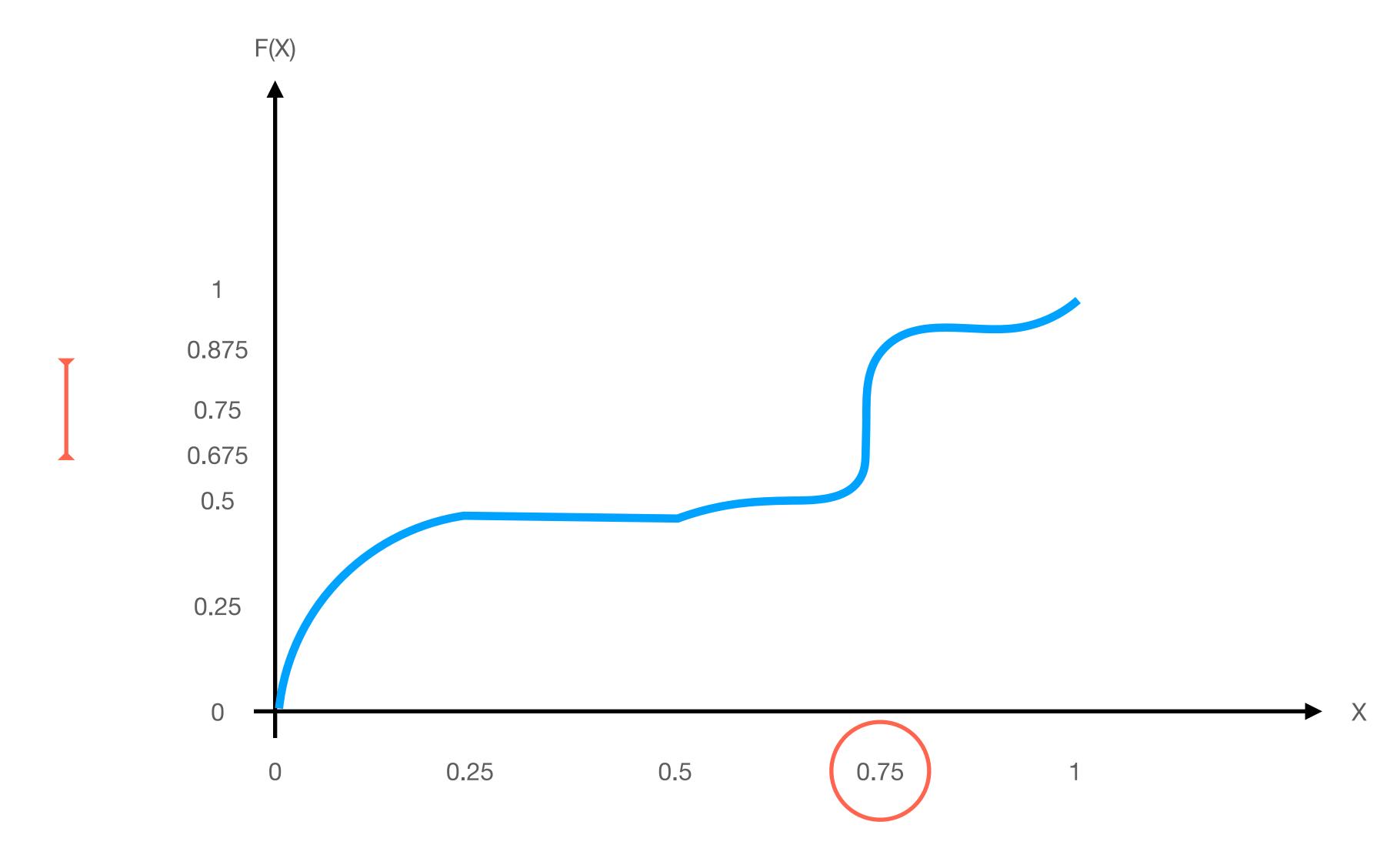


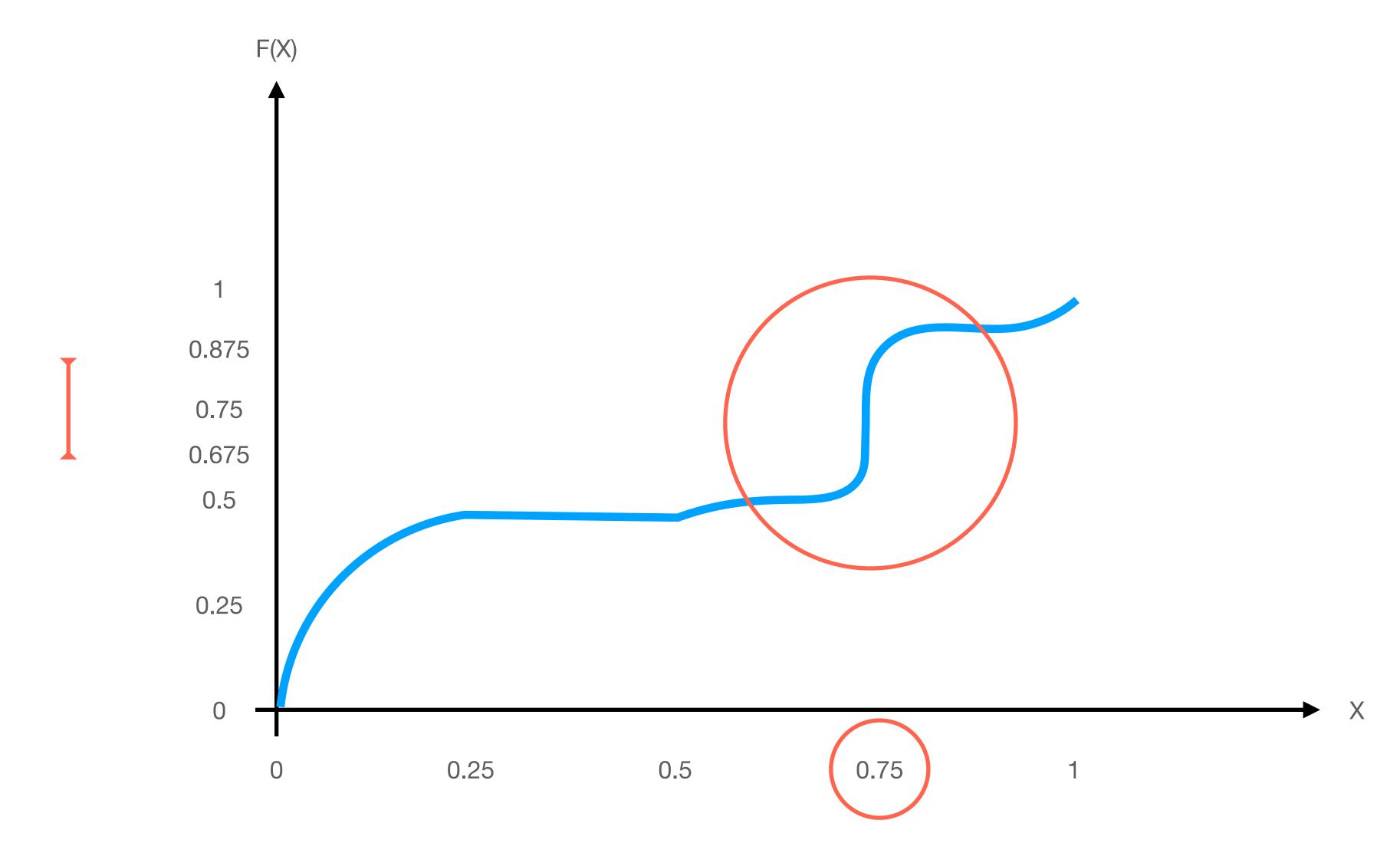
- Note that we draw uniform random numbers $u \in (0,1)$.
- Why?

- Note that we draw uniform random numbers $u \in (0,1)$.
- Why?
 - 0 and 1 may generate some singularities:
 - NaN, +Inf, -Inf

- Note that if $u \sim \mathbf{U}(0,1)$ we have that $1 u \sim \mathbf{U}(0,1)$.
- This means that $F^{-1}(1-u) \sim F$.
 - In some cases, to compute $F^{-1}(u)$ may be difficult.
 - In these cases the complementary inversion equation may be easier to compute!







- In such cases, the inverse is not unique, and it can happen for both continuous and discrete distributions!
- A solution to this problem is:

$$F_X^{-1}(u) = \inf \left\{ x \middle| F_X(u) \ge u \land u \in (0,1) \right\}.$$

Example: Uniform Distribution

The uniform distribution is defined as

$$f(x) = \frac{1}{b-a} \qquad x \in [a,b].$$

• Its CDF is given by:

$$F(x) = \int_{-\infty}^{x} \frac{1}{b - a} dx = \frac{1}{b - a} \int_{-\infty}^{x} dx = \frac{x}{b - a}.$$

So let's compute its inverse:

$$y = \frac{x}{b-a}$$
 multiply both sides by $(b-a)$
$$x = y(b-a)$$

Example: Exponential Distribution

Standard exponential distribution is:

$$f(x) = \exp(-x) \qquad x > 0.$$

Its CDF is given by:

$$F(x) = \int_{-\infty}^{x} e^{-x} dx = 1 - e^{-x}$$
$$y = 1 - e^{-x}$$

So let's compute its inverse:

$$y - 1 = -e^{-x}$$
 add -1 both sides

$$1 - y = e^{-x}$$
 multiply by -1 both sides

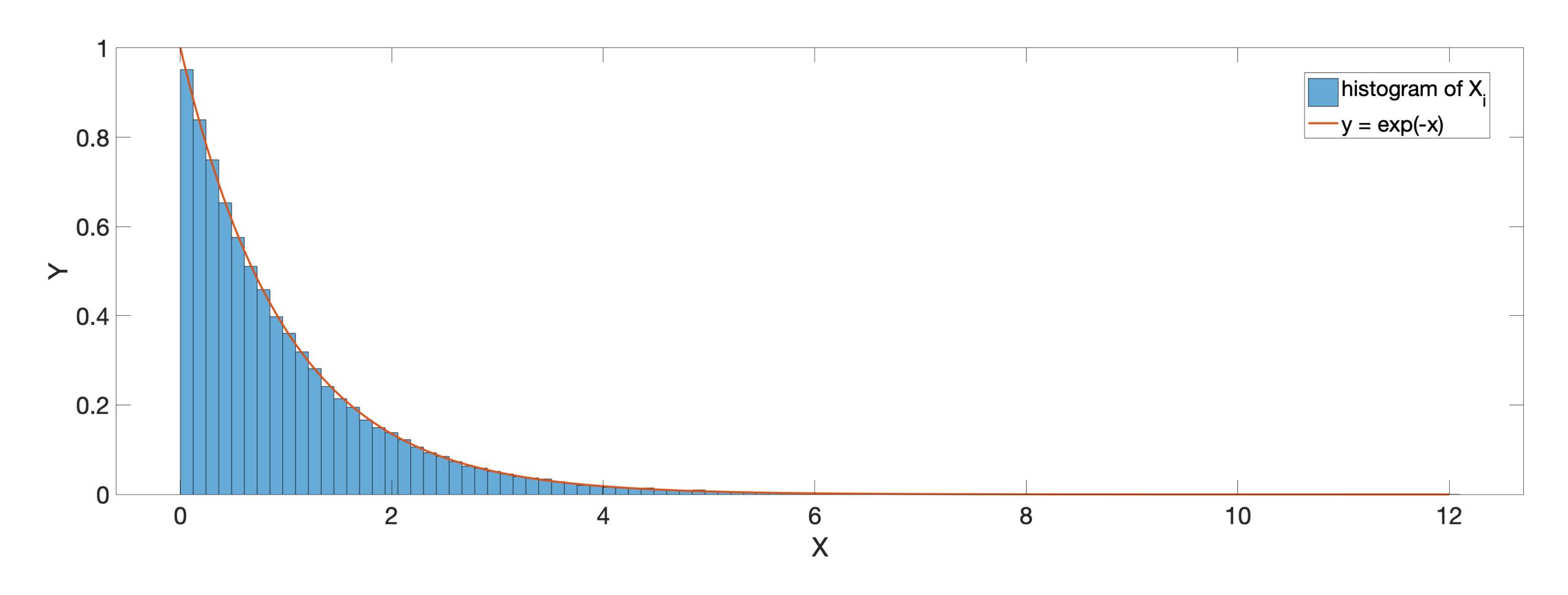
$$log(1 - y) = log(e^{-x})$$
 apply log to both sides

 $x = -\log(1 - y)$ simplify and multiply by -1 both sides

Example: Exponential Distribution

- Now, in order to draw samples exponentially distributed, $X_i \sim \text{Exp}(1)$, we do:
 - $Y_i \in \mathbf{U}(0,1)$;
 - $\bullet \ X_i = -\log(1 Y_i).$
- Note that doing the inversion, we have the same distribution and its faster:
 - $Y_i \in U(0,1)$;
 - $X_i = -\log(Y_i)$.
- In this case it would not be safe to draw 0 and 1 for Y_i because depending on the method it may create a singularity!

Example: Exponential Distribution



Example: Normal Distribution

• Normal distribution $\mathcal{N}(0,1)$:

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

• Its CDF is:

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(x).$$

- Note that there is not closed form for $\Phi(x)$.
- $\Phi(x)$ is related to the Erf function:

$$\operatorname{erf}(x) = \frac{1}{\sqrt{2\pi}} \int_0^x \exp(-t^2) dt \qquad \Phi(x) = \frac{\operatorname{erf}(x/\sqrt{2}) + 1}{2}.$$

Example: Normal Distribution

- In this case, we need to invert $\Phi(x)$ to obtain $\Phi^{-1}(x)$:
 - There is no closed-form for $\Phi^{-1}(x)$.
 - Typically, we have algorithms for erf and its inverse:

$$\Phi^{-1}(x) = 2\pi \text{erf}^{-1}(2x - 1).$$

- We need to use an approximation such as the AS70:
 - R. E. Odeh and J.O. Evans. "Algorithm AS 70: the percentage points of the normal distribution". Applied Statistics, 23(1):96-97. 1974.

Transformations: Linear Transformation

- In some cases, if we have a distribution F with mean 0 and variance 1, we may want to shift its mean by μ and scale it to have variance $\sigma^2 > 1$:
 - $X \sim F_X \rightarrow Y = \sigma X + \mu$, and Y is our random variable with the desired distribution.
 - To achieve this, we have to:

$$f_Y(y) = \frac{1}{\sigma} f_X\left(\frac{x-\mu}{\sigma}\right).$$

Transformations

- Transformations can be very general. Let's assume:
 - $X \sim F_X$;
 - $Y = \tau(X)$ where τ is an invertible increasing function. This means:

$$P(Y \le y) = P(\tau(X) \le y) = P(X \le \tau^{-1}(y)).$$

• Therefore, *Y* has the following PDF:

$$f_Y(y) = \frac{d}{dy} P(X \le \tau^{-1}(y)) = f_X(\tau^{-1}(y)) \frac{d}{dy} \tau^{-1}(y).$$

Note that:

$$\frac{d}{dx}P(X \le x) = \frac{d}{dx} \left(\int_{-\infty}^{x} f_X(x) dx \right).$$

Transformations: An Example

• Let's define:

$$\tau(x) = x^p \text{ where } p > 0.$$

- Let's assume that $X \sim \mathbf{U}(0,1)$:
 - This means: $Y = \tau(X) = X^p$ with PDF:

$$f_Y(y) = \frac{1}{p} y^{\frac{1}{p} - 1} \quad y \in (0, 1).$$

Numerical Inversion

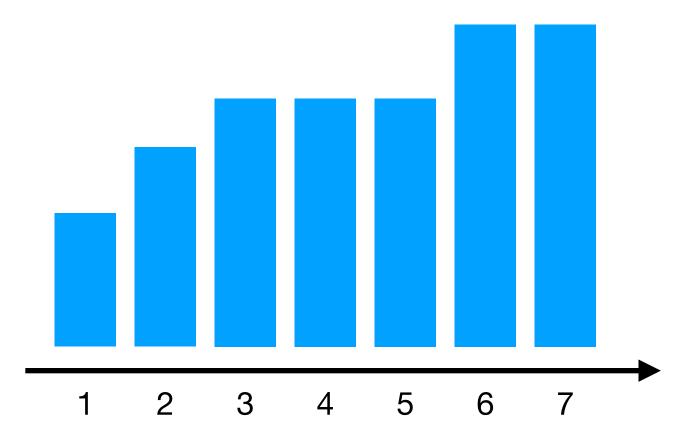
- It can happen that we may have F, but we cannot invert it.
- In such cases there are other options:
 - We can use bisection algorithms to search x such that F(x) = u.
 - Although bisection can get the job done, it is very slow. Another viable option is to Newton's method:

$$x_{i+1} = x_i - \frac{F(x_i) - u}{f(x_i)}$$

• The only issue here is that this method may not converge when f is close to 0.

Inversion for Discrete Random Variables

- In many situations, we may face to have discrete distributions; i.e., histograms.
- In a histogram H, we have $1, \ldots, N$ bins and each bin has a frequency number associated to that bin.



• We can convert a histogram into a discrete by normalizing it (i.e., sum of all H[i]) obtaining H'.

Inversion for Discrete Random Variables

ullet At this point, we have can define a random variable X such that

$$P(X = k) = p_k = H'[k] \ge 0.$$

• In this case, the cumulative distribution is defined as:

$$P_k = \sum_{i=1}^k p_i \text{ with } P_0 = 0.$$

• In order to compute:

$$F^{-1}(u) = k \quad u \in (P_{k-1}, P_k],$$

we have to run the binary search on the cumulative distribution using $u \sim \mathbf{U}(0,1)$.

Acceptance-Rejection

Acceptance-Rejection Main Idea

- In some cases, we cannot use the inversion method to get the F distribution that we want.
- When this happens, we can employ another distribution G; key concepts:
 - We reject some values from G;
 - We accept other values from G;
 - In accepting and rejecting, we try to get F.

Acceptance-Rejection

- The first step is to find a distribution G such that its PDF g(x):
 - $f(x) \le cg(x)$ $c \ge 1$ always holds;
 - We can compute:

$$\frac{f(x)}{g(x)}$$

Acceptance-Rejection Main Idea

repeat

$$Y \sim g;$$

$$U \sim \mathbf{U}(0,1);$$
until $U \leq f(Y)/(cg(Y))$

$$X \leftarrow Y$$

return X

Acceptance-Rejection

Main Idea

repeat

$$Y \sim g$$
;

