Monte Carlo

Random Numbers

Francesco Banterle, Ph.D.

Real Random Numbers

Introduction

- Montecarlo methods require randomness:
- We have a match between our mathematical model and our computational model.
- To draw truly random number is not an easy task:
- We need special hardware based on thermal noise, shot noise, etc.

Real Random Numbers

Introduction

- There are limitations too:
- We cannot debug with them.
- Such generators are computationally slow.
- Some hardware generators fails some randomness tests $->$ flaws while readings.

A Pseudo-Random Generator

Introduction

- In this course, pseudo-random numbers will be called random numbers for the sake of simplicity.
- The main reasons to use such generators:
- Computationally complexity: they are computationally fast in drawing numbers.
- Debugging: we can restart the stream of drawn numbers.

A Pseudo-Random Generator

Introduction

- For some random generators, their inner state can be inferred from their outputs:
- We can then predict the next draws.
- Cryptography requires random generators where this problem is computationally expensive to solve.

A Pseudo-Random Generator

Introduction

- Blum Blum Shub generator is defined as:

$$
x_{i+1}=x_{i}^{2} \quad \bmod M \quad M=p \cdot q,
$$

where p and q are large primes (4096-bit), and x_{0} is co-prime to M; different from 0 or 1 .

- The square root $\bmod M$ of x_{i} is not a computationally easy to solve problem.
- For Montecarlo, we do not need cryptographic security!

A Pseudo-Random Generator
 Properties

- Computationally Fast: Montecarlo-based algorithms devour a huge number of random numbers. We need to draw such numbers computationally quickly.
- Multiple Streams: Montecarlo-based algorithms typically are executed in parallel (more CPUs or threads), we need different and independent streams.
- Large Period: the sequence of random numbers starts to repeat only after P numbers were drawn; where P is a very large number.
- Quality: the generated numbers are independent and identically distributed (i.i.d.) in the range [0,1] or $(0,1)$ or $(0,1]$, or $[0,1)$.
- Equidistribution:: when drawing numbers in $x_{i} \in[0,1]$, we do not want more dense regions of others:

$$
\forall_{\left[y_{s}, y_{e}\right][[0,1]}\left|\left\{x_{i} \mid x_{i} \in\left[y_{s}, y_{e}\right]\right\}\right| \propto\left|y_{e}-y_{s}\right|
$$

Classic Random Generators

The Middle-Square Method

- A very simple method introduced by Von Neumann. This method is considered the first PRNG.
- A 32-bit version would be:

$$
x_{i+1}=\left(x_{i}^{2} \gg 8\right) \odot 00 F F F F F F,
$$

where $x_{0} \neq 0$.

- Drawbacks: very small period.

Classic Random Generators
 LCGs

- A classic and well-known random generator is the linear congruential generator (LCG) that is defined as:
where:

$$
x_{i+1}=\left(x_{i} \cdot a_{0}+a_{1}\right) \bmod M
$$

- $x_{0} \in[0, M-1]$ is called the seed or start value,
- M is called the modulus (a positive integer),
- $a_{0} \in[0, M-1]$ is the multiplier, and
- $a_{1} \in[0, M-1]$ is the increment.

Classic Random Generators
 LCGs

- As we could expect, LCGs generates values in the range $[0, M-1]$.
- To get floating-point values in the range [0,1], we divided by $M-1$:

$$
f_{[0,1]}(x)=\frac{x}{M-1}
$$

- Typically, we want to avoid to draw 0 and 1:

$$
f_{(0,1)}(x)=\frac{x+1}{M+1}
$$

Classic Random Generators
 MCGs

- If $a_{1}=0$, we have:

$$
\begin{gathered}
x_{i+1}=x_{i} \cdot a_{0} \bmod M \\
x_{i+1}=x_{0} \cdot a_{0}^{i} \bmod M \quad i \geq 1
\end{gathered}
$$

- This random generator is typically called multiplicative congruential generator (MCG) or Lehmer's RNG.
- To have an extra term as in a LCG does not bring any quality improvement. So MCGs are typically used instead of LCGs.

