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Real Random Numbers

• Montecarlo methods require randomness:


• We have a match between our mathematical model and our computational 
model.


• To draw truly random number is not an easy task:


• We need special hardware based on thermal noise, shot noise, etc.

Introduction



Real Random Numbers

• There are limitations too:


• We cannot debug with them.


• Such generators are computationally slow.


• Some hardware generators fails some randomness tests —> flaws while 
readings.

Introduction



A Pseudo-Random Generator

• In this course, pseudo-random numbers will be called random numbers for 
the sake of simplicity.


• The main reasons to use such generators:


• Computationally complexity: they are computationally fast in drawing 
numbers.


• Debugging: we can restart the stream of drawn numbers.

Introduction



A Pseudo-Random Generator

• For some random generators, their inner state can be inferred from their 
outputs:


• We can then predict the next draws.


• Cryptography requires random generators where this problem is 
computationally expensive to solve. 

Introduction



A Pseudo-Random Generator

• Blum Blum Shub generator is defined as:


,


where p and q are large primes (4096-bit), and x0 is co-prime to M; different 
from 0 or 1. 

• The square root mod M of xi is not a computationally easy to solve problem.


• For Montecarlo, we do not need cryptographic security!

xi+1 = x2
i mod M M = p ⋅ q

Introduction



A Pseudo-Random Generator
Properties

• Computationally Fast: Montecarlo-based algorithms devour a huge number of random numbers. We 
need to draw such numbers computationally quickly.


• Multiple Streams: Montecarlo-based algorithms typically are executed in parallel (more CPUs or 
threads), we need different and independent streams.


• Large Period: the sequence of random numbers starts to repeat only after P numbers were drawn; 
where P is a very large number. 


• Quality: the generated numbers are independent and identically distributed (i.i.d.) in the range [0,1] or 
(0,1) or (0,1], or [0,1).


• Equidistribution:: when drawing numbers in , we do not want more dense regions of 
others:


 

xi ∈ [0,1]

∀[ys,ye]⊂[0,1] |{xi |xi ∈ [ys, ye]} | ∝ |ye − ys |



Classic Random Generators

• A very simple method introduced by Von Neumann. This method is 
considered the first PRNG.


• A 32-bit version would be:


,


where .


• Drawbacks: very small period.

xi+1 = (x2
i ≫ 8) ⊙ 00FFFFFF

x0 ≠ 0

The Middle-Square Method



Classic Random Generators

• A classic and well-known random generator is the linear congruential generator (LCG) 
that is defined as: 


where:


•  is called the seed or start value,


•  is called the modulus (a positive integer),


•  is the multiplier, and


•  is the increment.

x0 ∈ [0,M − 1]

M

a0 ∈ [0,M − 1]

a1 ∈ [0,M − 1]

xi+1 = (xi ⋅ a0 + a1) mod M,

LCGs



Classic Random Generators
LCGs

• As we could expect, LCGs generates values in the range .


• To get floating-point values in the range , we divided by :


.


• Typically, we want to avoid to draw 0 and 1:


.

[0,M − 1]

[0,1] M − 1

f[0,1](x) =
x

M − 1

f(0,1)(x) =
x + 1
M + 1



Classic Random Generators

• If , we have:


 


 


• This random generator is typically called multiplicative congruential 
generator (MCG) or Lehmer’s RNG.


• To have an extra term as in a LCG does not bring any quality improvement. 
So MCGs are typically used instead of LCGs.

a1 = 0

xi+1 = xi ⋅ a0 mod M

xi+1 = x0 ⋅ ai
0 mod M i ≥ 1

MCGs



Classic Random Generators
LCGs

• A LCGs and MCGs, more in general other RNGs, will generate a sequence of values. For 
example, let’s draw some numbers using a generator, G0:


[11, 10, 39, 44, 23, …]


• After a while, this sequence will restart:


• For example:


[11, 10, 39, 44, 23, 11, 10, 39, 44, 23, 11, 10, 39, 44, 23]


• In this case, the sequence restart after 5 numbers are drawn. This means that G0 has a period 
. P = 5

xi = xi+P



Classic Random Generators
LCGs Parameters Selection

• To get maximum :


•  is relatively prime to ;


•  for all  dividing ;


•  if  is a multiple of 4.


