Monte Carlo

Non-Uniform Random Numbers

Francesco Banterle, Ph.D.

Non-Uniform Random Numbers

Introduction

- Typically, to draw random numbers in a non-uniform way following a given distribution is not an easy task; and it needs to be crafted for each distribution!
- A solution is to convert uniform random number into a non-uniform one.
- How?
- All the information that we need about how a random variable X is distributed is inside its CDF:

$$
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(x) d x
$$

Inverting the CDF

Inverting the CDF

Main Idea

- How do we extract this information from the CDF?
- Let's say we generate a random value $u \in \mathbf{U}(0,1)$, and we set $X=F_{X}^{-1}(U)$, we obtain:

$$
\begin{gathered}
P(X \leq x)=P\left(F_{X}^{-1}(u) \leq x\right)=P\left(F_{X}\left(F_{X}^{-1}(u)\right) \leq F_{X}(x)\right)= \\
P\left(u \leq F_{X}(x)\right)=F_{X}(x)
\end{gathered}
$$

- In this way, we can have X values with F_{X} as distribution!

Inverting the CDF

Main Idea

- Given the CDF of a distribution:

$$
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} p_{X}(x) d x
$$

- We generate a non-uniform random numbers as:
- We first generate a uniform random number, $u \in \mathbf{U}(0,1)$;
- Then, we compute:

$$
u^{\prime}=F_{X}^{-1}(u)
$$

Inverting the CDF

Example

$$
y=F_{X}(x)
$$

Inverting the CDF

Example

$$
y=F_{X}(x)
$$

Inverting the CDF

Example

$$
y=F_{X}(x)
$$

Inverting the CDF

Example

$$
y=F_{X}(x)
$$

Inverting the CDF

Example

$$
y=F_{X}(x)
$$

Inverting the CDF

Example

$$
y=F_{X}(x)
$$

Inverting the CDF

Main Idea

- Note that we draw uniform random numbers $u \in(0,1)$.
- Why?

Inverting the CDF

Main Idea

- Note that we draw uniform random numbers $u \in(0,1)$.
- Why?
- 0 and 1 may generate some singularities:
- NaN, +Inf, -lnf

Inverting the CDF

Main Idea

- Note that if $u \sim \mathbf{U}(0,1)$ we have that $1-u \sim \mathbf{U}(0,1)$.
- This means that $F^{-1}(1-u) \sim F$.
- In some cases, to compute $F^{-1}(u)$ may be difficult.
- In these cases the complementary inversion equation may be easier to compute!

Inverting the CDF

Issues

Inverting the CDF

Issues

Inverting the CDF

Issues

Inverting the CDF

Issues

- In such cases, the inverse is not unique, and it can happen for both continuous and discrete distributions!
- A solution to this problem is:

$$
F_{X}^{-1}(u)=\inf \left\{x \mid F_{X}(u) \geq u \wedge u \in(0,1)\right\} .
$$

Inverting the CDF

Example: Uniform Distribution

- The uniform distribution is defined as

$$
f(x)=\frac{1}{b-a} \quad x \in[a, b] .
$$

- Its CDF is given by:

$$
F(x)=\int_{-\infty}^{x} \frac{1}{b-a} d x=\frac{1}{b-a} \int_{-\infty}^{x} d x=\frac{x}{b-a} .
$$

- So let's compute its inverse:

$$
\begin{gathered}
y=\frac{x}{b-a} \text { multiply both sides by }(b-a) \\
x=y(b-a)
\end{gathered}
$$

Inverting the CDF

Example: Exponential Distribution

- Standard exponential distribution is:

$$
f(x)=\exp (-x) \quad x>0 .
$$

- Its CDF is given by:

$$
F(x)=\int_{-\infty}^{x} e^{-x} d x=1-e^{-x}
$$

- So let's compute its inverse:

$$
y=1-e^{-x}
$$

$y-1=-e^{-x}$ add -1 both sides
$1-y=e^{-x}$ multiply by -1 both sides
$\log (1-y)=\log \left(e^{-x}\right)$ apply log to both sides

$$
x=-\log (1-y) \text { simplify and multiply by }-1 \text { both sides }
$$

Inverting the CDF

Example: Exponential Distribution

- Now, in order to draw samples exponentially distributed, $X_{i} \sim \operatorname{Exp}(1)$, we do:
- $Y_{i} \in \mathbf{U}(0,1)$;
- $X_{i}=-\log \left(1-Y_{i}\right)$.
- Note that doing the inversion, we have the same distribution and its faster:
- $Y_{i} \in \mathbf{U}(0,1)$;
- $X_{i}=-\log \left(Y_{i}\right)$.
- In this case it would not be safe to draw 0 and 1 for Y_{i} because depending on the method it may create a singularity!