Classic Random Generators
 LCGs

- A LCGs and MCGs, more in general other RNGs, will generate a sequence of values. For example, let's draw some numbers using a generator, G_{0} :

$$
[11,10,39,44,23, \ldots]
$$

- After a while, this sequence will restart:

$$
x_{i}=x_{i+P}
$$

- For example:

$$
[11,10,39,44,23,11,10,39,44,23,11,10,39,44,23]
$$

- In this case, the sequence restart after 5 numbers are drawn. This means that G_{0} has a period $P=5$.

Classic Random Generators
 LCGs Parameters Selection

- To get maximum P :
- a_{1} is relatively prime to M;
- $a_{0}=1 \bmod p$ for all p dividing M;
- $a_{0}=1 \bmod 4$ if M is a multiple of 4 .
- If the period is maximized; the period is maximized for all x_{0}.

Classic Random Generators
 MCGs Parameters Selection

- It cannot achieve maximum P :
- If M is prime and large, it can achieve $P=M-1$:
- $M=2^{31}-1$ for 32 -bit numbers
- If M is odd, we have an alternation between odd and even numbers.
- We need to find an a_{0} such that $\forall_{x \in[0, M-1]} \exists_{i} \mid a_{0}^{i}=x \bmod M$

Classic Random Generators

Parameters Selection

- Several publications (papers, technical reports, blogs, etc.) reports how to choose parameters for LCGs and MCGs including:
- Number of bits to be used;
- Period length;
- Quality of the drawn numbers; e.g., statistical test results.

Classic Random Generators
 MRGs

- A further generalization of MCGs are Multiple Recursive Generators or MRGs that are defined as:

$$
x_{i}=a_{0} \cdot x_{i-1}+\ldots+a_{k} \cdot x_{i-k} \bmod M
$$

where $k \geq 1$ and $a_{j} \neq 0$.

- A special case of MRGs are the Lagged Fibonacci Generators or LFGs defined as:

$$
x_{i}=x_{i-r}+x_{i-s} \bmod M
$$

where r and s need to be chosen carefully.

Combining RNGs

Main Idea

- A typical trick is to combine different RNGs (which can be not too good) to improve the overall performance and to increase its period.
- Given n RNGs, $\mathbf{U}_{1}, \ldots, \mathbf{U}_{n}$, we can put their results together as:

$$
\begin{aligned}
& x_{i}=\left(x_{i, \mathbf{U}_{1}}+x_{i, \mathbf{U}_{2}}+\ldots+x_{i, \mathbf{U}_{n}}\right) \bmod 1 \\
& \forall_{z \in \mathbb{R}} z \bmod 1 \longrightarrow z-\lfloor z\rfloor
\end{aligned}
$$

Combining RNGs

The Wichmann-Hill Generator

- A classic example is the Wichman-Hill Generator:

$$
\begin{aligned}
& x_{i}=171 \cdot x_{i-1} \bmod 30269 \\
& y_{i}=172 \cdot y_{i-1} \bmod 30307 \\
& z_{i}=170 \cdot z_{i-1} \bmod 30323 \\
& w_{i}=\left(\frac{x_{i}}{30269}+\frac{y_{i}}{30307}+\frac{z_{i}}{30323}\right) \bmod 1
\end{aligned}
$$

- This way we can achieve $P=6.95 \cdot 10^{12}$.

Combining RNGs
 MRG32k3a

- L'Ecuyer proposed to combine two MRGs obtaining MRG32k3a.
- The method has combines two MRGs:

$$
\begin{gathered}
x_{i}=\left(1403580 x_{i-2}-810728 x_{i-3}\right) \bmod \left(2^{32}-209\right) \\
y_{i}=\left(527612 y_{i-2}-1370589 y_{i-3}\right) \bmod \left(2^{32}-22853\right) \\
U_{i}= \begin{cases}\frac{x_{i}-y_{i}+2^{32}-209}{2^{32}-208} & \text { if } x_{i} \leq y_{i} \\
\frac{x_{i}-y_{i}}{2^{32}-208} & \text { otherwise }\end{cases}
\end{gathered}
$$

- By combining two MRGs, we can achieve $P=3 \times 10^{57}$.
- MATLAB has employed MRG32k3a.