• If the period is maximized; the period is maximized for all .

P

a1 M

a0 = 1 mod p p M

a0 = 1 mod 4 M

x0



Classic Random Generators
MCGs Parameters Selection

• It cannot achieve maximum :


• If  is prime and large, it can achieve :


•  for 32-bit numbers


• If  is odd, we have an alternation between odd and even numbers.


• We need to find an  such that 

P

M P = M − 1

M = 231 − 1

M

a0 ∀x∈[0,M−1] ∃i |ai
0 = x mod M



Classic Random Generators
Parameters Selection

• Several publications (papers, technical reports, blogs, etc.) reports how to 
choose parameters for LCGs and MCGs including:


• Number of bits to be used;


• Period length;


• Quality of the drawn numbers; e.g., statistical test results.



Classic Random Generators
MRGs

• A further generalization of MCGs are Multiple Recursive Generators or MRGs that 
are defined as:


,


where  and .


• A special case of MRGs are the Lagged Fibonacci Generators or LFGs defined as:


,


where  and  need to be chosen carefully.

xi = a0 ⋅ xi−1 + … + ak ⋅ xi−k mod M

k ≥ 1 aj ≠ 0

xi = xi−r + xi−s mod M

r s



Combining RNGs
Main Idea 

• A typical trick is to combine different RNGs (which can be not too good) to 
improve the overall performance and to increase its period.


• Given  RNGs, , we can put their results together as:


 


 

n U1, …, Un

xi = (xi,U1
+ xi,U2

+ … + xi,Un) mod 1

∀z∈ℝ z mod 1 ⟶ z − ⌊z⌋



Combining RNGs
The Wichmann-Hill Generator 

• A classic example is the Wichman-Hill Generator:


 


 


• This way we can achieve .

xi = 171 ⋅ xi−1 mod 30269
yi = 172 ⋅ yi−1 mod 30307
zi = 170 ⋅ zi−1 mod 30323

wi = ( xi

30269
+

yi

30307
+

zi

30323 ) mod 1

P = 6.95 ⋅ 1012



Combining RNGs
MRG32k3a 

• L’Ecuyer proposed to combine two MRGs obtaining MRG32k3a.


• The method has combines two MRGs:


 





 .


• By combining two MRGs, we can achieve .


• MATLAB has employed MRG32k3a.

xi = (1403580xi−2 − 810728xi−3) mod (232 − 209)

yi = (527612yi−2 − 1370589yi−3) mod (232 − 22853)

Ui =
xi − yi + 232 − 209

232 − 208
if xi ≤ yi

xi − yi

232 − 208
otherwise

P = 3 × 1057



Quality Tests for RNGs



 Testχ2

• If  samples are drawn in the interval , then the number of drawn 
samples in each interval has to be equal on average.


• This test the range of data in  subintervals; i.e., discrete distribution.


• We, then, count the sample for each subinterval.


• The number of samples that fall in each subinterval is close to the expected 
number.

N [0,1]

k

Main Idea



 Testχ2

• The test is defined as


where:


•  is the level of significance;


•  is the number of bin in the histogram;


•  is the number of observed values in the i-th bin of the histogram;


•  is the number of expected values in the i-th bin of the histogram.

α

k

oi

ei =
N
k

D =
k

∑
i=1

(oi − ei)2

ei
< χ2

[1−α,k−1]

Main Idea



 Testχ2

Example using RANDU

• We draw 1,000 numbers in .


• We create a histogram with
 bins.


• We compute 


• 


• 14.2 < 14.684:


• We accept these values!

[0,1]

k = 10

D = 14.2

χ2[0.9,9] = 14.684



 Testχ2

Example using RANDU

Observed Expected

104 100

89 100

79 100

103 100

108 100

94 100

102 100

126 100

102 100

93 100

• We draw 1,000 numbers in .