Inverting the CDF

Example: Exponential Distribution

Inverting the CDF

Example: Normal Distribution

- Normal distribution $\mathcal{N}(0,1)$:

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

- Its CDF is:

$$
F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{x^{2}}{2}\right) d x=\Phi(x)
$$

- Note that there is not closed form for $\Phi(x)$.
- $\Phi(x)$ is related to the Erf function:

$$
\operatorname{erf}(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \exp \left(-t^{2}\right) d t \quad \Phi(x)=\frac{\operatorname{erf}(x / \sqrt{2})+1}{2}
$$

Inverting the CDF

Example: Normal Distribution

- In this case, we need to invert $\Phi(x)$ to obtain $\Phi^{-1}(x)$:
- There is no closed-form for $\Phi^{-1}(x)$.
- Typically, we have algorithms for erf and its inverse:

$$
\Phi^{-1}(x)=2 \pi \operatorname{erf}^{-1}(2 x-1)
$$

- We need to use an approximation such as the AS70:
- R. E. Odeh and J.O. Evans. "Algorithm AS 70: the percentage points of the normal distribution". Applied Statistics, 23(1):96-97. 1974.

Inverting the CDF
 Transformations: Linear Transformation

- In some cases, if we have a distribution F with mean 0 and variance 1, we may want to shift its mean by μ and scale it to have variance $\sigma^{2}>1$:
- $X \sim F_{X} \rightarrow Y=\sigma X+\mu$, and Y is our random variable with the desired distribution.
- To achieve this, we have to:

$$
f_{Y}(y)=\frac{1}{\sigma} f_{X}\left(\frac{x-\mu}{\sigma}\right)
$$

Inverting the CDF
 Transformations

- Transformations can be very general. Let's assume:
- $X \sim F_{X}$;
- $Y=\tau(X)$ where τ is an invertible increasing function. This means:

$$
P(Y \leq y)=P(\tau(X) \leq y)=P\left(X \leq \tau^{-1}(y)\right)
$$

- Therefore, Y has the following PDF:

$$
f_{Y}(y)=\frac{d}{d y} P\left(X \leq \tau^{-1}(y)\right)=f_{X}\left(\tau^{-1}(y)\right) \frac{d}{d y} \tau^{-1}(y)
$$

- Note that:

$$
\frac{d}{d x} P(X \leq x)=\frac{d}{d x}\left(\int_{-\infty}^{x} f_{X}(x) d x\right)
$$

Inverting the CDF
 Transformations: An Example

- Let's define:

$$
\tau(x)=x^{p} \text { where } p>0
$$

- Let's assume that $X \sim \mathbf{U}(0,1)$:
- This means: $Y=\tau(X)=X^{p}$ with PDF:

$$
f_{Y}(y)=\frac{1}{p} y^{\frac{1}{p}-1} \quad y \in(0,1) .
$$

Inverting the CDF

Numerical Inversion

- It can happen that we may have F, but we cannot invert it.
- In such cases there are other options:
- We can use bisection algorithms to search x such that $F(x)=u$.
- Although bisection can get the job done, it is very slow. Another viable option is to Newton's method:

$$
x_{i+1}=x_{i}-\frac{F\left(x_{i}\right)-u}{f\left(x_{i}\right)} .
$$

- The only issue here is that this method may not converge when f is close to 0 .

Inverting the CDF

Inversion for Discrete Random Variables

- In many situations, we may face to have discrete distributions; i.e., histograms.
- In a histogram H, we have $1, \ldots, N$ bins and each bin has a frequency number associated to that bin.