Quality Tests for RNGs

χ^{2} Test

Main Idea

- If N samples are drawn in the interval [0,1], then the number of drawn samples in each interval has to be equal on average.
- This test the range of data in k subintervals; i.e., discrete distribution.
- We, then, count the sample for each subinterval.
- The number of samples that fall in each subinterval is close to the expected number.

χ^{2} Test

Main Idea

- The test is defined as
where:

$$
D=\sum_{i=1}^{k} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}}<\chi_{[1-\alpha, k-1]}^{2}
$$

- α is the level of significance;
- k is the number of bin in the histogram;
- o_{i} is the number of observed values in the i-th bin of the histogram;
- $e_{i}=\frac{N}{k}$ is the number of expected values in the i-th bin of the histogram.
χ^{2} Test

Example using RANDU

- We draw 1,000 numbers in [0,1].
- We create a histogram with $k=10$ bins.
- We compute $D=14.2$
- $\chi^{2}[0.9,9]=14.684$
- 14.2 < 14.684:
- We accept these values!

χ^{2} Test

Example using RANDU

- We draw 1,000 numbers in [0,1].
- We create a histogram with $k=10$ bins.
- We compute $D=14.2$
- $\chi^{2}[0.9,9]=14.684$
- 14.2 < 14.684:
- We accept these values!

Observed	Expected
104	100
89	100
79	100
103	100
108	100
94	100
102	100
126	100
93	100

Kolmogorov-Smirnov Test

Main Idea

- We measure the differences between the observed cumulative distribution function (CDF) or $F_{o}(x)$ and the expected CDF or $F_{e}(x)$.
- This difference has to be small.

Kolmogorov-Smirnov Test

Main Idea

- We measure the differences between the observed cumulative distribution function (CDF) or $F_{o}(x)$ and the expected CDF or $F_{e}(x)$.
- This difference has to be small.

Kolmogorov-Smirnov Test

Main Idea

- We measure the differences between the observed cumulative distribution function (CDF) or $F_{o}(x)$ and the expected CDF or $F_{e}(x)$.
- This difference has to be small.

$-F_{o}(x)$
$-F_{e}(x)$

Kolmogorov-Smirnov Test

Main Idea

- If N samples are drawn in the interval [0,1], then the graph of the empirical distribution of samples follows the CDF of uniform distribution in $[0,1]$.

Kolmogorov-Smirnov Test

Main Idea

- As first step, we draw some numbers $(n=30)$ from our RNG that we want to test:
- $X=[0.33967685,0.05724571,0.66265701,0.51043379,0.14676791$, $0.56020847,0.03633356,0.70865904,0.39256236,0.6442009$ $0.2163937,0.56919288,0.28660165,0.04716307,0.41800649$, 0.61657189, 0.84608168, 0.41675127, 0.67504593, 0.08985331, $0.06058904,0.69510391,0.45404319,0.31664501,0.67808957$, $0.48707878,0.27557392,0.45049086,0.97062946,0.30428724]$

Kolmogorov-Smirnov Test

Main Idea

- Then, we sort X:
- $X=[0.03633356,0.04716307,0.05724571,0.06058904,0.08985331$, $0.14676791,0.2163937,0.27557392,0.28660165,0.30428724$, $0.31664501,0.33967685,0.39256236,0.41675127,0.41800649$, $0.45049086,0.45404319,0.48707878,0.51043379,0.56020847$, $0.56919288,0.61657189,0.6442009,0.66265701,0.67504593$, $0.67808957,0.69510391,0.70865904,0.84608168,0.97062946]$

Kolmogorov-Smirnov Test

Main Idea

- At this point, we create our CDF:
- $\mathrm{F}_{\mathrm{C}} \mathrm{e}=[0.02626448,0.03069083,0.08192876,0.12139649,0.13274487$, $0.17606128,0.17887067,0.23366556,0.26401925,0.31383012$, $0.3305621,0.3745732,0.3967338,0.40038054,0.43270162$, $0.48037616,0.54579684,0.57802086,0.63021673,0.63716436$, $0.64184922,0.69559601,0.73070352,0.75518713,0.80761833$, $0.84528021,0.86658813,0.90142096,0.97647192,1.0]$