• We create a histogram with
 bins.


• We compute 


• 


• 14.2 < 14.684:


• We accept these values!

[0,1]

k = 10

D = 14.2

χ2[0.9,9] = 14.684



• We measure the differences between the observed cumulative distribution 
function (CDF) or  and the expected CDF or .


• This difference has to be small.

Fo(x) Fe(x)

Kolmogorov–Smirnov Test
Main Idea

F(x)

Fo(x)

Fe(x)

x



• We measure the differences between the observed cumulative distribution 
function (CDF) or  and the expected CDF or .


• This difference has to be small.

Fo(x) Fe(x)

Kolmogorov–Smirnov Test
Main Idea

F(x)

Fo(x)

Fe(x)

x



• We measure the differences between the observed cumulative distribution 
function (CDF) or  and the expected CDF or .


• This difference has to be small.

Fo(x) Fe(x)

Kolmogorov–Smirnov Test
Main Idea

F(x)

Fo(x)

Fe(x)

x

Fe(xi+1) − Fo(xi)



Kolmogorov–Smirnov Test

• If  samples are drawn in the interval , then the graph of the empirical 
distribution of samples follows the CDF of uniform distribution in .

N [0,1]
[0,1]

Main Idea

x

p(x)

x

F(x)



Kolmogorov–Smirnov Test
Main Idea

• As first step, we draw some numbers  from our RNG that we want to 
test:


• X = [0.33967685, 0.05724571, 0.66265701, 0.51043379, 0.14676791,        
0.56020847, 0.03633356, 0.70865904, 0.39256236, 0.6442009 ,        
0.2163937 , 0.56919288, 0.28660165, 0.04716307, 0.41800649,        
0.61657189, 0.84608168, 0.41675127, 0.67504593, 0.08985331,        
0.06058904, 0.69510391, 0.45404319, 0.31664501, 0.67808957,        
0.48707878, 0.27557392, 0.45049086, 0.97062946, 0.30428724]

(n = 30)



Kolmogorov–Smirnov Test
Main Idea

• Then, we sort X:


• X=[0.03633356, 0.04716307, 0.05724571, 0.06058904, 0.08985331,        
0.14676791, 0.2163937 , 0.27557392, 0.28660165, 0.30428724,        
0.31664501, 0.33967685, 0.39256236, 0.41675127, 0.41800649,        
0.45049086, 0.45404319, 0.48707878, 0.51043379, 0.56020847,        
0.56919288, 0.61657189, 0.6442009 , 0.66265701, 0.67504593,        
0.67808957, 0.69510391, 0.70865904, 0.84608168, 0.97062946]



Kolmogorov–Smirnov Test
Main Idea

• At this point, we create our CDF:


• F_e = [0.02626448, 0.03069083, 0.08192876, 0.12139649, 0.13274487,        
0.17606128, 0.17887067, 0.23366556, 0.26401925, 0.31383012,        
0.3305621 , 0.3745732 , 0.3967338 , 0.40038054, 0.43270162,        
0.48037616, 0.54579684, 0.57802086, 0.63021673, 0.63716436,        
0.64184922, 0.69559601, 0.73070352, 0.75518713, 0.80761833,        
0.84528021, 0.86658813, 0.90142096, 0.97647192, 1.0]



Kolmogorov–Smirnov Test
Main Idea

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

F(
x)

Fo
Fe



Kolmogorov-Smirnov Goodness-of-Fit Test

• We compute  as:


where  and  are defined as:

D

D+ D+

D+ = arg max
x (Fo(x) − Fe(x))

Main Idea

D− = arg max
x (Fe(x) − Fo(x))

D = max(D+, D−),



Kolmogorov-Smirnov Goodness-of-Fit Test

• How do we compute  exactly in our case?


• How do we compute  exactly in our case?