- We can convert a histogram into a discrete by normalizing it (i.e., sum of all $H[i]$) obtaining H^{\prime}.

Inverting the CDF
 Inversion for Discrete Random Variables

- At this point, we have can define a random variable X such that

$$
P(X=k)=p_{k}=H^{\prime}[k] \geq 0 .
$$

- In this case, the cumulative distribution is defined as:

$$
P_{k}=\sum_{i=1}^{k} p_{i} \text { with } P_{0}=0
$$

- In order to compute:

$$
F^{-1}(u)=k \quad u \in\left(P_{k-1}, P_{k}\right],
$$

we have to run the binary search on the cumulative distribution using $u \sim \mathbf{U}(0,1)$.

Acceptance-Rejection

Acceptance-Rejection

Main Idea

- In some cases, we cannot use the inversion method to get the F distribution that we want.
- When this happens, we can employ another distribution G; key concepts:
- We reject some values from G;
- We accept other values from G;
- In accepting and rejecting, we try to get F.

Acceptance-Rejection

Main Idea

- The first step is to find a distribution G such that its PDF $g(x)$:
- $f(x) \leq c g(x) \quad c \geq 1$ always holds;
- We can compute:

$$
\frac{f(x)}{g(x)}
$$

Acceptance-Rejection

Main Idea

repeat

$$
\begin{aligned}
& Y \sim g \\
& U \sim \mathbf{U}(0,1)
\end{aligned}
$$

until $U \leq f(Y) /(c g(Y))$
$X \leftarrow Y$
return X

Acceptance-Rejection

Main Idea

repeat

$$
\begin{aligned}
& Y \sim g \\
& U \sim \mathbf{U}(0,1)
\end{aligned}
$$

until $U \leq f(Y) /(c g(Y))$
$X \leftarrow Y$
return X

Theorem 4.2 in Owen's book tells us that the generated samples have PDF f.

Acceptance-Rejection

Main Idea

Acceptance-Rejection

Main Idea

Acceptance-Rejection

Main Idea

Acceptance-Rejection

Main Idea

Acceptance-Rejection The Ziggurat Algorithm

- The Ziggurat algorithm is an acceptance-rejection method for drawings sampling according to normal distribution (i.e., half).
- The method divides the region below $\mathcal{N}(0,1)$ into k (e.g., 256) horizontal regions that are ideally of similar area; i.e., equiprobable.
- At this point, the method generate samples points (Z, Y) uniformly distributed in each region such that:

$$
\left\{(z, y) \mid y \in\left[0, \exp \left(-z^{2} / 2\right) ; x \in[0, \infty)\right]\right\}
$$

- Typically, the normalization factor $1 / \sqrt{2 \pi}$ is ignored for speeding the algorithm up.

Acceptance-Rejection

The Ziggurat Algorithm

Acceptance-Rejection
 The Ziggurat Algorithm

Acceptance-Rejection

The Ziggurat Algorithm

Random Vectors aka Joint PDFs

Joint PDFs

Main Idea

- Typically, it can happen to have joint probabilities; e.g., sampling shapes such as disks, triangles, etc. So we end up to have:

$$
p(x, y) .
$$

- In such cases, we firstly compute the marginal density $p(x)$ as:

$$
p(x)=\int_{\mathscr{D}_{x}} p(x, y) d y .
$$

- Then, we compute the conditional density as:

$$
p(y \mid x)=\frac{p(x, y)}{p(x)} .
$$

Joint PDFs

Main Idea

- At this point, we compute the CDF of $p(x)$ and $p(y \mid x)$ through integration:

$$
\begin{aligned}
& P(x)=\int_{-\infty}^{x} p(t) d t, \text { and } \\
& P(y \mid x)=\int_{-\infty}^{y} p(t \mid x) d t .
\end{aligned}
$$

- Finally, we draw samples by inverting these CDFs:

$$
\begin{array}{cc}
n_{1}=P^{-1}\left(u_{1}\right) & u_{1} \in \mathbf{U}(0,1), \\
n_{2}=P^{-1}\left(u_{1} \mid u_{2}\right) & u_{2} \in \mathbf{U}(0,1) .
\end{array}
$$

Joint PDFs

Main Idea

- The method, we have just seen, is called sequential inversion.
- This process can be extended to d dimension.