Kolmogorov-Smirnov Test

Main Idea

Kolmogorov-Smirnov Goodness-of-Fit Test

Main Idea

- We compute D as:

$$
D=\max \left(D^{+}, D^{-}\right)
$$

where D^{+}and D^{+}are defined as:

$$
D^{+}=\arg \max _{x}\left(F_{o}(x)-F_{e}(x)\right) \quad D^{-}=\arg \max _{x}\left(F_{e}(x)-F_{o}(x)\right)
$$

Kolmogorov-Smirnov Goodness-of-Fit Test

Main Idea

- How do we compute D^{+}exactly in our case?

$$
D^{+}=\arg \max _{i \in[1, n]}\left(\frac{i}{n}-x_{i}\right)
$$

- How do we compute D^{-}exactly in our case?

$$
D^{-}=\arg \max _{i \in[0, n-1]}\left(x_{i}-\frac{i}{n}\right)
$$

Kolmogorov-Smirnov Goodness-of-Fit Test

Main Idea

- Finally, to pass the test (I.e., we accept the Null Hypothesis that X numbers are uniformly distributed in $[0,1]$) if:

$$
D<D_{\alpha, n}
$$

where α is the significance value.

- $D_{\alpha, n}$ can be found in tables; but it can be approximated when $n>35$:

$$
D_{\alpha=0.1, n}=\frac{1.22}{\sqrt{n}} ; D_{\alpha=0.05, n}=\frac{1.36}{\sqrt{n}} ; D_{\alpha=0.01, n}=\frac{1.63}{\sqrt{n}}
$$

Kolmogorov-Smirnov Goodness-of-Fit Test

Back to the Example

- In our example, we have:

$$
\begin{gathered}
D^{+}=0.0672984 \quad D^{-}=0.0431386 \\
D=\max \left(D^{+}, D^{-}\right)=0.0672984 \\
D<D_{0.1,30} \rightarrow 0.0672984<0.21756
\end{gathered}
$$

- We have passed the test $->$ the data is uniformly distributed over the range $[0,1]$.

RANDU

RANDU

A MCG Generator

- RANDU is a MCG RNG ${ }^{1}$ defined as:

$$
X_{i+1}=X_{i} \cdot 65539 \bmod 2^{31}
$$

where X_{0} is an odd number.

- This generator is meant to generate uniformly distributed number in the range $\left[1,2^{31}-1\right]$.
- The generator was designed to generate high-quality tu tuples such as:

$$
\left(x_{i}, x_{i+L}\right)
$$

- for $L \in\{1,2,3\}$.

Let's draw some 2D points in $[0,1]^{2}$ with RANDU

RANDU

2D Points

It looks nice! Doesn't it?

Let's draw some 3D points in $[0,1]^{3}$ with RANDU

RANDU 3D Points

The Lattice Structure in 2D

MCGs in 2D

$$
M=59 ; a_{0}=44
$$

The Lattice Structure in 2D

MCGs in 2D

$$
M=59 ; a_{0}=44
$$

The Lattice Structure in 2D
 MCGs in 2D

$M=59 ; a_{0}=33$

$M=59 ; a_{0}=44$

Marsaglia Theorem
 Lattice Structure

- Marsaglia showed that consecutive tuples; e.g.:

$$
\left(x_{i}, \ldots, x_{i+k-1}\right)
$$

from an MCG have a lattice structure:

$$
\mathscr{L}=\left\{\sum_{j=1}^{k} \alpha_{j} \cdot \mathbf{v}_{j} \mid \alpha_{j} \in \mathbb{Z}\right\}
$$

where \mathbf{v}_{j} are linearly independent basis vector in \mathbb{R}^{k}.

- The tuples are the intersection of the infinite \mathscr{L} set with the unit cube $[0,1)^{k}$.

