
Francesco Banterle, Ph.D.

Monte Carlo
Random Numbers

Real Random Numbers

• Montecarlo methods require randomness:

• We have a match between our mathematical model and our computational
model.

• To draw truly random number is not an easy task:

• We need special hardware based on thermal noise, shot noise, etc.

Introduction

Real Random Numbers

• There are limitations too:

• We cannot debug with them.

• Such generators are computationally slow.

• Some hardware generators fails some randomness tests —> flaws while
readings.

Introduction

A Pseudo-Random Generator

• In this course, pseudo-random numbers will be called random numbers for
the sake of simplicity.

• The main reasons to use such generators:

• Computationally complexity: they are computationally fast in drawing
numbers.

• Debugging: we can restart the stream of drawn numbers.

Introduction

A Pseudo-Random Generator

• For some random generators, their inner state can be inferred from their
outputs:

• We can then predict the next draws.

• Cryptography requires random generators where this problem is
computationally expensive to solve.

Introduction

A Pseudo-Random Generator

• Blum Blum Shub generator is defined as:

,

where p and q are large primes (4096-bit), and x0 is co-prime to M; different
from 0 or 1.

• The square root mod M of xi is not a computationally easy to solve problem.

• For Montecarlo, we do not need cryptographic security!

xi+1 = x2
i mod M M = p ⋅ q

Introduction

A Pseudo-Random Generator
Properties

• Computationally Fast: Montecarlo-based algorithms devour a huge number of random numbers. We
need to draw such numbers computationally quickly.

• Multiple Streams: Montecarlo-based algorithms typically are executed in parallel (more CPUs or
threads), we need different and independent streams.

• Large Period: the sequence of random numbers starts to repeat only after P numbers were drawn;
where P is a very large number.

• Quality: the generated numbers are independent and identically distributed (i.i.d.) in the range [0,1] or
(0,1) or (0,1], or [0,1).

• Equidistribution:: when drawing numbers in , we do not want more dense regions of
others:

xi ∈ [0,1]

∀[ys,ye]⊂[0,1] |{xi |xi ∈ [ys, ye]} | ∝ |ye − ys |

Classic Random Generators

• A very simple method introduced by Von Neumann. This method is
considered the first PRNG.

• A 32-bit version would be:

,

where .

• Drawbacks: very small period.

xi+1 = (x2
i ≫ 8) ⊙ 00FFFFFF

x0 ≠ 0

The Middle-Square Method

Classic Random Generators

• A classic and well-known random generator is the linear congruential generator (LCG)
that is defined as:

where:

• is called the seed or start value,

• is called the modulus (a positive integer),

• is the multiplier, and

• is the increment.

x0 ∈ [0,M − 1]

M

a0 ∈ [0,M − 1]

a1 ∈ [0,M − 1]

xi+1 = (xi ⋅ a0 + a1) mod M,

LCGs

Classic Random Generators
LCGs

• As we could expect, LCGs generates values in the range .

• To get floating-point values in the range , we divided by :

.

• Typically, we want to avoid to draw 0 and 1:

.

[0,M − 1]

[0,1] M − 1

f[0,1](x) =
x

M − 1

f(0,1)(x) =
x + 1
M + 1

Classic Random Generators

• If , we have:

• This random generator is typically called multiplicative congruential
generator (MCG) or Lehmer’s RNG.

• To have an extra term as in a LCG does not bring any quality improvement.
So MCGs are typically used instead of LCGs.

a1 = 0

xi+1 = xi ⋅ a0 mod M

xi+1 = x0 ⋅ ai
0 mod M i ≥ 1

MCGs

Classic Random Generators
LCGs

• A LCGs and MCGs, more in general other RNGs, will generate a sequence of values. For
example, let’s draw some numbers using a generator, G0:

[11, 10, 39, 44, 23, …]

• After a while, this sequence will restart:

• For example:

[11, 10, 39, 44, 23, 11, 10, 39, 44, 23, 11, 10, 39, 44, 23]

• In this case, the sequence restart after 5 numbers are drawn. This means that G0 has a period
. P = 5

xi = xi+P

Classic Random Generators
LCGs Parameters Selection

• To get maximum :

• is relatively prime to ;

• for all dividing ;

• if is a multiple of 4.