D+

D−

Main Idea

D+ = arg max
i∈[1,n] ( i

n
− xi)

D− = arg max
i∈[0,n−1] (xi −

i
n )



Kolmogorov-Smirnov Goodness-of-Fit Test

• Finally, to pass the test (I.e., we accept the Null Hypothesis that X numbers are uniformly 
distributed in [0,1]) if:


,


where  is the significance value.


•  can be found in tables; but it can be approximated when :


; ; 


D < Dα,n

α

Dα,n n > 35

Dα=0.1,n =
1.22

n
Dα=0.05,n =

1.36

n
Dα=0.01,n =

1.63

n

Main Idea



Kolmogorov-Smirnov Goodness-of-Fit Test

• In our example, we have:


• We have passed the test —> the data is uniformly distributed over the range .[0,1]

Back to the Example

D+ = 0.0672984 D− = 0.0431386

D = max(D+, D−) = 0.0672984

D < D0.1,30 → 0.0672984 < 0.21756



RANDU



RANDU

• RANDU is a MCG RNG1 defined as:


where  is an odd number.


• This generator is meant to generate uniformly distributed number in the range .


• The generator was designed to generate high-quality tu tuples such as:


,


• for .

X0

[1,231 − 1]

(xi, xi+L)

L ∈ {1,2,3}

1Lewis, Peter A. W., A. S. Goodman and J. M. Miller (1969). “A Pseudo-Random Number Generator for the System 350”, IBM Systems Journal, 8(2), 136–45.

Xi+1 = Xi ⋅ 65539 mod 231,

A MCG Generator



Let’s draw some 2D points in 
 with RANDU[0,1]2



RANDU
2D Points
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It looks nice! Doesn’t it?



Let’s draw some 3D points in 
 with RANDU[0,1]3



RANDU
3D Points



The Lattice Structure in 2D
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MCGs in 2D



The Lattice Structure in 2D
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The Lattice Structure in 2D
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Marsaglia Theorem

• Marsaglia showed that consecutive tuples; e.g.:


,


from an MCG have a lattice structure:


where  are linearly independent basis vector in .


• The tuples are the intersection of the infinite  set with the unit cube .

(xi, …, xi+k−1)

vj ℝk

ℒ [0,1)k

ℒ = {
k

∑
j=1

αj ⋅ vj |αj ∈ ℤ},

Lattice Structure



Marsaglia Theorem

• In RANDU, all consecutive triples, , are all contained within 15 
parallel planes in the unit cube.


• What do we want?


• All the -tuples, , should be uniform:


• At least when  is small.

(xi, xi+1, xi+2)

k (xi, …, xi+k−1)

k

Uniformity in 1D



Marsaglia Theorem

• How do we assess uniformity?


• In 1D, we split  into:


•   congruent subintervals:


   .


• The subinterval containing  can be found from its first -bits.

[0,1)

2l

∀a ∈ [0,2l) [ a
2l

,
a + 1

2l )
xi l

Uniformity in 1D



Marsaglia Theorem

• Similarly to the 1D case, we can split  into  sub-cubes.


• An RNG  is -distributed to -bits accuracy if each box:


for  has  of the points  for .


NOTE: many RNGs do not have the point ; so they have .

[0,1)k 2kl

P = 2K k l

aj ∈ [0,2l) 2K−kl (xi, xi+k−1) i ∈ [1,P]

0 2K−kl − 1

Uniformity in k-Dimension

Ba ≡
k

∏
j=1

[aj

2l
,

aj + 1
2l ),



More Tests

• L’Ecuyer and Simard’s Test01:


• “TestU01: A C library for empirical testing of random number generators”


• http://simul.iro.umontreal.ca/testu01/tu01.html


• Marsaglia’s Die Hard Tests extended by Brown:


• https://webhome.phy.duke.edu/~rgb/General/dieharder.php

Further Readings

http://simul.iro.umontreal.ca/testu01/tu01.html


Modern RNGs



Mersenne Twister
Main Idea

• Makoto Matsumoto and Takuij Nishimura introduced this RNG in 1997.


• This RNG takes its name because its period is a Mersenne Primer; i.e., 
 is a prime.