Marsaglia Theorem
 Uniformity in 1D

- In RANDU, all consecutive triples, $\left(x_{i}, x_{i+1}, x_{i+2}\right)$, are all contained within 15 parallel planes in the unit cube.
- What do we want?
- All the k-tuples, $\left(x_{i}, \ldots, x_{i+k-1}\right)$, should be uniform:
- At least when k is small.

Marsaglia Theorem
 Uniformity in 1D

- How do we assess uniformity?
- In 1D, we split [0,1) into:
- 2^{l} congruent subintervals:

$$
\forall a \in\left[0,2^{l}\right) \quad\left[\frac{a}{2^{l}}, \frac{a+1}{2^{l}}\right) .
$$

- The subinterval containing x_{i} can be found from its first l-bits.

Marsaglia Theorem
 Uniformity in k-Dimension

- Similarly to the 1D case, we can split $[0,1)^{k}$ into $2^{k l}$ sub-cubes.
- An RNG $P=2^{K}$ is k-distributed to l-bits accuracy if each box:

$$
B_{a} \equiv \prod_{j=1}^{k}\left[\frac{a_{j}}{2^{l}}, \frac{a_{j}+1}{2^{l}}\right),
$$

for $a_{j} \in\left[0,2^{l}\right)$ has $2^{K-k l}$ of the points $\left(x_{i}, x_{i+k-1}\right)$ for $i \in[1, P]$.
NOTE: many RNGs do not have the point $\mathbf{0}$; so they have $2^{K-k l}-1$.

More Tests

Further Readings

- L'Ecuyer and Simard's Test01:
- "TestU01: A C library for empirical testing of random number generators"
- http://simul.iro.umontreal.ca/testu01/tu01.html
- Marsaglia's Die Hard Tests extended by Brown:
- https://webhome.phy.duke.edu/~rgb/General/dieharder.php

Modern RNGs

Mersenne Twister

Main Idea

- Makoto Matsumoto and Takuij Nishimura introduced this RNG in 1997.
- This RNG takes its name because its period is a Mersenne Primer; i.e., $P=2^{n}-1$ is a prime.
- The most famous Mersenne Twister version is the MT19937 (e.g., C++11):
- $P=2^{19937}-1$.
- MT generates a sequence of word vectors with w-dimension, which are considered to be uniform pseudo-random integer in the range $\left[0,2^{w}-1\right]$.

Mersenne Twister

Main Idea

- The method is defined by:

$$
\mathbf{x}_{i+n}=\mathbf{x}_{i+m} \oplus\left(\left(\mathbf{x}_{i}^{u} \mid \mathbf{x}_{i+1}^{l}\right) \cdot A\right) \quad i=0,1, \ldots
$$

where vectors are w-dimensional vectors, $\mathbf{x}=\left(x_{w-1}, \ldots, x_{0}\right)$, over $\left.\mathbb{F}_{2}=\{0,1]\right\}$:

- A finite field of two elements (0 and 1):
- Two operations:
- + : neutral element 0 , commutative and associative
- • : neutral element 1, commutative, associative, and distributive

Mersenne Twister

Main Idea

$$
\mathbf{x}_{i+n}=\mathbf{x}_{i+m} \oplus\left(\left(\mathbf{x}_{i}^{u} \mid \mathbf{x}_{i+1}^{l}\right) \cdot A\right) \quad i=0,1, \ldots,
$$

- n is the degree recurrence.
- $m \in[1, n]$.
- $n>m$.
- The first n elements, $\mathbf{x}_{0}, \ldots, \mathbf{x}_{n-1}$, are seeds and they are cyclically updated.

Mersenne Twister

Main Idea

$$
\mathbf{x}_{i+n}=\mathbf{x}_{i+m} \oplus\left(\left(\mathbf{x}_{i}^{u} \mid \mathbf{x}_{i+1}^{l}\right) \cdot A\right) \quad i=0,1, \ldots
$$

- \mathbf{x}_{i}^{u} the upper $w-r$ bits of \mathbf{x}_{i}, where $r \in[0, w-1]$;
- \mathbf{x}_{i}^{l} the lower r bits of \mathbf{x}_{i}.
- Parameters need to be picked such that $2^{n w-r}-1$ is a Mersenne prime.