$$U \sim U(0,1);$$

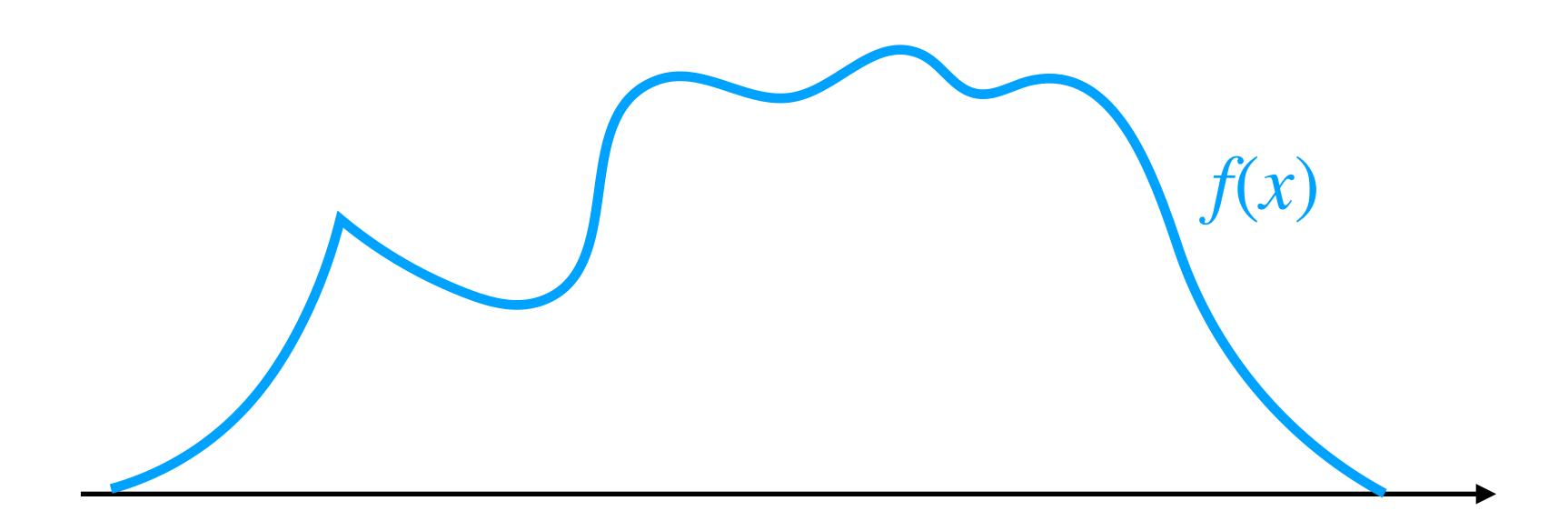
until
$$U \le f(Y)/(cg(Y))$$

$$X \leftarrow Y$$

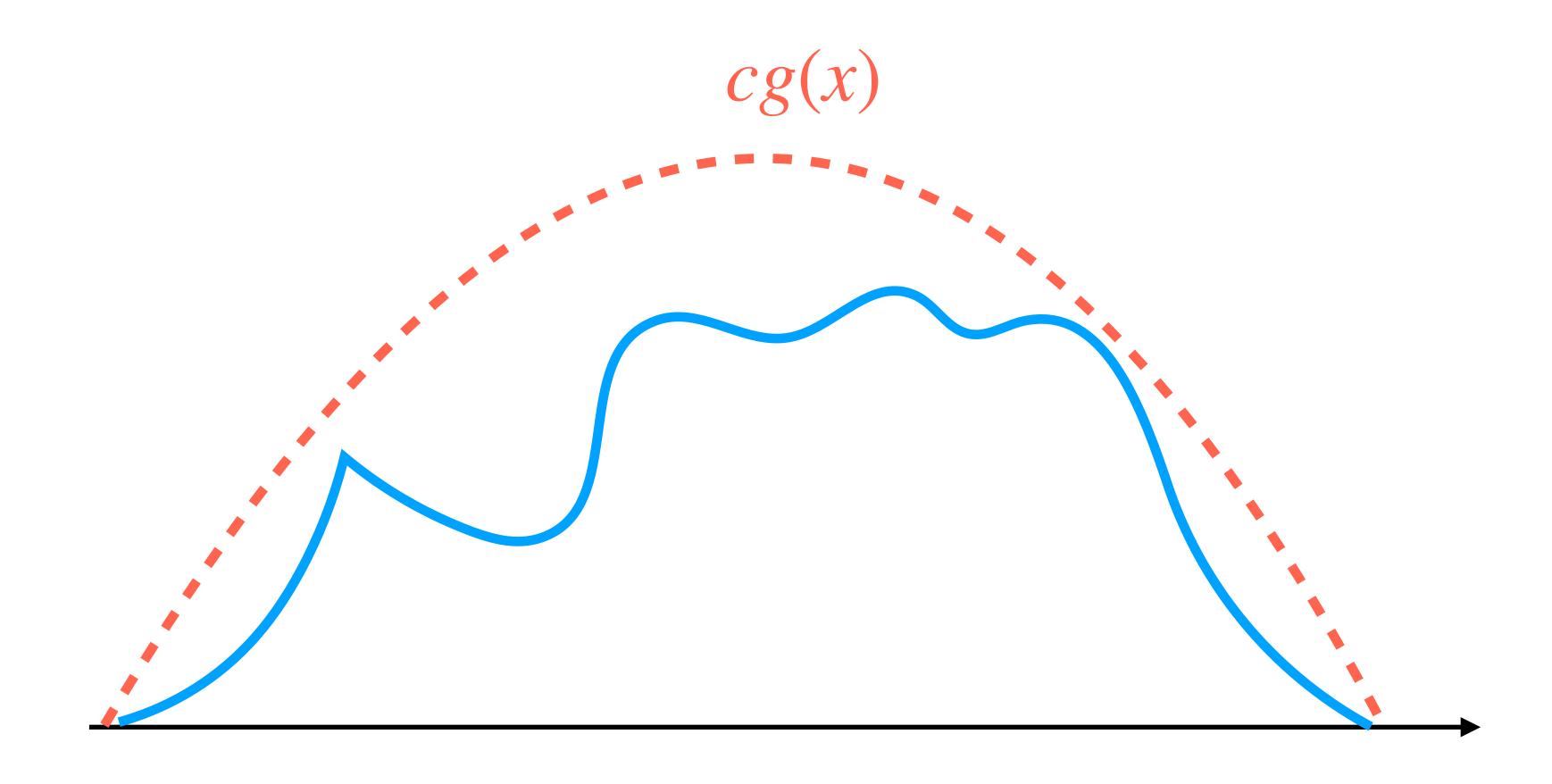
return X

Theorem 4.2 in Owen's book tells us that the generated samples have PDF f.