• If the period is maximized; the period is maximized for all .

P

a1 M

a0 = 1 mod p p M

a0 = 1 mod 4 M

x0

Classic Random Generators
MCGs Parameters Selection

• It cannot achieve maximum :

• If is prime and large, it can achieve :

• for 32-bit numbers

• If is odd, we have an alternation between odd and even numbers.

• We need to find an such that

P

M P = M − 1

M = 231 − 1

M

a0 ∀x∈[0,M−1] ∃i |ai
0 = x mod M

Classic Random Generators
Parameters Selection

• Several publications (papers, technical reports, blogs, etc.) reports how to
choose parameters for LCGs and MCGs including:

• Number of bits to be used;

• Period length;

• Quality of the drawn numbers; e.g., statistical test results.

Classic Random Generators
MRGs

• A further generalization of MCGs are Multiple Recursive Generators or MRGs that
are defined as:

,

where and .

• A special case of MRGs are the Lagged Fibonacci Generators or LFGs defined as:

,

where and need to be chosen carefully.

xi = a0 ⋅ xi−1 + … + ak ⋅ xi−k mod M

k ≥ 1 aj ≠ 0

xi = xi−r + xi−s mod M

r s

Combining RNGs
Main Idea

• A typical trick is to combine different RNGs (which can be not too good) to
improve the overall performance and to increase its period.

• Given RNGs, , we can put their results together as:

n U1, …, Un

xi = (xi,U1
+ xi,U2

+ … + xi,Un) mod 1

∀z∈ℝ z mod 1 ⟶ z − ⌊z⌋

Combining RNGs
The Wichmann-Hill Generator

• A classic example is the Wichman-Hill Generator:

• This way we can achieve .

xi = 171 ⋅ xi−1 mod 30269
yi = 172 ⋅ yi−1 mod 30307
zi = 170 ⋅ zi−1 mod 30323

wi = (xi

30269
+

yi

30307
+

zi

30323) mod 1

P = 6.95 ⋅ 1012

Combining RNGs
MRG32k3a

• L’Ecuyer proposed to combine two MRGs obtaining MRG32k3a.

• The method has combines two MRGs:

 .

• By combining two MRGs, we can achieve .

• MATLAB has employed MRG32k3a.

xi = (1403580xi−2 − 810728xi−3) mod (232 − 209)

yi = (527612yi−2 − 1370589yi−3) mod (232 − 22853)

Ui =
xi − yi + 232 − 209

232 − 208
if xi ≤ yi

xi − yi

232 − 208
otherwise

P = 3 × 1057

Quality Tests for RNGs

 Testχ2

• If samples are drawn in the interval , then the number of drawn
samples in each interval has to be equal on average.

• This test the range of data in subintervals; i.e., discrete distribution.

• We, then, count the sample for each subinterval.

• The number of samples that fall in each subinterval is close to the expected
number.

N [0,1]

k

Main Idea

 Testχ2

• The test is defined as

where:

• is the level of significance;

• is the number of bin in the histogram;

• is the number of observed values in the i-th bin of the histogram;

• is the number of expected values in the i-th bin of the histogram.

α

k

oi

ei =
N
k

D =
k

∑
i=1

(oi − ei)2

ei
< χ2

[1−α,k−1]

Main Idea

 Testχ2

Example using RANDU

• We draw 1,000 numbers in .

• We create a histogram with
 bins.

• We compute

•

• 14.2 < 14.684:

• We accept these values!

[0,1]

k = 10

D = 14.2

χ2[0.9,9] = 14.684

 Testχ2

Example using RANDU

Observed Expected

104 100

89 100

79 100

103 100

108 100

94 100

102 100

126 100

102 100

93 100

• We draw 1,000 numbers in .

• We create a histogram with
 bins.

• We compute

•

• 14.2 < 14.684:

• We accept these values!