• The most famous Mersenne Twister version is the MT19937 (e.g., C++11):


• .


• MT generates a sequence of word vectors with w-dimension, which are 
considered to be uniform pseudo-random integer in the range .

P = 2n − 1

P = 219937 − 1

[0,2w − 1]



Mersenne Twister
Main Idea

• The method is defined by:


 


where vectors are -dimensional vectors, , over :


• A finite field of two elements (0 and 1):


• Two operations:


•  : neutral element 0, commutative and associative


•  : neutral element 1, commutative, associative, and distributive

xi+n = xi+m ⊕ ((xu
i |xl

i+1) ⋅ A) i = 0,1,…

w x = (xw−1, …, x0) 𝔽2 = {0,1]}

+

⋅



Mersenne Twister
Main Idea

,


•  is the degree recurrence.


• .


• .


• The first  elements, , are seeds and they are cyclically 
updated.

xi+n = xi+m ⊕ ((xu
i |xl

i+1) ⋅ A) i = 0,1,…

n

m ∈ [1,n]

n > m

n x0, …, xn−1



Mersenne Twister
Main Idea

,


•  the upper  bits of , where ;


•  the lower  bits of .


• Parameters need to be picked such that  is a Mersenne prime.

xi+n = xi+m ⊕ ((xu
i |xl

i+1) ⋅ A) i = 0,1,…

xu
i w − r xi r ∈ [0,w − 1]

xl
i r xi

2nw−r − 1



Mersenne Twister
Main Idea

,


•  is a   matrix  with values in :


 


xi+n = xi+m ⊕ ((xu
i |xl

i+1) ⋅ A) i = 0,1,…

A w × w 𝔽2

A =

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1

aw−1 aw−2 aw−3 … a0



Mersenne Twister
Main Idea

• The RNG draws:


•  for ; 


•  for ;


•  for ;


•  etc. 


• Note that given,  and ,  can be computed as:


 

xn i = 0

xn+1 i = 1

xn+2 i = 2

x = (xw−1, …, x0) a = (aw1
, …, a0) x ⋅ A

x ⋅ A = {(x ≫ 1) ⊕ a if x0 = 1
(x ≫ 1) otherwise



Mersenne Twister
Tampering

• To improve the distribution properties, the output value is multiplied by  a 
matrix :





• As before, we implement this transformation with shifts and xors:


 

w × w
T

x ⋅ T

y = x ⊕ ((x ≫ u) ⋅ d)
y = x ⊕ ((x ≪ s) ⋅ b)
y = x ⊕ ((x ≪ t) ⋅ c)
z = x ⊕ (x ≫ l)



Mersenne Twister
Seeds

• We need to fill  seeds that are -vectors.


•  is typically large; e.g., 312.


• Strategy:


• We supply  as a seed number.


• The remaining seeds are computed as:


 for  

n w

n

x0

xk = f ⋅ (xk−1 ⊕ (xk−1 ≫ (w − 2)) + k k = 1,…, n − 1



Mersenne Twister
Conclusions

• Advantages:


• MT has a very long period, . Some RNGs have very short 
periods (e.g., ) which can lead to issues during simulations;


• Computationally fast implementations, and it can exploit SIMD 
architectures;


• We can generate points with 623 dimension with equi-distribution to 32-bit 
accuracy;

P = 219937 − 1
P = 232



Mersenne Twister
Conclusions

• Disadvantages:


• Initialization needs to be done with care:


• If there are too many 0s; the sequence may contain many 0s for many 
generations;


• If the seeds are picked systematically (e.g.,  ) the output 
may be correlated;


• Large state; I.e., 2.5KiB ( )

(0,20,30,…)

w = 64; n = 312; m = 156; r = 31



Modern RNGs
XORShift Family

• L’Ecuyer proposed a simple RNGs based on XOR and shift operators:


 


• The seeds, , can be set to random numbers; not all 0.


• Note: we need to store the latest generated values.