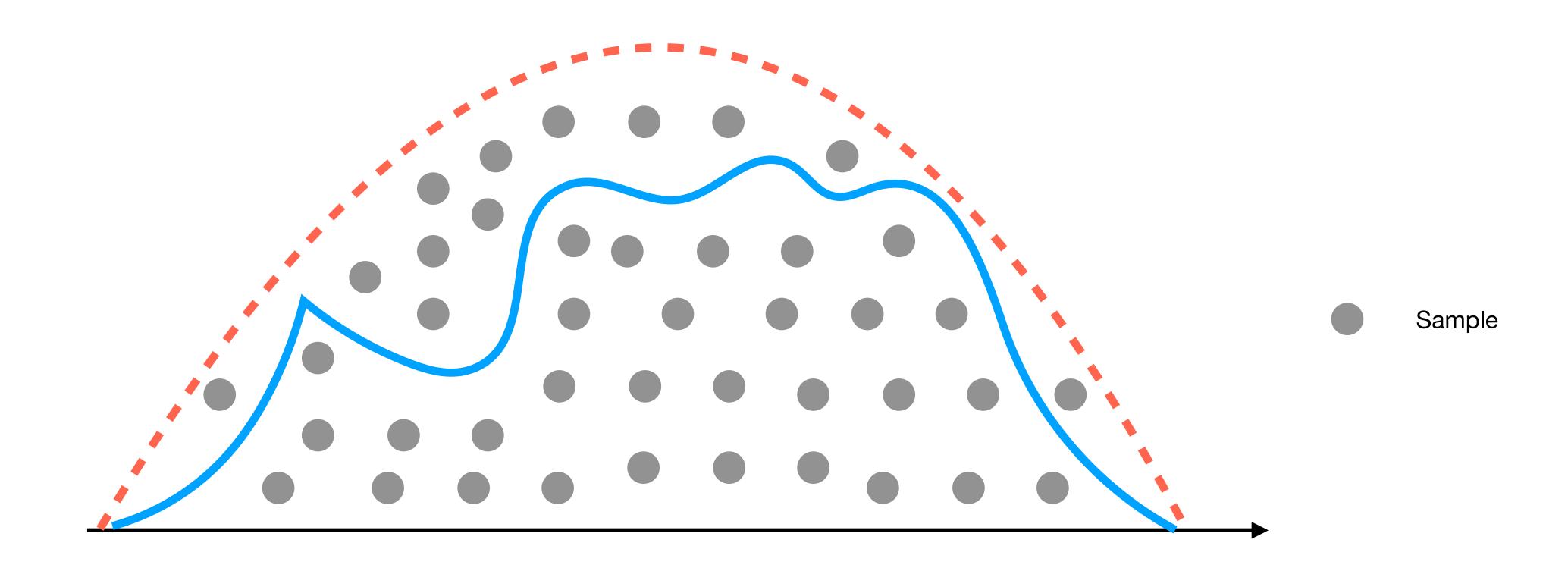
Acceptance-Rejection Main Idea



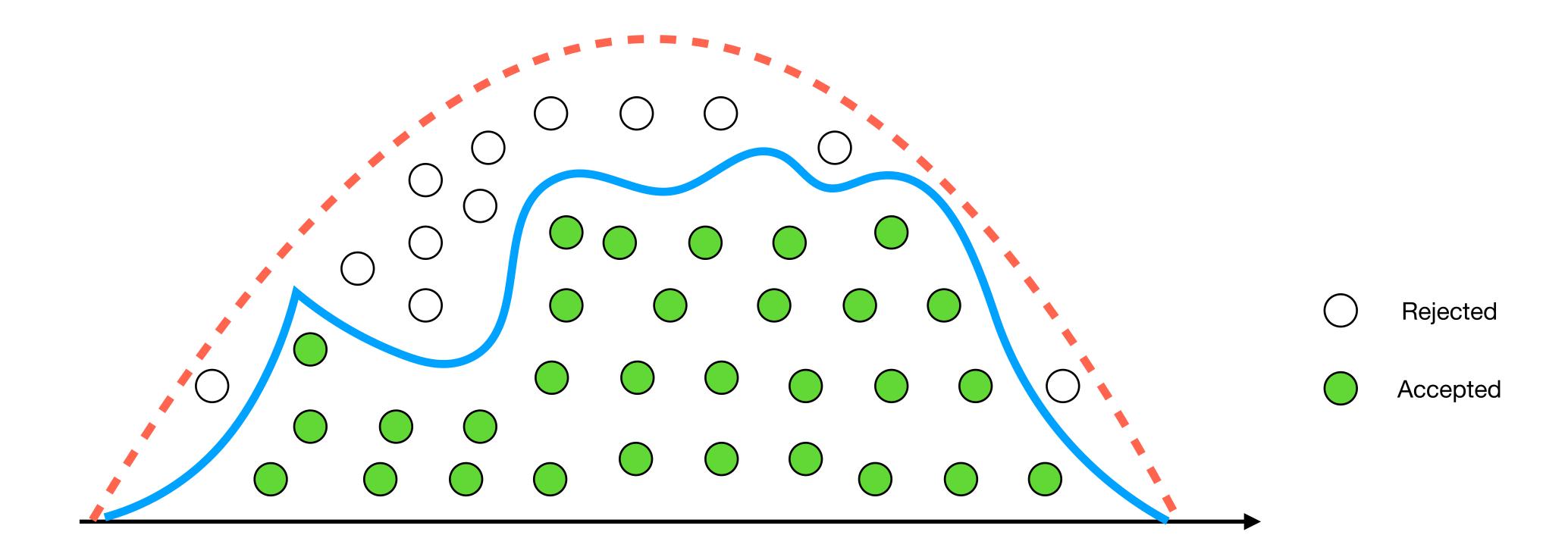
Main Idea



Acceptance-Rejection Main Idea



Acceptance-Rejection Main Idea



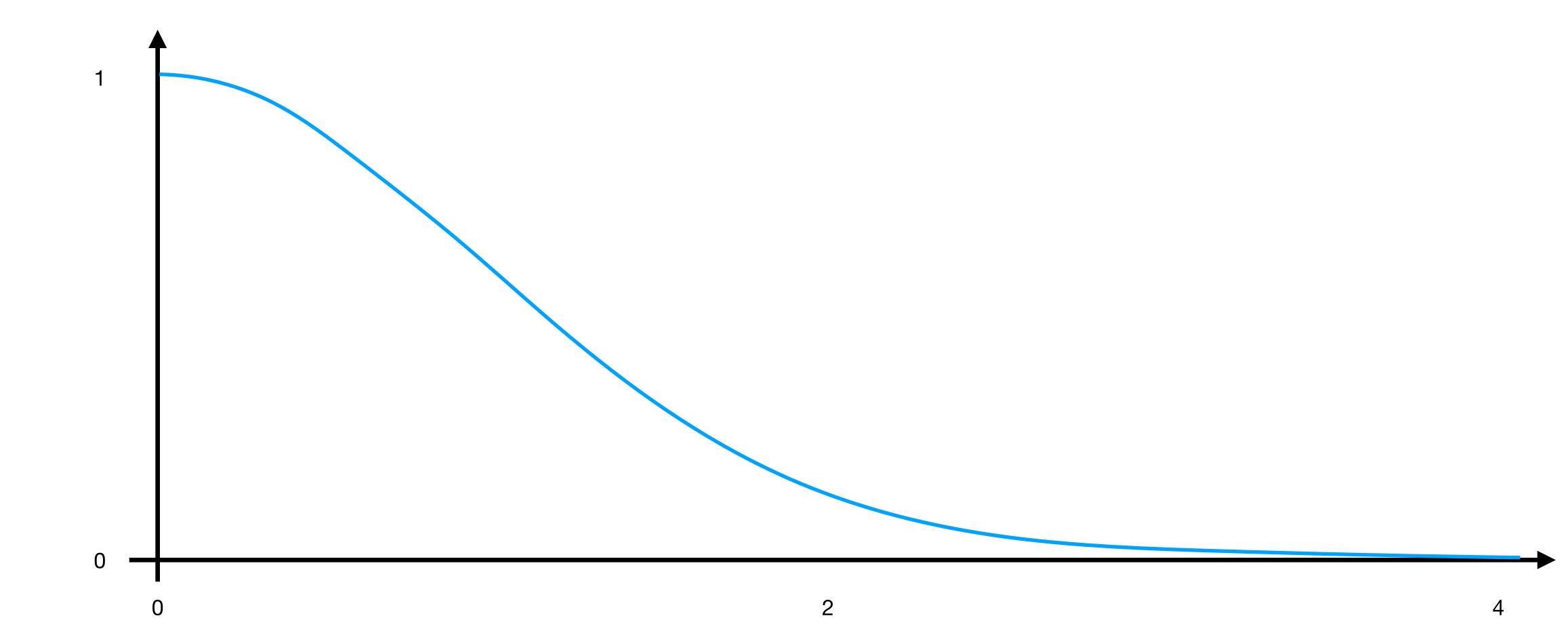
The Ziggurat Algorithm

- The Ziggurat algorithm is an acceptance-rejection method for drawings sampling according to normal distribution (i.e., half).
- The method divides the region below $\mathcal{N}(0,1)$ into k (e.g., 256) horizontal regions that are ideally of similar area; i.e., equiprobable.
- At this point, the method generate samples points (Z,Y) uniformly distributed in each region such that:

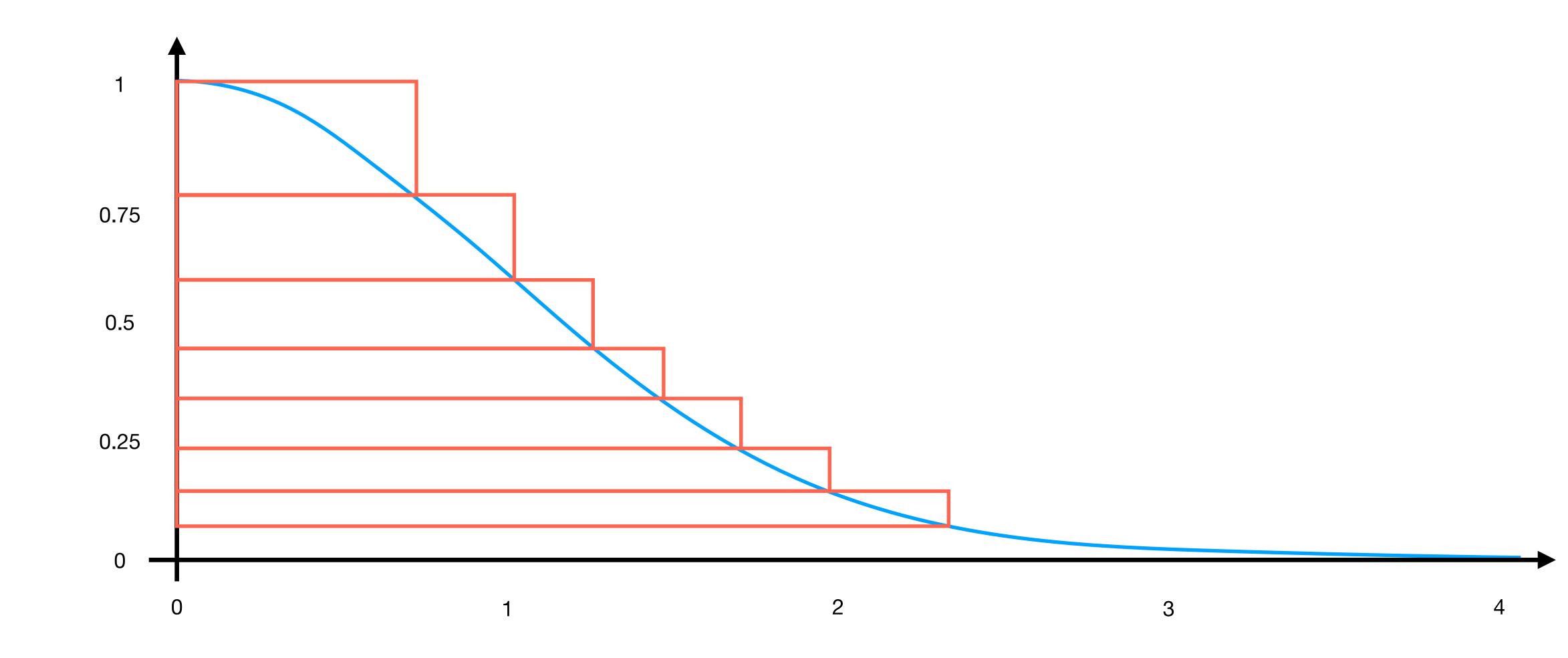
$$\left\{ (z, y) \middle| y \in [0, \exp(-z^2/2); x \in [0, \infty)] \right\}.$$

• Typically, the normalization factor $1/\sqrt{2\pi}$ is ignored for speeding the algorithm up.

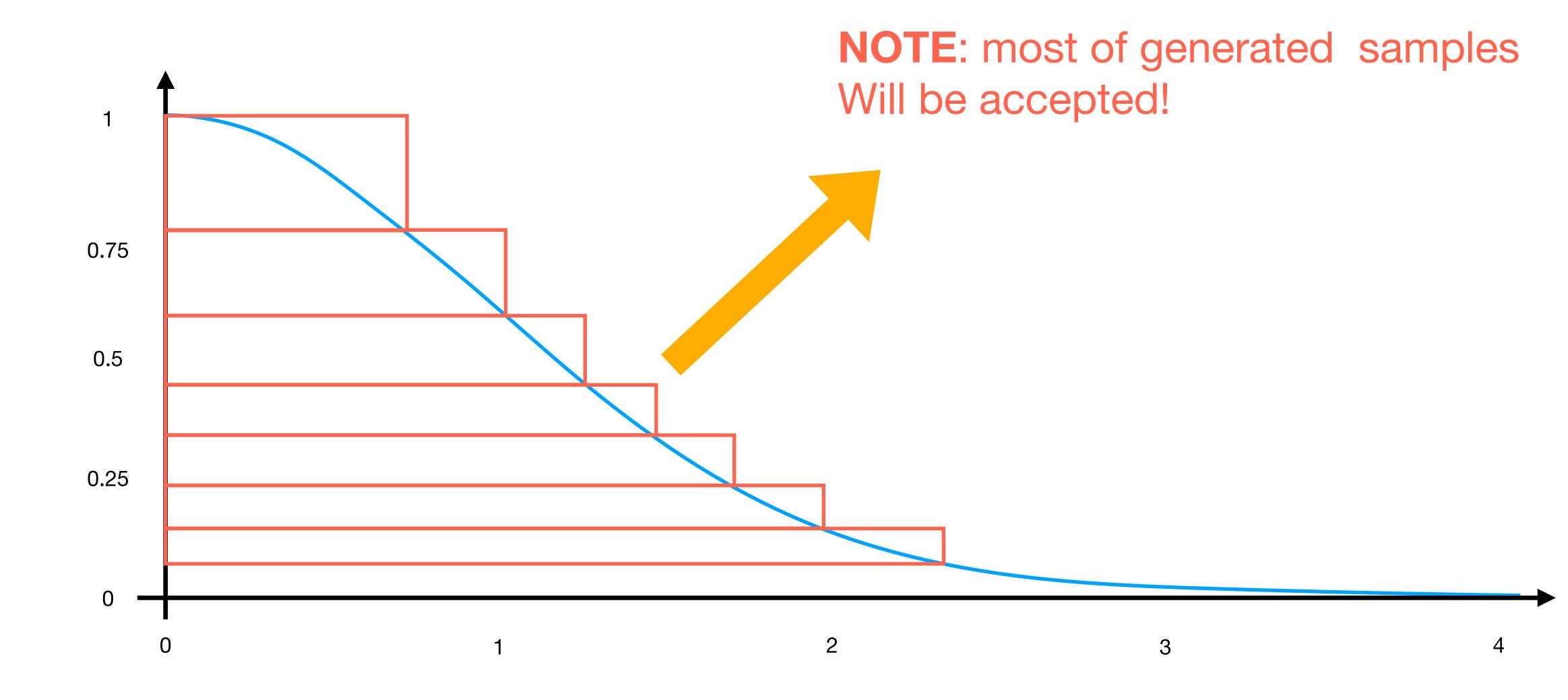
The Ziggurat Algorithm



The Ziggurat Algorithm



The Ziggurat Algorithm



Random Vectors aka Joint PDFs

Main Idea

 Typically, it can happen to have joint probabilities; e.g., sampling shapes such as disks, triangles, etc. So we end up to have:

$$p(x, y)$$
.