[0,1]

k = 10

D = 14.2

χ2[0.9,9] = 14.684

• We measure the differences between the observed cumulative distribution
function (CDF) or and the expected CDF or .

• This difference has to be small.

Fo(x) Fe(x)

Kolmogorov–Smirnov Test
Main Idea

F(x)

Fo(x)

Fe(x)

x

• We measure the differences between the observed cumulative distribution
function (CDF) or and the expected CDF or .

• This difference has to be small.

Fo(x) Fe(x)

Kolmogorov–Smirnov Test
Main Idea

F(x)

Fo(x)

Fe(x)

x

• We measure the differences between the observed cumulative distribution
function (CDF) or and the expected CDF or .

• This difference has to be small.

Fo(x) Fe(x)

Kolmogorov–Smirnov Test
Main Idea

F(x)

Fo(x)

Fe(x)

x

Fe(xi+1) − Fo(xi)

Kolmogorov–Smirnov Test

• If samples are drawn in the interval , then the graph of the empirical
distribution of samples follows the CDF of uniform distribution in .

N [0,1]
[0,1]

Main Idea

x

p(x)

x

F(x)

Kolmogorov–Smirnov Test
Main Idea

• As first step, we draw some numbers from our RNG that we want to
test:

• X = [0.33967685, 0.05724571, 0.66265701, 0.51043379, 0.14676791,
0.56020847, 0.03633356, 0.70865904, 0.39256236, 0.6442009 ,
0.2163937 , 0.56919288, 0.28660165, 0.04716307, 0.41800649,
0.61657189, 0.84608168, 0.41675127, 0.67504593, 0.08985331,
0.06058904, 0.69510391, 0.45404319, 0.31664501, 0.67808957,
0.48707878, 0.27557392, 0.45049086, 0.97062946, 0.30428724]

(n = 30)

Kolmogorov–Smirnov Test
Main Idea

• Then, we sort X:

• X=[0.03633356, 0.04716307, 0.05724571, 0.06058904, 0.08985331,
0.14676791, 0.2163937 , 0.27557392, 0.28660165, 0.30428724,
0.31664501, 0.33967685, 0.39256236, 0.41675127, 0.41800649,
0.45049086, 0.45404319, 0.48707878, 0.51043379, 0.56020847,
0.56919288, 0.61657189, 0.6442009 , 0.66265701, 0.67504593,
0.67808957, 0.69510391, 0.70865904, 0.84608168, 0.97062946]

Kolmogorov–Smirnov Test
Main Idea

• At this point, we create our CDF:

• F_e = [0.02626448, 0.03069083, 0.08192876, 0.12139649, 0.13274487,
0.17606128, 0.17887067, 0.23366556, 0.26401925, 0.31383012,
0.3305621 , 0.3745732 , 0.3967338 , 0.40038054, 0.43270162,
0.48037616, 0.54579684, 0.57802086, 0.63021673, 0.63716436,
0.64184922, 0.69559601, 0.73070352, 0.75518713, 0.80761833,
0.84528021, 0.86658813, 0.90142096, 0.97647192, 1.0]

Kolmogorov–Smirnov Test
Main Idea

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

F(
x)

Fo
Fe

Kolmogorov-Smirnov Goodness-of-Fit Test

• We compute as:

where and are defined as:

D

D+ D+

D+ = arg max
x (Fo(x) − Fe(x))

Main Idea

D− = arg max
x (Fe(x) − Fo(x))

D = max(D+, D−),

Kolmogorov-Smirnov Goodness-of-Fit Test

• How do we compute exactly in our case?

• How do we compute exactly in our case?

D+

D−

Main Idea

D+ = arg max
i∈[1,n] (i

n
− xi)

D− = arg max
i∈[0,n−1] (xi −

i
n)

Kolmogorov-Smirnov Goodness-of-Fit Test

• Finally, to pass the test (I.e., we accept the Null Hypothesis that X numbers are uniformly
distributed in [0,1]) if:

,

where is the significance value.