Mersenne Twister

Main Idea

$$
\mathbf{x}_{i+n}=\mathbf{x}_{i+m} \oplus\left(\left(\mathbf{x}_{i}^{u} \mid \mathbf{x}_{i+1}^{l}\right) \quad A\right\rangle \quad i=0,1, \ldots,
$$

- A is a $w \times w$ matrix with values in \mathbb{F}_{2} :

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_{w-1} & a_{w-2} & a_{w-3} & \cdots & a_{0}
\end{array}\right]
$$

Mersenne Twister

Main Idea

- The RNG draws:
- \mathbf{x}_{n} for $i=0$;
- \mathbf{x}_{n+1} for $i=1$;
- \mathbf{x}_{n+2} for $i=2$;
- etc.
- Note that given, $\mathbf{x}=\left(x_{w-1}, \ldots, x_{0}\right)$ and $\mathbf{a}=\left(a_{w_{1}}, \ldots, a_{0}\right), \mathbf{x} \cdot A$ can be computed as:

$$
\mathbf{x} \cdot A= \begin{cases}(\mathbf{x} \gg 1) \oplus \mathbf{a} & \text { if } x_{0}=1 \\ (\mathbf{x} \gg 1) & \text { otherwise }\end{cases}
$$

Mersenne Twister

Tampering

- To improve the distribution properties, the output value is multiplied by $w \times w$ a matrix T :

$$
x \cdot T
$$

- As before, we implement this transformation with shifts and xors:

$$
\begin{aligned}
y & =x \oplus((\mathbf{x} \gg u) \cdot \mathbf{d}) \\
y & =x \oplus((\mathbf{x} \ll s) \cdot \mathbf{b}) \\
y & =x \oplus((\mathbf{x} \ll t) \cdot \mathbf{c}) \\
z & =x \oplus(\mathbf{x} \gg l)
\end{aligned}
$$

Mersenne Twister

Seeds

- We need to fill n seeds that are w-vectors.
- n is typically large; e.g., 312.
- Strategy:
- We supply \mathbf{x}_{0} as a seed number.
- The remaining seeds are computed as:

$$
\mathbf{x}_{k}=f \cdot\left(\mathbf{x}_{\mathbf{k}-\mathbf{1}} \oplus\left(\mathbf{x}_{\mathbf{k}-\mathbf{1}} \gg(w-2)\right)+k \text { for } k=1, \ldots, n-1\right.
$$

Mersenne Twister

Conclusions

- Advantages:
- MT has a very long period, $P=2^{19937}-1$. Some RNGs have very short periods (e.g., $P=2^{32}$) which can lead to issues during simulations;
- Computationally fast implementations, and it can exploit SIMD architectures;
- We can generate points with 623 dimension with equi-distribution to 32-bit accuracy;

Mersenne Twister

Conclusions

- Disadvantages:
- Initialization needs to be done with care:
- If there are too many 0s; the sequence may contain many 0s for many generations;
- If the seeds are picked systematically (e.g., $(0,20,30, \ldots))$ the output may be correlated;
- Large state; l.e., 2.5KiB $(w=64 ; n=312 ; m=156 ; r=31)$

Modern RNGs
 XORShift Family

- L'Ecuyer proposed a simple RNGs based on XOR and shift operators:

$$
\begin{array}{llc}
x_{t} & = & \left.x \oplus\left(x_{i-4} \ll 15\right)\right) \\
x_{i} & = & \left(x_{i-1} \oplus\left(x_{i-1} \gg 21\right)\right) \oplus\left(x_{t} \oplus\left(x_{t} \gg 4\right)\right)
\end{array}
$$

- The seeds, $x_{0}, x_{1}, x_{2}, x_{3}$, can be set to random numbers; not all 0 .
- Note: we need to store the latest generated values.
- When 32/64-bit numbers are used we have a $P=2^{32}-1 / P=2^{64}-1$

Modern RNGs
 XORShift

- For 32/64-bit, we can achieve a larger period by adding to x_{i} an additive counter modulo $2^{32}-1 / 2^{64}-1$:
- 32-bit $->P=2^{192}-2^{32}$
- 64-bit $->P=2^{192}-2^{64}$
- Furthermore, the method is computationally fast and efficient in terms of memory:
- XOR/SHIFT operations;
- Four value state.