Joint PDFs

The Unit Disk

- Let's say we want to sample a unit disk in a uniform way.
- The disk looks simple, but it has hidden insidious challenges!
- The wrong approach:
- $\quad r=u_{1} \quad \theta=2 \pi u_{2} \quad u_{1} \in \mathbf{U}(0,1) \quad u_{2} \in \mathbf{U}(0,1)$.
- Then, we remap into XY coordinates:

$$
(x, y)=[\cos (\theta) r, \sin (\theta) r] .
$$

Joint PDFs

The Unit Disk

Joint PDFs

The Unit Disk

Joint PDFs

The Unit Disk

Joint PDFs

The Unit Disk

- The PDF, $p(x, y)$, has to be a constant!
- Assuming a unit disk, this has to be:

$$
p(x, y)=\frac{1}{\pi}
$$

- Let's transform it in polar coordinates:

$$
p(r, \theta)=\frac{r}{\theta}
$$

Joint PDFs

The Unit Disk

- Let's compute the marginal density:

$$
p(r)=\int_{0}^{2 \pi} p(r, \theta) d \theta=\int_{0}^{2 \pi} \frac{r}{\pi} d \theta=\frac{r}{\pi} \int_{0}^{2 \pi} d \theta=2 r .
$$

- Now, we can compute the conditional density:

$$
p(\theta \mid r)=\frac{p(r, \theta)}{p(r)}=\frac{\frac{r}{\pi}}{2 r}=\frac{r}{\pi} \frac{1}{2 r}=\frac{1}{2 \pi}
$$

- We need to invert their CDFs!

Joint PDFs

The Unit Disk

- The first CDF is:

$$
P(r)=\int_{0}^{r} 2 x d x=r^{2} \rightarrow P^{-1}(x)=\sqrt{x} .
$$

- The second CDF is:

$$
P(\theta \mid r)=\int_{0}^{\theta} \frac{1}{2 \pi} d x \rightarrow P^{-1}(x)=2 \pi x
$$

- Now, we have all pieces to generate samples:

$$
r=\sqrt{u_{1}} \quad \theta=2 \pi u_{2} \quad u_{1} \in \mathbf{U}(0,1) \quad u_{2} \in \mathbf{U}(0,1)
$$

Joint PDFs

The Unit Disk

Joint PDFs

The Unit Disk

Joint PDFs

Transformations: Box Muller

- An alternative to generate normally distributed random numbers, without inverting Φ, is to use transformations:
- Box-Muller Method:
- Let's say, we have two independent variables, X and Y, that have normal distribution.
- Their joint PDF is:

$$
p_{X Y}(x, y)=p_{X}(x) p_{Y}(y)=\frac{\exp \left(-x^{2} / 2\right)}{\sqrt{2 \pi}} \cdot \frac{\exp \left(-y^{2} / 2\right)}{\sqrt{2 \pi}}=\frac{\exp \left(-\left(x^{2}+y^{2}\right) / 2\right)}{2 \pi}
$$

Joint PDFs

Transformations: Box Muller

- We convert the distribution in coordinate (x, y) in polar coordinates (r, θ) using the Jacobian matrix:

$$
J=\frac{\partial(x, y)}{\partial(r, \theta)}=\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & r \sin (\theta) \\
\sin (\theta) & -r \cos (\theta)
\end{array}\right]
$$

- Knowing that $x^{2}+y^{2}=r$ and $|\operatorname{det}(J)|=r$, we can define the joint PDF as:

$$
f(r, \theta)=\frac{1}{2 \pi} \exp \left(-r^{2} / 2\right) r \quad \theta \in[0,2 \pi] \quad r \in(0, \infty) .
$$

- Note that θ and R are independent variables:

$$
X=R \cos (\theta) \quad Y=R \sin (\theta)
$$

Joint PDFs

Transformations: Box Muller

- We can compute the PDF of R as:

$$
f_{R}(r)=r \exp \left(-r^{2} / 2\right) \quad r \in(0, \infty)
$$

- This leads to:
- $X=\sqrt{-2 \log U_{1}} \cos \left(2 \pi U_{2}\right)$,
- $Y=\sqrt{-2 \log U_{1}} \sin \left(2 \pi U_{2}\right)$, where $U_{1}, U_{2} \sim \mathbf{U}(0,1)$.