• can be found in tables; but it can be approximated when :

; ;

D < Dα,n

α

Dα,n n > 35

Dα=0.1,n =
1.22

n
Dα=0.05,n =

1.36

n
Dα=0.01,n =

1.63

n

Main Idea

Kolmogorov-Smirnov Goodness-of-Fit Test

• In our example, we have:

• We have passed the test —> the data is uniformly distributed over the range .[0,1]

Back to the Example

D+ = 0.0672984 D− = 0.0431386

D = max(D+, D−) = 0.0672984

D < D0.1,30 → 0.0672984 < 0.21756

RANDU

RANDU

• RANDU is a MCG RNG1 defined as:

where is an odd number.

• This generator is meant to generate uniformly distributed number in the range .

• The generator was designed to generate high-quality tu tuples such as:

,

• for .

X0

[1,231 − 1]

(xi, xi+L)

L ∈ {1,2,3}

1Lewis, Peter A. W., A. S. Goodman and J. M. Miller (1969). “A Pseudo-Random Number Generator for the System 350”, IBM Systems Journal, 8(2), 136–45.

Xi+1 = Xi ⋅ 65539 mod 231,

A MCG Generator

Let’s draw some 2D points in
 with RANDU[0,1]2

RANDU
2D Points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

It looks nice! Doesn’t it?

Let’s draw some 3D points in
 with RANDU[0,1]3

RANDU
3D Points

The Lattice Structure in 2D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M = 59; a0 = 33 M = 59; a0 = 44

MCGs in 2D

The Lattice Structure in 2D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M = 59; a0 = 33 M = 59; a0 = 44

MCGs in 2D

The Lattice Structure in 2D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M = 59; a0 = 33 M = 59; a0 = 44

MCGs in 2D

Marsaglia Theorem

• Marsaglia showed that consecutive tuples; e.g.:

,

from an MCG have a lattice structure:

where are linearly independent basis vector in .

• The tuples are the intersection of the infinite set with the unit cube .

(xi, …, xi+k−1)

vj ℝk

ℒ [0,1)k

ℒ = {
k

∑
j=1

αj ⋅ vj |αj ∈ ℤ},

Lattice Structure

Marsaglia Theorem

• In RANDU, all consecutive triples, , are all contained within 15
parallel planes in the unit cube.

• What do we want?

• All the -tuples, , should be uniform:

• At least when is small.

(xi, xi+1, xi+2)

k (xi, …, xi+k−1)

k

Uniformity in 1D

Marsaglia Theorem

• How do we assess uniformity?

• In 1D, we split into:

• congruent subintervals:

 .

• The subinterval containing can be found from its first -bits.

[0,1)

2l

∀a ∈ [0,2l) [a
2l

,
a + 1

2l)
xi l

Uniformity in 1D

Marsaglia Theorem

• Similarly to the 1D case, we can split into sub-cubes.

• An RNG is -distributed to -bits accuracy if each box:

for has of the points for .

NOTE: many RNGs do not have the point ; so they have .

[0,1)k 2kl

P = 2K k l

aj ∈ [0,2l) 2K−kl (xi, xi+k−1) i ∈ [1,P]

0 2K−kl − 1

Uniformity in k-Dimension

Ba ≡
k

∏
j=1

[aj

2l
,

aj + 1
2l),

More Tests

• L’Ecuyer and Simard’s Test01:

• “TestU01: A C library for empirical testing of random number generators”

• http://simul.iro.umontreal.ca/testu01/tu01.html

• Marsaglia’s Die Hard Tests extended by Brown:

• https://webhome.phy.duke.edu/~rgb/General/dieharder.php

Further Readings

http://simul.iro.umontreal.ca/testu01/tu01.html

Modern RNGs

Mersenne Twister
Main Idea

• Makoto Matsumoto and Takuij Nishimura introduced this RNG in 1997.

• This RNG takes its name because its period is a Mersenne Primer; i.e.,
 is a prime.

• The most famous Mersenne Twister version is the MT19937 (e.g., C++11):

• .

• MT generates a sequence of word vectors with w-dimension, which are
considered to be uniform pseudo-random integer in the range .