• In such cases, we firstly compute the marginal density p(x) as:

$$p(x) = \int_{\mathscr{D}_x} p(x, y) dy.$$

Then, we compute the conditional density as:

$$p(y \mid x) = \frac{p(x, y)}{p(x)}$$

Main Idea

• At this point, we compute the CDF of p(x) and p(y | x) through integration:

$$P(x) = \int_{-\infty}^{x} p(t)dt, \text{ and}$$

$$P(y \mid x) = \int_{-\infty}^{y} p(t \mid x) dt.$$

• Finally, we draw samples by inverting these CDFs:

$$n_1 = P^{-1}(u_1)$$
 $u_1 \in \mathbf{U}(0,1),$
 $n_2 = P^{-1}(u_1 \mid u_2)$ $u_2 \in \mathbf{U}(0,1).$

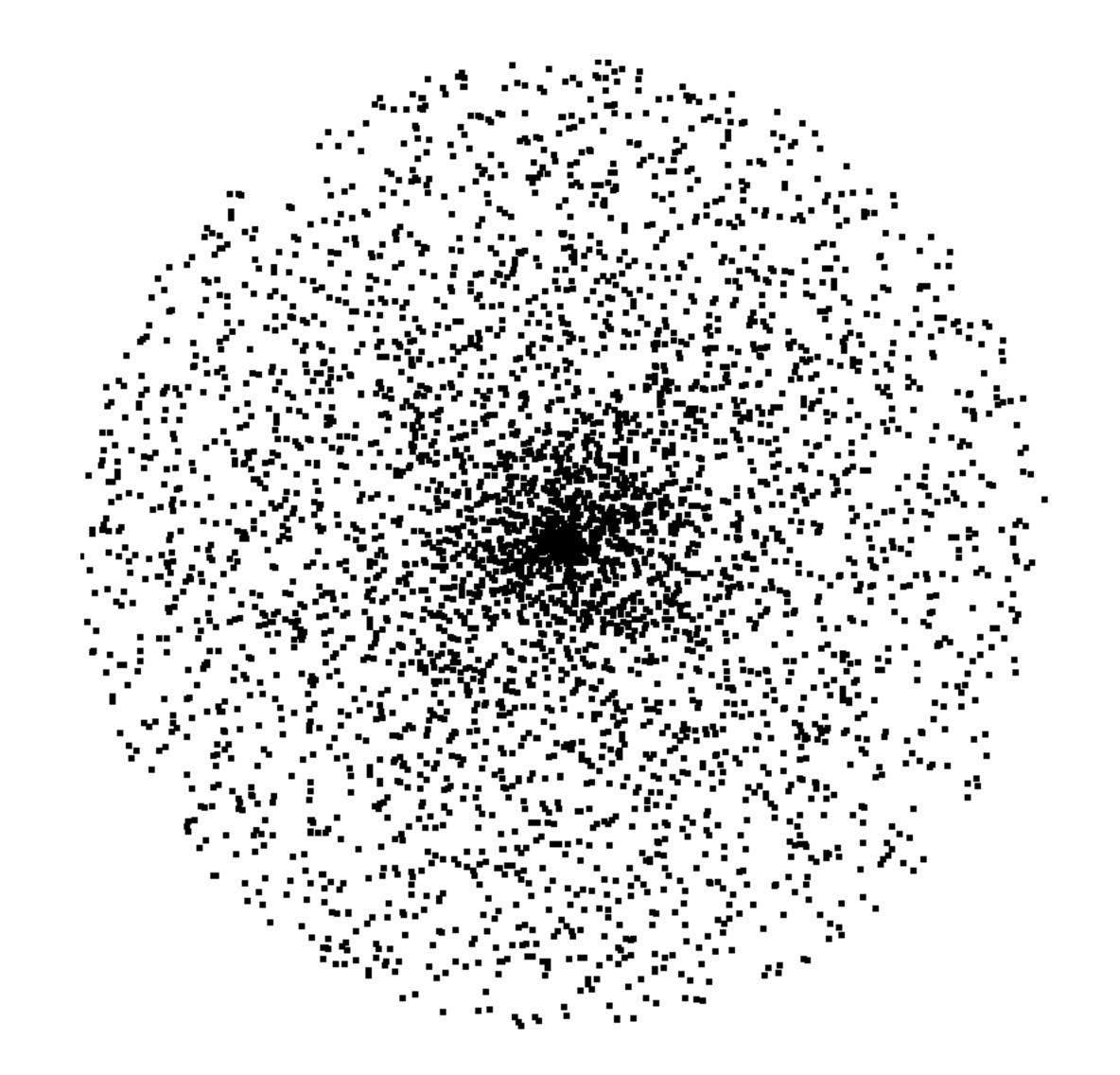
Joint PDFs Main Idea

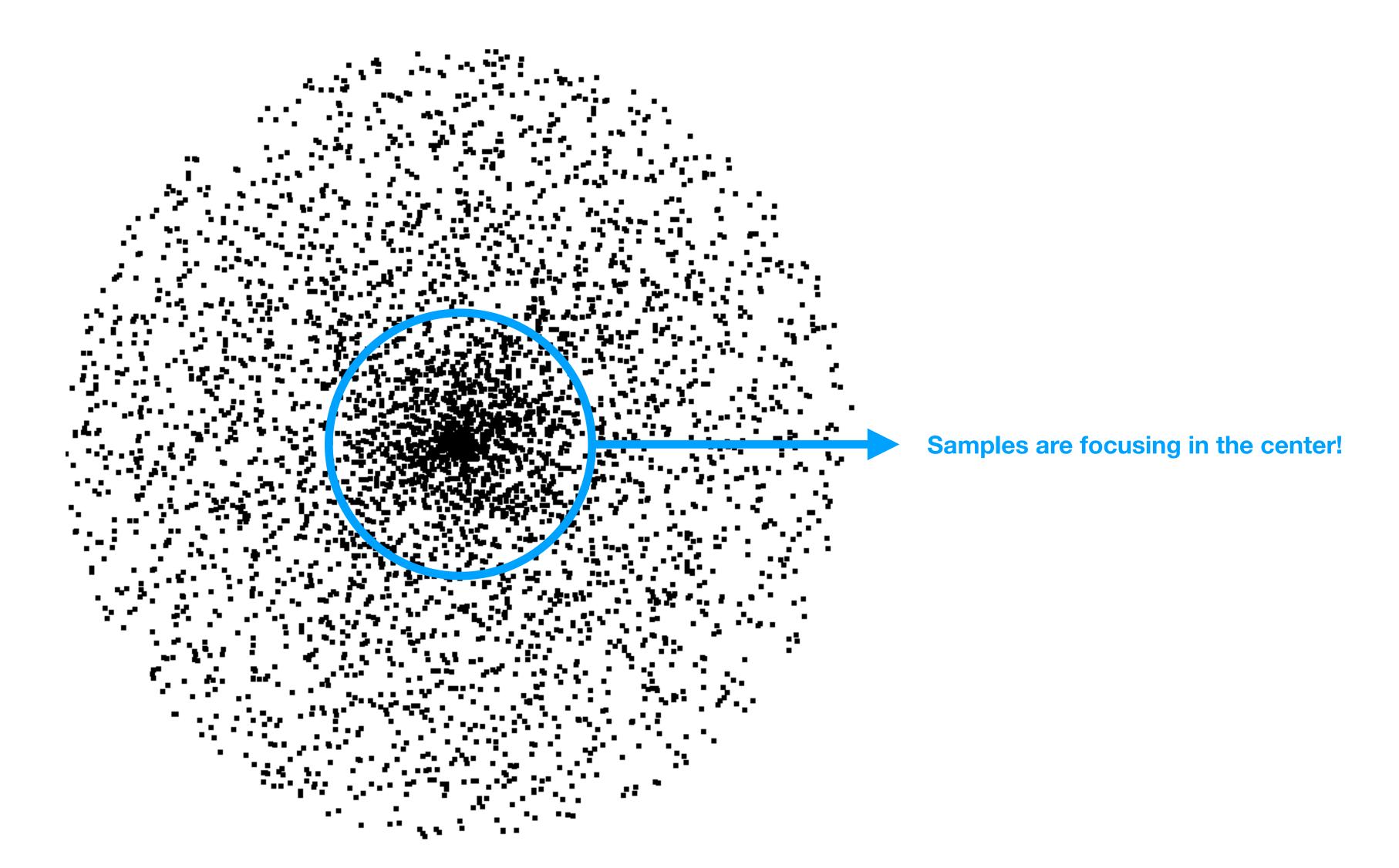
- The method, we have just seen, is called sequential inversion.
- This process can be extended to d dimension.