Joint PDFs

Transformations: Box Muller

- We can compute the PDF of R as:

$$
f_{R}(r)=r \exp \left(-r^{2} / 2\right) \quad r \in(0, \infty)
$$

- This leads to:
- $X=\sqrt{-2 \log U_{1}} \cos \left(2 \pi U_{2}\right)$, Always check $U_{1} \in(0,1)$,
- $Y=\sqrt{-2 \log U_{1}} \sin \left(2 \pi U_{2}\right)$, and better to add: $\sqrt{\max \left(-2 \log U_{1}, 0\right)}$ where $U_{1}, U_{2} \sim \mathbf{U}(0,1)$.

Joint PDFs

Uniform Directions over a Hemisphere

- In this case, we want to generates random vectors, directions, that are normalized; i.e., $\left\|\overrightarrow{\omega_{i}}\right\|=1$.
- This problem is similar to generating points on the surface of the hemisphere, \mathbf{x}_{i}^{s}, because we can convert them into normal directions as:

$$
\vec{\omega}_{i}=\frac{\mathbf{x}_{i}^{s}-\mathbf{c}}{\left\|\mathbf{x}_{i}^{s}-\mathbf{c}\right\|}, \quad \vec{\omega}_{i}(\theta, \phi)=\left[\begin{array}{c}
\cos \phi \sin \theta \\
\cos \theta \\
\sin \phi \sin \theta
\end{array}\right]
$$

where \mathbf{c} is the center of the hemisphere.

Joint PDFs

Uniform Directions over a Hemisphere

Joint PDFs

Uniform Directions over a Hemisphere

Joint PDFs

Uniform Directions over a Hemisphere

Joint PDFs

Uniform Directions over a Hemisphere

- Let's assume that the sphere has radius 1 . Since it is a uniform sampling, the PDF is constant:

$$
p\left(\vec{\omega}_{i}\right)=\frac{1}{2 \pi} \text {; i.e., the inverse of the area of half sphere. }
$$

- Note that:

$$
\omega_{x}=\sin \theta \cos \phi \quad \omega_{y}=\cos \theta \quad \omega_{x}=\sin \theta \sin \phi .
$$

- We need to convert from $p(\omega)$ to $p(\theta, \phi)$. Therefore, we need to compute the Jacobian for such transformation:

$$
p(\omega)=p(\theta, \phi)\left|J_{t}\right| \quad\left|J_{t}\right|=\sin \theta \rightarrow p(\omega)=p(\theta, \phi) \sin \theta .
$$

Joint PDFs

Uniform Directions over a Hemisphere

- At this point, we compute the marginal density:

$$
p(\theta)=\int_{0}^{2 \pi} p(\theta, p h i) d \phi=\int_{0}^{2 \pi} \frac{1}{2 \pi} \sin \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin \theta=\sin \theta .
$$

- Then, we compute the conditional density as:

$$
p(\phi \mid \theta)=\frac{p(\theta, \phi)}{p(\theta)}=\frac{1}{2 \pi} .
$$

- Finally, we compute the marginal of both these densities, we invert them, and we get:

$$
\theta=\cos ^{-1} u_{1} \quad \phi=2 \pi u_{2} \quad u_{1}, u_{2} \in \mathbf{U}(0,1)
$$

Joint PDFs

Uniform Directions over a Hemisphere

- Practically, we do not compute θ, but we compute directly $\cos \theta$ as:
- $\cos \theta=u_{1} \quad u_{1} \in \mathbf{U}(0,1)$.
- $\sin \theta=\sqrt{1-(\cos \theta)^{2}}=\sqrt{1-u_{1}^{2}}$.
- The direction vector is given by:

$$
\vec{\omega}=\left[\begin{array}{c}
\cos \phi \sin \theta \\
\cos ^{-1} \theta \\
\sin \phi \sin \theta
\end{array}\right]=\left[\begin{array}{c}
\cos \left(2 \pi u_{2}\right) \sqrt{1-u_{1}^{2}} \\
u_{1} \\
\sin \left(2 \pi u_{2}\right) \sqrt{1-u_{1}^{2}}
\end{array}\right]
$$

- Note: we could generate our vector with less math by using rejection sampling, but it would take more time.