P = 2n − 1

P = 219937 − 1

[0,2w − 1]

Mersenne Twister
Main Idea

• The method is defined by:

where vectors are -dimensional vectors, , over :

• A finite field of two elements (0 and 1):

• Two operations:

• : neutral element 0, commutative and associative

• : neutral element 1, commutative, associative, and distributive

xi+n = xi+m ⊕ ((xu
i |xl

i+1) ⋅ A) i = 0,1,…

w x = (xw−1, …, x0) 𝔽2 = {0,1]}

+

⋅

Mersenne Twister
Main Idea

,

• is the degree recurrence.

• .

• .

• The first elements, , are seeds and they are cyclically
updated.

xi+n = xi+m ⊕ ((xu
i |xl

i+1) ⋅ A) i = 0,1,…

n

m ∈ [1,n]

n > m

n x0, …, xn−1

Mersenne Twister
Main Idea

,

• the upper bits of , where ;

• the lower bits of .

• Parameters need to be picked such that is a Mersenne prime.

xi+n = xi+m ⊕ ((xu
i |xl

i+1) ⋅ A) i = 0,1,…

xu
i w − r xi r ∈ [0,w − 1]

xl
i r xi

2nw−r − 1

Mersenne Twister
Main Idea

,

• is a matrix with values in :

xi+n = xi+m ⊕ ((xu
i |xl

i+1) ⋅ A) i = 0,1,…

A w × w 𝔽2

A =

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1

aw−1 aw−2 aw−3 … a0

Mersenne Twister
Main Idea

• The RNG draws:

• for ;

• for ;

• for ;

• etc.

• Note that given, and , can be computed as:

xn i = 0

xn+1 i = 1

xn+2 i = 2

x = (xw−1, …, x0) a = (aw1
, …, a0) x ⋅ A

x ⋅ A = {(x ≫ 1) ⊕ a if x0 = 1
(x ≫ 1) otherwise

Mersenne Twister
Tampering

• To improve the distribution properties, the output value is multiplied by a
matrix :

• As before, we implement this transformation with shifts and xors:

w × w
T

x ⋅ T

y = x ⊕ ((x ≫ u) ⋅ d)
y = x ⊕ ((x ≪ s) ⋅ b)
y = x ⊕ ((x ≪ t) ⋅ c)
z = x ⊕ (x ≫ l)

Mersenne Twister
Seeds

• We need to fill seeds that are -vectors.

• is typically large; e.g., 312.

• Strategy:

• We supply as a seed number.

• The remaining seeds are computed as:

 for

n w

n

x0

xk = f ⋅ (xk−1 ⊕ (xk−1 ≫ (w − 2)) + k k = 1,…, n − 1

Mersenne Twister
Conclusions

• Advantages:

• MT has a very long period, . Some RNGs have very short
periods (e.g.,) which can lead to issues during simulations;

• Computationally fast implementations, and it can exploit SIMD
architectures;

• We can generate points with 623 dimension with equi-distribution to 32-bit
accuracy;

P = 219937 − 1
P = 232

Mersenne Twister
Conclusions

• Disadvantages:

• Initialization needs to be done with care:

• If there are too many 0s; the sequence may contain many 0s for many
generations;

• If the seeds are picked systematically (e.g.,) the output
may be correlated;

• Large state; I.e., 2.5KiB ()

(0,20,30,…)

w = 64; n = 312; m = 156; r = 31

Modern RNGs
XORShift Family

• L’Ecuyer proposed a simple RNGs based on XOR and shift operators:

• The seeds, , can be set to random numbers; not all 0.

• Note: we need to store the latest generated values.