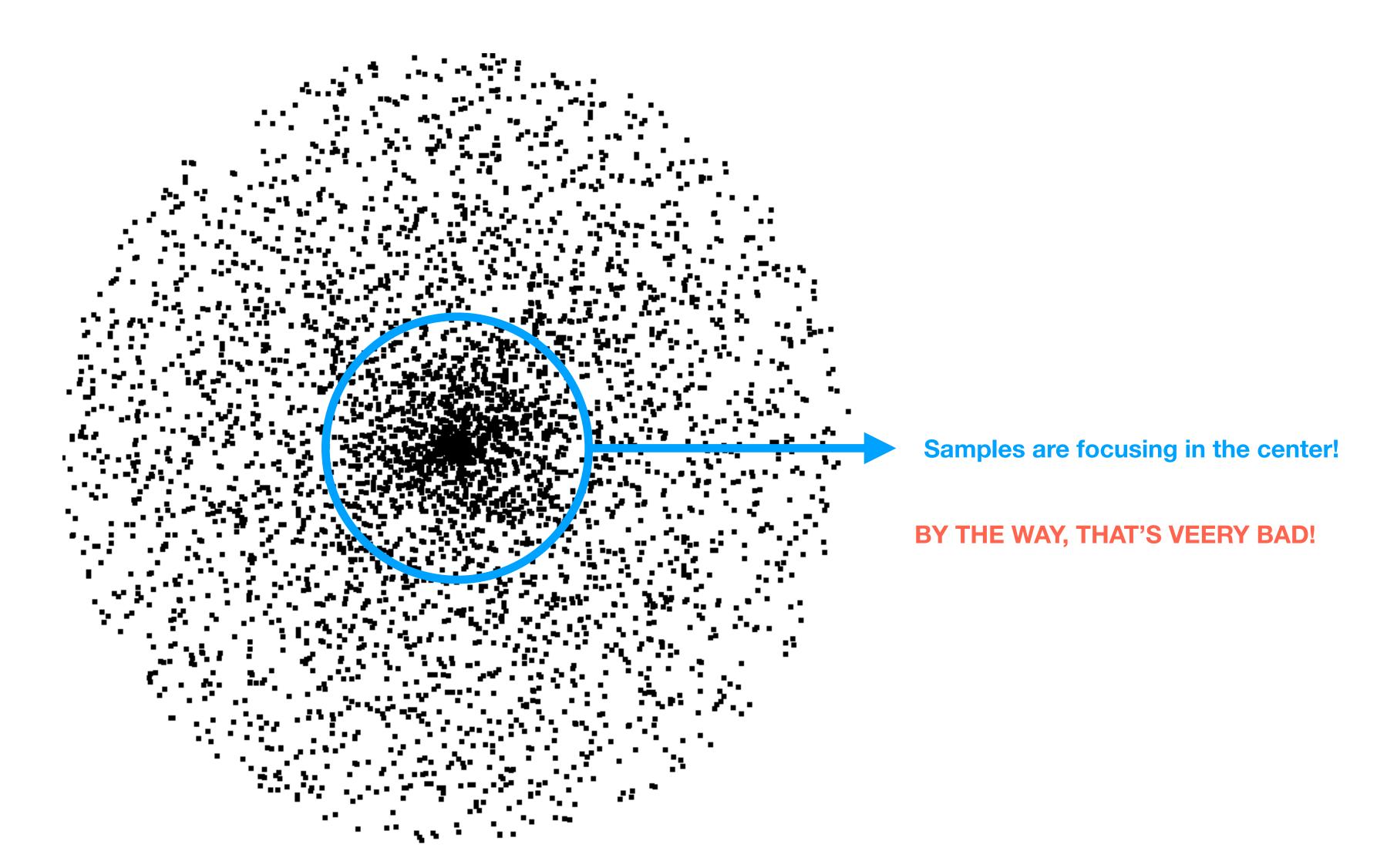
The Unit Disk

- Let's say we want to sample a unit disk in a uniform way.
- The disk looks simple, but it has hidden insidious challenges!
- The wrong approach:
 - $r = u_1$ $\theta = 2\pi u_2$ $u_1 \in \mathbf{U}(0,1)$ $u_2 \in \mathbf{U}(0,1)$.
 - Then, we remap into XY coordinates:

$$(x, y) = [\cos(\theta)r, \sin(\theta)r].$$







- The PDF, p(x, y), has to be a constant!
- Assuming a unit disk, this has to be:

$$p(x,y) = \frac{1}{\pi}.$$

Let's transform it in polar coordinates:

$$p(r,\theta) = \frac{r}{\theta}$$

The Unit Disk

• Let's compute the marginal density:

$$p(r) = \int_0^{2\pi} p(r,\theta)d\theta = \int_0^{2\pi} \frac{r}{\pi} d\theta = \frac{r}{\pi} \int_0^{2\pi} d\theta = 2r.$$

Now, we can compute the conditional density:

$$p(\theta \mid r) = \frac{p(r,\theta)}{p(r)} = \frac{\frac{r}{\pi}}{2r} = \frac{r}{\pi} \frac{1}{2r} = \frac{1}{2\pi}.$$

We need to invert their CDFs!

The first CDF is:

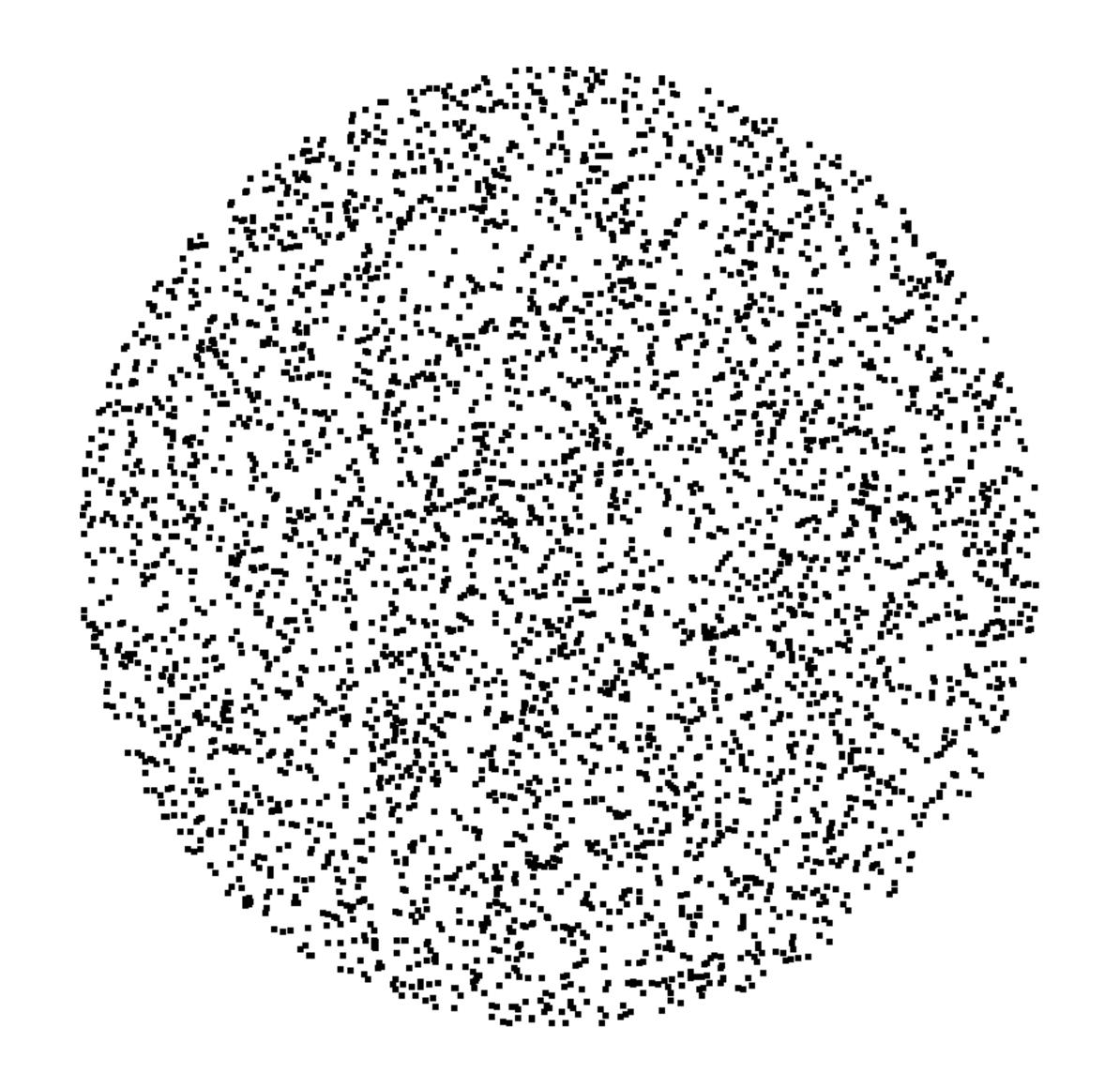
$$P(r) = \int_0^r 2x dx = r^2 \to P^{-1}(x) = \sqrt{x}.$$

The second CDF is:

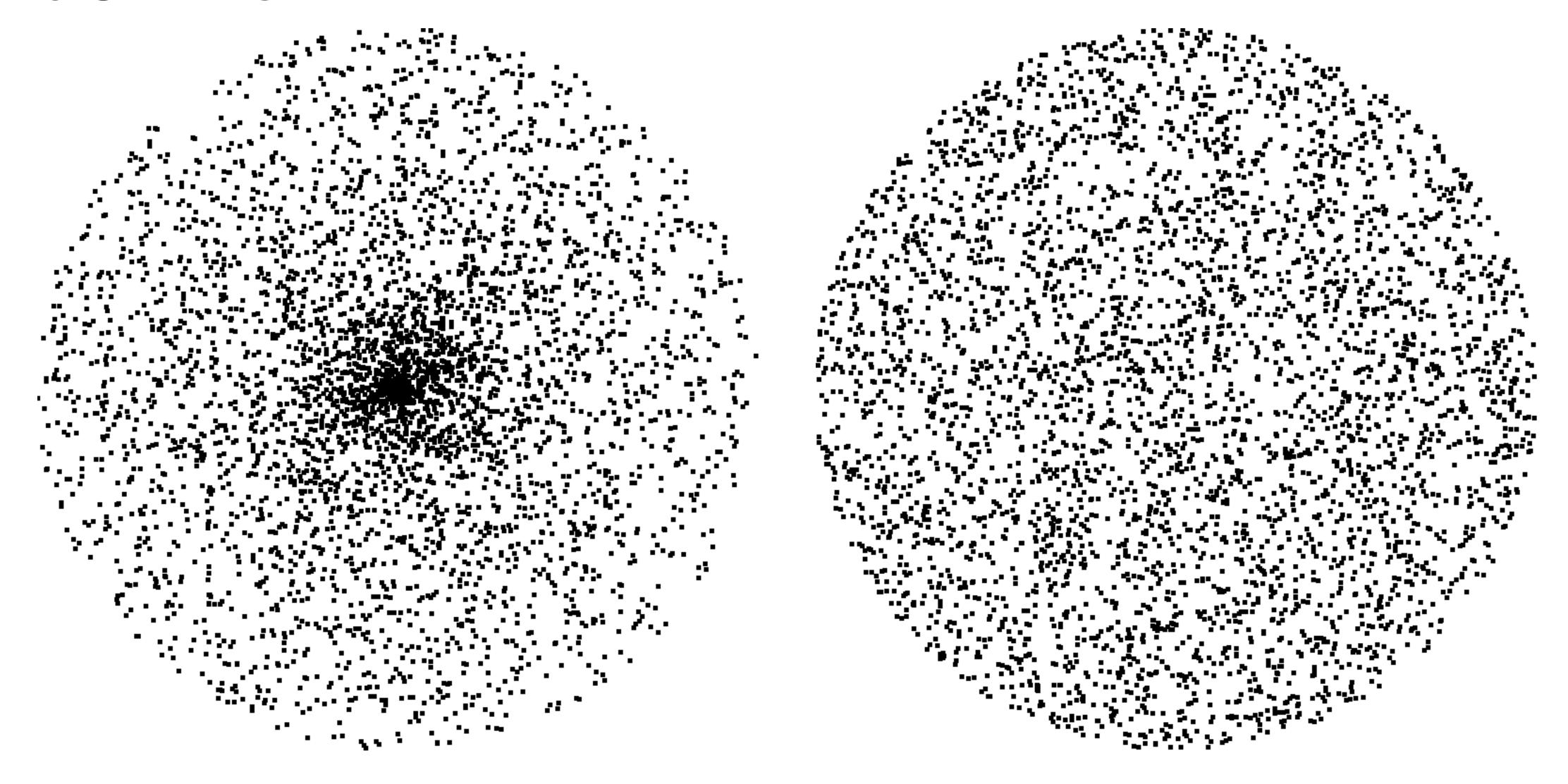
$$P(\theta \mid r) = \int_0^\theta \frac{1}{2\pi} dx \to P^{-1}(x) = 2\pi x.$$

Now, we have all pieces to generate samples:

$$r = \sqrt{u_1}$$
 $\theta = 2\pi u_2$ $u_1 \in \mathbf{U}(0,1)$ $u_2 \in \mathbf{U}(0,1)$.