• When 32/64-bit numbers are  used we have a /

xt = x ⊕ (xi−4 ≪ 15))
xi = (xi−1 ⊕ (xi−1 ≫ 21)) ⊕ (xt ⊕ (xt ≫ 4))

x0, x1, x2, x3

P = 232 − 1 P = 264 − 1



Modern RNGs
XORShift

• For 32/64-bit, we can achieve a larger period by adding to  an additive counter 
modulo / :


• 32-bit —> 


• 64-bit —> 


• Furthermore, the method is computationally fast and efficient in terms of memory:


• XOR/SHIFT operations;


• Four value state.

xi
232 − 1 264 − 1

P = 2192 − 232

P = 2192 − 264



Modern RNGs
XORShift

• L’Ecuyer proposed also a simple and fast version 64-bit version:





• This has .

x0 = 88172645463325252LL
xt = xi ≪ 13
xt = xt ⊕ (xt ≫ 7)

xi+1 = xt ⊕ (xt ≪ 17)
P = 264 − 1



Modern RNGs
Other Methods

• Permuted congruential generator (PCG) family:

uint32_t pcg32_random_r(uint64_t &state;  uint64_t &inc) {
    uint64_t oldstate = state;
    state = oldstate * 6364136223846793005ULL + (inc|1);
    uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
    uint32_t rot = oldstate >> 59u;
    return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}

• https://www.pcg-random.org/index.html


• Xoroshiro128+ and more:


• https://prng.di.unimi.it/ 

https://www.pcg-random.org/index.html
https://prng.di.unimi.it/


Parallel Random Generators



Parallel Random Generators
The Centralized Approach

• We have a single RNG, :


• Thread safe: locks, atomic operations, etc.


•  draws random numbers for all other threads of the simulations.


• We may precompute a large set of numbers:


• Single buffer.


• A buffer for each thread.

R0

R0



Parallel Random Generators
The Centralized Approach

Random Numbers Buffer

RNG Thread 

MC Thread 0 MC Thread n…

…



Parallel Random Generators
The Centralized Approach

RNG Buffer 0

RNG Thread 

MC Thread 0 MC Thread n…

RNG Buffer n

…

…

…



Parallel Random Generators
The Centralized Approach

• Advantages:


• We avoid the problem to generate independent streams.


• Disadvantages:


• Not efficient: very slow! 

• Reproducibility: hard to debug!



Parallel Random Generators
The Replicated Approach

• For each thread of our simulation, we have a RNG with the same seed or a 
unique seed:


• We may use parametrization; i.e., different parameters for each RNG:


• This is hard for thousands of threads.


• Advantages:


• Efficiency: very fast;


• Easy to implement.



Parallel Random Generators
The Replicated Approach

• Disadvantages:


• Are the streams independent? We cannot guarantee it; we may have 
correlation between drawn numbers. 

• In MT, a solution is that the seed is a mix between the potential seed and 
the unique ID of the thread.


• NOTE: if the period is huge, this may be a viable option:


• There is a possibility of overlap:


• The probability is often negligible.



Parallel Random Generators
The Distributed Approach

• The generation of a single sequence is partitioned among many generators; 
i.e., one for each thread.


• Advantages:


• Efficient;


• Disadvantages:


• Hard to implement it!



Parallel Random Generators
The Distributed Approach: Block Splitting

RNG

T0

T1

T2

d



Parallel Random Generators
The Distributed Approach: Leap Frog
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Parallel Random Generators
The Distributed Approach

• What do we need for implementing these approaches?


• We need to know how to skip numbers: we need a RNG that can skip to 
the d-th number:


• MT can do that.


• Block splitting:


• We need to know how many numbers are consumed before 
synchronization!



Conclusions



Conclusions
Wrapping Up

• Try to use the latest RNGs that works; e.g., Mersenne Twister.


• Write a wrapper RNG class; so you can change your RNG when a better one 
comes out.


• Try to write a testing example, and test different RNGs.


• Try to avoid using too many numbers from the same RNG.
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Thank you for your attention!