Modern RNGs
 XORShift

- L'Ecuyer proposed also a simple and fast version 64-bit version:

$$
\begin{array}{ccc}
x_{0} & = & 88172645463325252 L L \\
x_{t} & = & x_{i} \ll 13 \\
x_{t} & = & x_{t} \oplus\left(x_{t} \gg 7\right) \\
x_{i+1} & = & x_{t} \oplus\left(x_{t} \ll 17\right)
\end{array}
$$

- This has $P=2^{64}-1$.

Modern RNGs

Other Methods

- Permuted congruential generator (PCG) family:

```
uint32_t pcg32_random_r(uint64_t &state; uint64_t &inc) {
    uint64_t oldstate = state;
    state = oldstate * 6364136223846793005ULL + (inc|1);
    uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
    uint32_t rot = oldstate >> 59u;
    return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}
```

- https://www.pcg-random.org/index.html
- Xoroshiro128+ and more:
- https://prng.di.unimi.it/

Parallel Random Generators

Parallel Random Generators

The Centralized Approach

- We have a single RNG, R_{0} :
- Thread safe: locks, atomic operations, etc.
- R_{0} draws random numbers for all other threads of the simulations.
- We may precompute a large set of numbers:
- Single buffer.
- A buffer for each thread.

Parallel Random Generators

The Centralized Approach

Parallel Random Generators

The Centralized Approach

Parallel Random Generators

The Centralized Approach

- Advantages:
- We avoid the problem to generate independent streams.
- Disadvantages:
- Not efficient: very slow!
- Reproducibility: hard to debug!

Parallel Random Generators

The Replicated Approach

- For each thread of our simulation, we have a RNG with the same seed or a unique seed:
- We may use parametrization; i.e., different parameters for each RNG:
- This is hard for thousands of threads.
- Advantages:
- Efficiency: very fast;
- Easy to implement.

Parallel Random Generators

The Replicated Approach

- Disadvantages:
- Are the streams independent? We cannot guarantee it; we may have correlation between drawn numbers.
- In MT, a solution is that the seed is a mix between the potential seed and the unique ID of the thread.
- NOTE: if the period is huge, this may be a viable option:
- There is a possibility of overlap:
- The probability is often negligible.

Parallel Random Generators

The Distributed Approach

- The generation of a single sequence is partitioned among many generators; i.e., one for each thread.
- Advantages:
- Efficient;
- Disadvantages:
- Hard to implement it!

Parallel Random Generators

The Distributed Approach: Block Splitting

Parallel Random Generators

The Distributed Approach: Leap Frog

Parallel Random Generators

The Distributed Approach

- What do we need for implementing these approaches?
- We need to know how to skip numbers: we need a RNG that can skip to the d-th number:
- MT can do that.
- Block splitting:
- We need to know how many numbers are consumed before synchronization!

Conclusions

Conclusions
 Wrapping Up

- Try to use the latest RNGs that works; e.g., Mersenne Twister.
- Write a wrapper RNG class; so you can change your RNG when a better one comes out.
- Try to write a testing example, and test different RNGs.
- Try to avoid using too many numbers from the same RNG.

Bibliography

- Art Owen. "Chapter 3: Uniform Random Numbers" from the book "Monte Carlo theory, methods and examples". 2013.
- Jeff Wehrwein. "Random Number Generation". Senior Thesis in Mathematics. 2007.
- Donald E. Knuth. "The Art of Computer Programming, Volume 2: Seminumerical Algorithms (second edition)". Addison Wesley, 1997.
- Lewis, Peter A. W., A. S. Goodman and J. M. Miller. "A Pseudo-Random Number Generator for the System 350", IBM Systems Journal, 8(2), 136-45. 1969.

Thank you for your attention!