The Unit Disk



Transformations: Box Muller

- An alternative to generate normally distributed random numbers, without inverting Φ , is to use transformations:
 - Box-Muller Method:
 - Let's say, we have two independent variables, X and Y, that have normal distribution.
 - Their joint PDF is:

$$p_{XY}(x,y) = p_X(x)p_Y(y) = \frac{\exp(-x^2/2)}{\sqrt{2\pi}} \cdot \frac{\exp(-y^2/2)}{\sqrt{2\pi}} = \frac{\exp(-(x^2+y^2)/2)}{2\pi}$$

Transformations: Box Muller

• We convert the distribution in coordinate(x, y) in polar coordinates (r, θ) using the Jacobian matrix:

$$J = \frac{\partial(x, y)}{\partial(r, \theta)} = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & r\sin(\theta) \\ \sin(\theta) & -r\cos(\theta) \end{bmatrix}.$$

• Knowing that $x^2 + y^2 = r$ and $|\det(J)| = r$, we can define the joint PDF as:

$$f(r,\theta) = \frac{1}{2\pi} \exp(-r^2/2)r$$
 $\theta \in [0,2\pi]$ $r \in (0,\infty)$.

• Note that θ and R are independent variables:

$$X = R\cos(\theta)$$
 $Y = R\sin(\theta)$.

Transformations: Box Muller

• We can compute the PDF of R as:

$$f_R(r) = r \exp(-r^2/2)$$
 $r \in (0,\infty)$.

This leads to:

•
$$X = \sqrt{-2 \log U_1} \cos(2\pi U_2)$$
,

•
$$Y = \sqrt{-2 \log U_1} \sin(2\pi U_2)$$
,

where $U_1, U_2 \sim U(0,1)$.

Transformations: Box Muller

• We can compute the PDF of R as:

$$f_R(r) = r \exp(-r^2/2)$$
 $r \in (0,\infty)$.

This leads to:

•
$$X=\sqrt{-2\log U_1}\cos(2\pi U_2)$$
, Always check $U_1\in(0,1)$,
• $Y=\sqrt{-2\log U_1}\sin(2\pi U_2)$, and better to add: $\sqrt{\max(-2\log U_1,0)}$ where $U_1,U_2\sim \mathrm{U}(0,1)$.

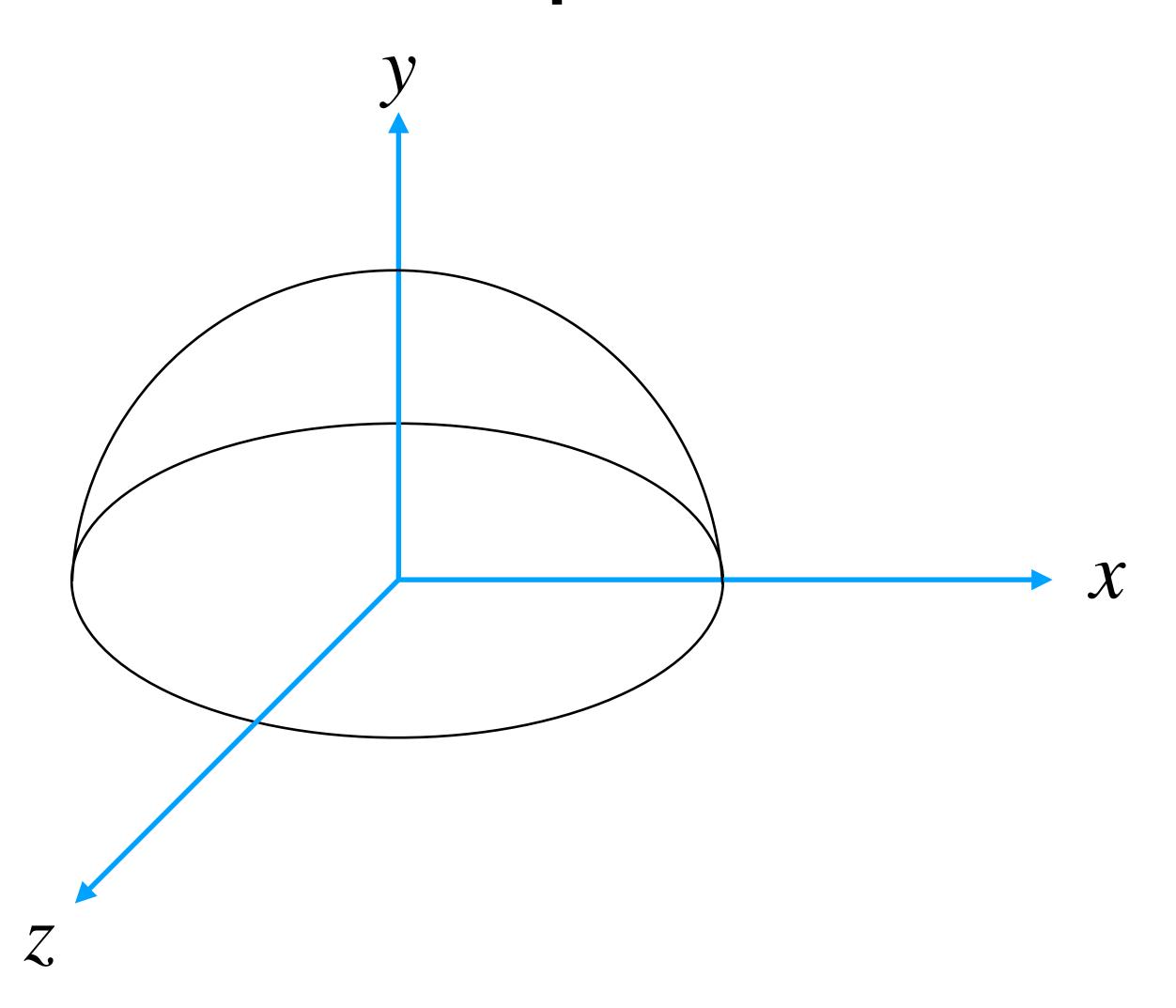
Uniform Directions over a Hemisphere

- In this case, we want to generates random vectors, directions, that are normalized; i.e., $\|\overrightarrow{\omega}_i\| = 1$.
- This problem is similar to generating points on the surface of the hemisphere, \mathbf{x}_{i}^{S} , because we can convert them into normal directions as:

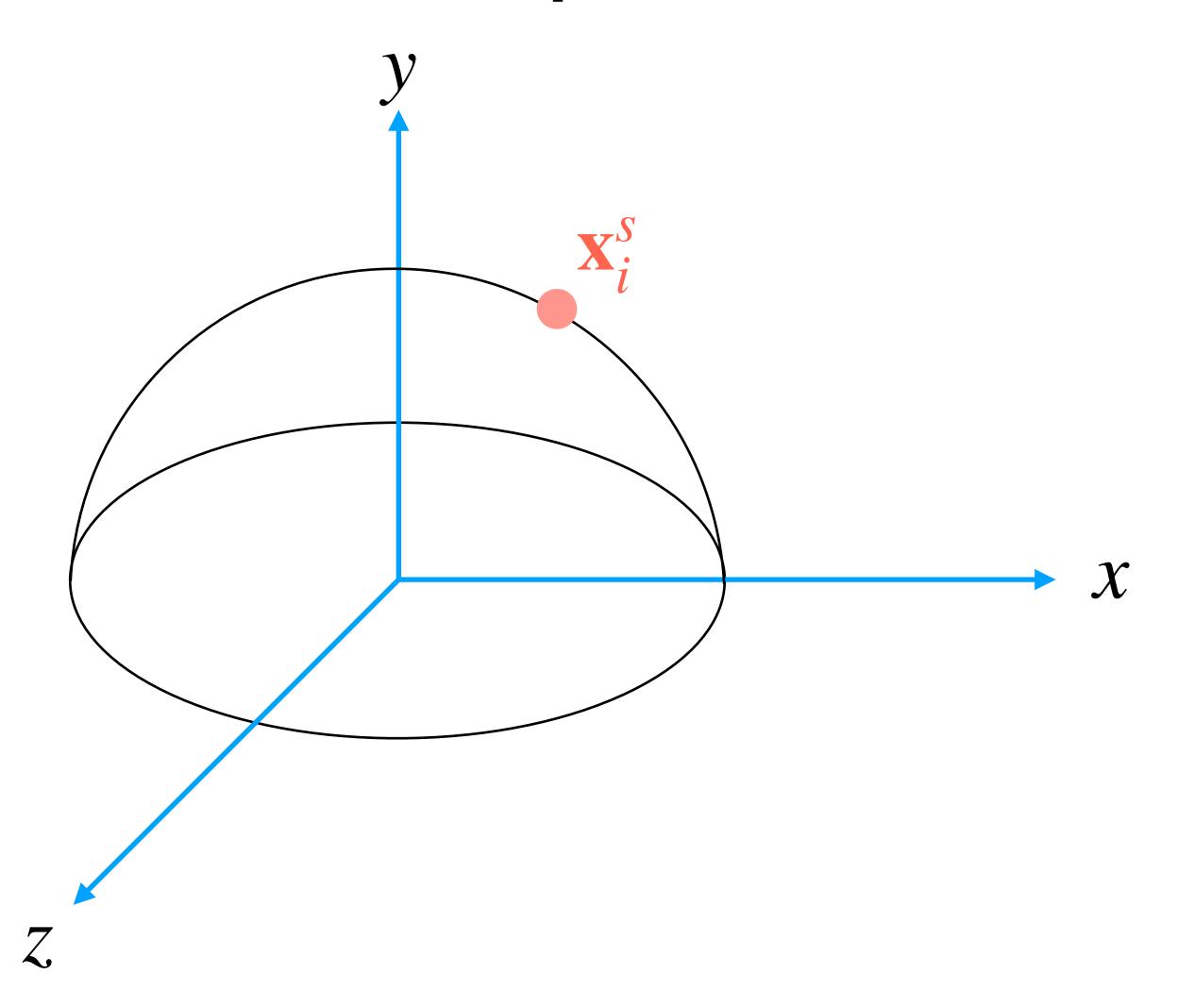
$$\overrightarrow{\omega}_{i} = \frac{\mathbf{x}_{i}^{s} - \mathbf{c}}{\|\mathbf{x}_{i}^{s} - \mathbf{c}\|}, \quad \overrightarrow{\omega}_{i}(\theta, \phi) = \begin{bmatrix} \cos \phi \sin \theta \\ \cos \theta \\ \sin \phi \sin \theta \end{bmatrix},$$

where c is the center of the hemisphere.