Joint PDFs

Uniform Directions over a Hemisphere

- Practically, we do not compute θ, but we compute directly $\cos \theta$ as:
- $\cos \theta=u_{1} \quad u_{1} \in \mathbf{U}(0,1)$.
- $\sin \theta=\sqrt{1-(\cos \theta)^{2}}=\sqrt{1-u_{1}^{2}}$.
- The direction vector is given by:

$$
\vec{\omega}=\left[\begin{array}{c}
\cos \phi \sin \theta \\
\cos ^{-1} \theta \\
\sin \phi \sin \theta
\end{array}\right]=\left[\begin{array}{c}
\cos \left(2 \pi u_{2}\right) \sqrt{1-u_{1}^{2}} \\
u_{1} \\
\sin \left(2 \pi u_{2}\right) \sqrt{1-u_{1}^{2}}
\end{array}\right]
$$

- Note: we could generate our vector with less math by using rejection sampling, but it would take more time.

Joint PDFs

From Hemisphere To Sphere

- In this case, $\cos ^{-1} \theta=1-2 u_{1}$, so with a few changes:

$$
\vec{\omega}=\left[\begin{array}{c}
\cos \phi \sin \theta \\
\cos ^{-1} \theta \\
\sin \phi \sin \theta
\end{array}\right]=\left[\begin{array}{c}
\cos \left(2 \pi u_{2}\right) 2 \sqrt{u_{1}\left(1-u_{1}\right)} \\
1-2 u_{1} \\
\sin \left(2 \pi u_{2}\right) 2 \sqrt{u_{1}\left(1-u_{1}\right)}
\end{array}\right] .
$$

Joint PDFs

The Multi-Dimensional Sphere

- The d-dimensional sphere is defined:

$$
S=(\mathbf{x} \mid\|\mathbf{x}\|=1) .
$$

- In order to generate uniform samples over S is to compute:

$$
X=\frac{\mathbf{Y}}{\|\mathbf{Y}\|} \quad Z \sim N\left(0, I_{d}\right) .
$$

- Where the PDF is:

$$
p_{Y}(\mathbf{y})=\frac{1}{(2 \pi)^{-\frac{d}{2}}} \exp \left(-\frac{\|\mathbf{y}\|^{2}}{2}\right) .
$$

One More Thing...

One Last Thing...
 Other Random Objects

- Permutations:
- We may need to generate random permutations in uniformly.
- Matrices:
- We may need to create random matrices following a given distribution. For example, orthogonal matrices.
- Graphs:
- To generate a random graphs, $G=(V, E)$, is useful to have models of real-world networks; e.g., a social network.
- The problem is basically to generate a $n \times n$ binary random matrix; i.e., the graph is defined by its adjacency matrix.

One Last Thing...

Random Objects: Permutations

- A permutation, π, of n elements is defined as:

$$
\pi=\left(\begin{array}{ccc}
1, & \ldots, & n \\
\pi_{1}, & \ldots, & \pi_{n}
\end{array}\right)
$$

- A uniform random permutations can be computed as:

$$
\begin{gathered}
\pi=(1, \ldots, n) \\
\text { for } i=n, \ldots, 2 \text { do } \\
j \sim \mathbf{U}(1, i) \\
\operatorname{swap}\left(\pi_{i}, \pi_{j}\right)
\end{gathered}
$$

- This is uniform algorithm has probability $\frac{1}{n!}$.

Bibliography

- Art Owen. "Chapter 4: Non-Uniform Random Numbers" from the book "Monte Carlo theory, methods and examples". 2013.
- Art Owen. "Chapter 5: Random vectors and objects" from the book "Monte Carlo theory, methods and examples". 2013.
- Matt Pharr, and Greg Humphreys. Chapter 13: "Monte Carlo Integration" from "Physically Based Rendering: From Theory To Implementation" Second Edition. Morgan Kaufmann. 2010.

Thank you for your attention!