• When 32/64-bit numbers are used we have a /

xt = x ⊕ (xi−4 ≪ 15))
xi = (xi−1 ⊕ (xi−1 ≫ 21)) ⊕ (xt ⊕ (xt ≫ 4))

x0, x1, x2, x3

P = 232 − 1 P = 264 − 1

Modern RNGs
XORShift

• For 32/64-bit, we can achieve a larger period by adding to an additive counter
modulo / :

• 32-bit —>

• 64-bit —>

• Furthermore, the method is computationally fast and efficient in terms of memory:

• XOR/SHIFT operations;

• Four value state.

xi
232 − 1 264 − 1

P = 2192 − 232

P = 2192 − 264

Modern RNGs
XORShift

• L’Ecuyer proposed also a simple and fast version 64-bit version:

• This has .

x0 = 88172645463325252LL
xt = xi ≪ 13
xt = xt ⊕ (xt ≫ 7)

xi+1 = xt ⊕ (xt ≪ 17)
P = 264 − 1

Modern RNGs
Other Methods

• Permuted congruential generator (PCG) family:

uint32_t pcg32_random_r(uint64_t &state; uint64_t &inc) {
 uint64_t oldstate = state;
 state = oldstate * 6364136223846793005ULL + (inc|1);
 uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
 uint32_t rot = oldstate >> 59u;
 return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}

• https://www.pcg-random.org/index.html

• Xoroshiro128+ and more:

• https://prng.di.unimi.it/

https://www.pcg-random.org/index.html
https://prng.di.unimi.it/

Parallel Random Generators

Parallel Random Generators
The Centralized Approach

• We have a single RNG, :

• Thread safe: locks, atomic operations, etc.

• draws random numbers for all other threads of the simulations.

• We may precompute a large set of numbers:

• Single buffer.

• A buffer for each thread.

R0

R0

Parallel Random Generators
The Centralized Approach

Random Numbers Buffer

RNG Thread

MC Thread 0 MC Thread n…

…

Parallel Random Generators
The Centralized Approach

RNG Buffer 0

RNG Thread

MC Thread 0 MC Thread n…

RNG Buffer n

…

…

…

Parallel Random Generators
The Centralized Approach

• Advantages:

• We avoid the problem to generate independent streams.

• Disadvantages:

• Not efficient: very slow!

• Reproducibility: hard to debug!

Parallel Random Generators
The Replicated Approach

• For each thread of our simulation, we have a RNG with the same seed or a
unique seed:

• We may use parametrization; i.e., different parameters for each RNG:

• This is hard for thousands of threads.

• Advantages:

• Efficiency: very fast;

• Easy to implement.

Parallel Random Generators
The Replicated Approach

• Disadvantages:

• Are the streams independent? We cannot guarantee it; we may have
correlation between drawn numbers.

• In MT, a solution is that the seed is a mix between the potential seed and
the unique ID of the thread.

• NOTE: if the period is huge, this may be a viable option:

• There is a possibility of overlap:

• The probability is often negligible.

Parallel Random Generators
The Distributed Approach

• The generation of a single sequence is partitioned among many generators;
i.e., one for each thread.

• Advantages:

• Efficient;

• Disadvantages:

• Hard to implement it!

Parallel Random Generators
The Distributed Approach: Block Splitting

RNG

T0

T1

T2

d

Parallel Random Generators
The Distributed Approach: Leap Frog

RNG

T0

T1

T2

Parallel Random Generators
The Distributed Approach

• What do we need for implementing these approaches?

• We need to know how to skip numbers: we need a RNG that can skip to
the d-th number:

• MT can do that.

• Block splitting:

• We need to know how many numbers are consumed before
synchronization!

Conclusions

Conclusions
Wrapping Up

• Try to use the latest RNGs that works; e.g., Mersenne Twister.

• Write a wrapper RNG class; so you can change your RNG when a better one
comes out.

• Try to write a testing example, and test different RNGs.

• Try to avoid using too many numbers from the same RNG.

Bibliography

• Art Owen. “Chapter 3: Uniform Random Numbers” from the book “Monte
Carlo theory, methods and examples”. 2013.

• Jeff Wehrwein. "Random Number Generation”. Senior Thesis in Mathematics.
2007.

• Donald E. Knuth. “The Art of Computer Programming, Volume 2:
Seminumerical Algorithms (second edition)”. Addison Wesley, 1997.

• Lewis, Peter A. W., A. S. Goodman and J. M. Miller. “A Pseudo-Random
Number Generator for the System 350”, IBM Systems Journal, 8(2), 136–45.
1969.

Thank you for your attention!