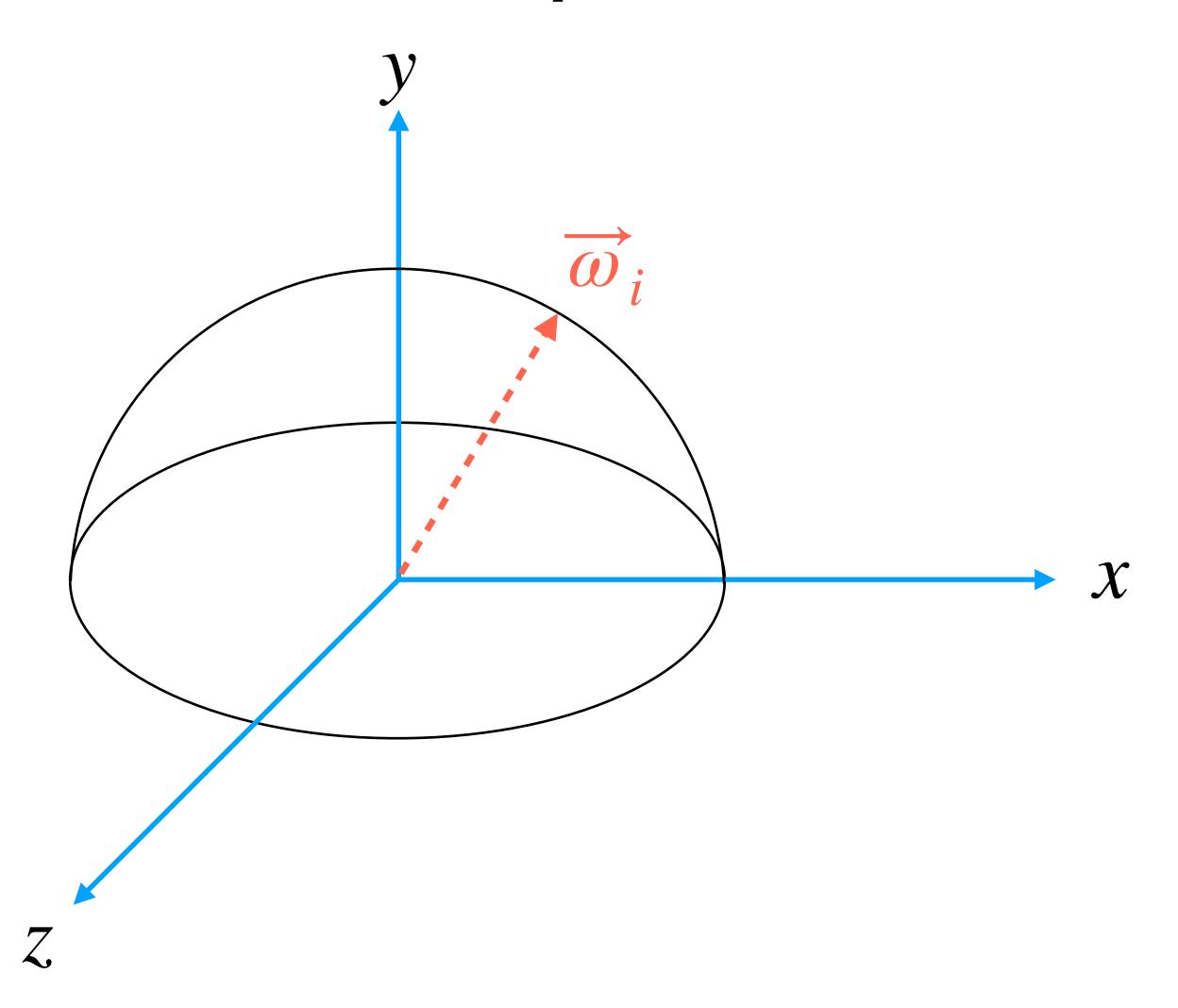
Uniform Directions over a Hemisphere



Uniform Directions over a Hemisphere



Uniform Directions over a Hemisphere



Uniform Directions over a Hemisphere

 Let's assume that the sphere has radius 1. Since it is a uniform sampling, the PDF is constant:

$$p(\overrightarrow{\omega}_i) = \frac{1}{2\pi}$$
; i.e., the inverse of the area of half sphere.

Note that:

$$\omega_x = \sin \theta \cos \phi$$
 $\omega_y = \cos \theta$ $\omega_x = \sin \theta \sin \phi$.

• We need to convert from $p(\omega)$ to $p(\theta, \phi)$. Therefore, we need to compute the Jacobian for such transformation:

$$p(\omega) = p(\theta, \phi) |J_t|$$
 $|J_t| = \sin \theta \rightarrow p(\omega) = p(\theta, \phi) \sin \theta.$

Uniform Directions over a Hemisphere

At this point, we compute the marginal density:

$$p(\theta) = \int_0^{2\pi} p(\theta, phi) d\phi = \int_0^{2\pi} \frac{1}{2\pi} \sin \theta = \frac{1}{2\pi} \int_0^{2\pi} \sin \theta = \sin \theta.$$

• Then, we compute the conditional density as:

$$p(\phi \mid \theta) = \frac{p(\theta, \phi)}{p(\theta)} = \frac{1}{2\pi}.$$

• Finally, we compute the marginal of both these densities, we invert them, and we get:

$$\theta = \cos^{-1} u_1$$
 $\phi = 2\pi u_2$ $u_1, u_2 \in \mathbf{U}(0,1).$

Uniform Directions over a Hemisphere

- Practically, we do not compute θ , but we compute directly $\cos \theta$ as:
 - $\cos \theta = u_1$ $u_1 \in \mathbf{U}(0,1)$.

•
$$\sin \theta = \sqrt{1 - (\cos \theta)^2} = \sqrt{1 - u_1^2}$$
.

• The direction vector is given by:

$$\overrightarrow{\omega} = \begin{bmatrix} \cos \phi \sin \theta \\ \cos^{-1} \theta \\ \sin \phi \sin \theta \end{bmatrix} = \begin{bmatrix} \cos(2\pi u_2)\sqrt{1 - u_1^2} \\ u_1 \\ \sin(2\pi u_2)\sqrt{1 - u_1^2} \end{bmatrix}.$$

• Note: we could generate our vector with less math by using rejection sampling, but it would take more time.

Uniform Directions over a Hemisphere

• Practically, we do not compute θ , but we compute directly $\cos \theta$ as:

•
$$\cos\theta = u_1$$
 $u_1 \in \mathbf{U}(0,1)$.

• $\sin\theta = \sqrt{1-(\cos\theta)^2} = \sqrt{1-u_1^2}$.

Always check $U_1 \in (0,1)$, and better to add: $\sqrt{\max(1-u_1^2,0)}$.

• The direction vector is given by:

• The direction vector is given by:

$$\overrightarrow{\omega} = \begin{bmatrix} \cos \phi \sin \theta \\ \cos^{-1} \theta \\ \sin \phi \sin \theta \end{bmatrix} = \begin{bmatrix} \cos(2\pi u_2)\sqrt{1 - u_1^2} \\ u_1 \\ \sin(2\pi u_2)\sqrt{1 - u_1^2} \end{bmatrix}.$$

Note: we could generate our vector with less math by using rejection sampling, but it would take more time.

From Hemisphere To Sphere

• In this case, $\cos^{-1}\theta = 1 - 2u_1$, so with a few changes:

$$\overrightarrow{\omega} = \begin{bmatrix} \cos \phi \sin \theta \\ \cos^{-1} \theta \\ \sin \phi \sin \theta \end{bmatrix} = \begin{bmatrix} \cos(2\pi u_2)2\sqrt{u_1(1-u_1)} \\ 1-2u_1 \\ \sin(2\pi u_2)2\sqrt{u_1(1-u_1)} \end{bmatrix}.$$

The Multi-Dimensional Sphere

• The d-dimensional sphere is defined:

$$S = \left(\mathbf{x} \,\middle|\, \|\mathbf{x}\| = 1\right).$$

• In order to generate uniform samples over S is to compute:

$$X = \frac{\mathbf{Y}}{\|\mathbf{Y}\|} \qquad Z \sim N(0, I_d) .$$

Where the PDF is:

$$p_Y(\mathbf{y}) = \frac{1}{(2\pi)^{-\frac{d}{2}}} \exp\left(-\frac{\|\mathbf{y}\|^2}{2}\right).$$

One More Thing...

One Last Thing... Other Random Objects

Permutations:

- We may need to generate random permutations in uniformly.
- Matrices:
 - We may need to create random matrices following a given distribution. For example, orthogonal matrices.

• Graphs:

- To generate a random graphs, G = (V, E), is useful to have models of real-world networks; e.g., a social network.
- The problem is basically to generate a $n \times n$ binary random matrix; i.e., the graph is defined by its adjacency matrix.

One Last Thing...

Random Objects: Permutations

• A permutation, π , of n elements is defined as:

$$\pi = \begin{pmatrix} 1, & \dots, & n \\ \pi_1, & \dots, & \pi_n \end{pmatrix}.$$

• A uniform random permutations can be computed as:

$$\pi = (1,...,n)$$
for $i = n,...,2$ do
$$j \sim \mathbf{U}(1,i)$$

$$\mathrm{swap}(\pi_i,\pi_j)$$

. This is uniform algorithm has probability $\frac{1}{n!}$.

Bibliography

- Art Owen. "Chapter 4: Non-Uniform Random Numbers" from the book "Monte Carlo theory, methods and examples". 2013.
- Art Owen. "Chapter 5: Random vectors and objects" from the book "Monte Carlo theory, methods and examples". 2013.
- Matt Pharr, and Greg Humphreys. Chapter 13: "Monte Carlo Integration" from "Physically Based Rendering: From Theory To Implementation" Second Edition. Morgan Kaufmann. 2010.

Thank you for your attention!