Monte-Carlo Methods and
Sampling for Computing

Estimating Averages, Quantiles, and Ratios

Francesco Banterle, Ph.D.

Monte-Carlo Algorithms

Introduction

* |n simple Monte-Carlo, we typically want to estimate three possible
quantities:

* Averages/Expected values
* Median values/Quantiles

e Ratios

Monte-Carlo:
Estimating Averages

Monte-Carlo Algorithms

Estimating Averages

* |n a simple Monte-Carlo problem, we want to estimate the expected value of a
random variable Y; i.e., u = E(Y).

» To achieve that, we draw n independently and random sampiles, Y, ..., Y,, that
have Y distribution.

* Finally, we average them:
1 n
/:t\n — Z Yl
s

where /i is our estimate of p.

Monte-Carlo Algorithms

Estimating Averages

* [ypically, we have that:

Y = f(x),

where x € @ C R that has a PDF p(X).

e Therefore:

=(Y) =p = [J(X)p(x)dx.
D

Monte-Carlo Algorithms

Estimating Averages: Law of Large Numbers

» Let’s assume that 4 = E(Y) for Y exists, and we have i.i.d. samples Y;, ..., Y,
drawn according to Y distribution. The weak law of large numbers tells us:

limP(mn—,u\Se):l Ve > 0.

n— o0

 More interesting is the strong laws:

P(lim\ﬂn—,u\=()>=1

n— o0

Monte-Carlo Algorithms

Estimating Averages: Law of Large Numbers

e |et’s suppose that:

Var(Y) = 6 < .

» Note that /i, is a random variable with mean:

n

1) = o
-(un)—nz

=1

e and variance;

=(Y) = p.

2

Var(i,) = E((i, =) = —

Monte-Carlo Algorithms

Estimating Averages: Law of Large Numbers

A\

» U, = pu tells us that simple Monte-Carlo is

02

. IO ((ﬂn — //t)z) = — tells us another interesting thing:
n

» The root mean squared error (RMSE) of j, is:

VE@, - w?) = —
Jn

* This means that if we want to improve our estimate by one more decimal (i.e.,
1/10) we need a 100-fold more samples!

Monte-Carlo Algorithms

Estimating Averages: Error Estimation

* Jypically, we can have a rough idea of the error:

A\

Hy — H-
* Note that the average squared error Is:

02

n

e |tis rare to know 02, but we use estimates of it:

I < I ¢
2 A)2 A2 Y
§° = Y. — o Y. — .
— izzl,(i — M) . izzl,(i — M)

Monte-Carlo Algorithms

Estimating Averages: Error Estimation

2 (-(52) = o2), the error is on the order of:

e So, if we use s

S
\/n
 From the Center Limit Theorem (CLT), we know that /i, — u has more or less a normal
distribution with mean 0 and variance ¢*/n.

» Normal distribution for a variable X ~ 4/ (0,1):

|
1y

e
P(x) =

Y
> D(y) = [_OQ p(x)dx.

Monte-Carlo Algorithms

Estimating Averages: Error Estimation

» CLT: given Xl, ..., X, i.i.d. random variable with mean y and finite variance o > 0,

where ji, = —Z Y;. Then, we have:
=1

V.cr P(ﬁ(ﬂn—//{) Sx) — ®O(x), asn — 0.

X
O

* Note, we can change s with ¢ for n — o0, and we obtain:

P(—(ﬂn —) < x) — ®(x).

Monte-Carlo Algorithms

Estimating Averages: Error Estimation

e SO0 we have:

\)

P(—(ﬂn —) < x) — O(x)

» At this point, we set A = x, and we move things around obtaining:

A As
\/n

Monte-Carlo Algorithms

Estimating Averages: Error Estimation

 We find for A > (that:

P<|/2n—,u\ Z£> =P(\/Eﬂn_'u S—A> +P(\/E/2n_'u ZA) — O(—A) + (I—CID(A))
\/ﬁ S)

« By symmetry of 4(0,1):
D(—A) + (1 = P(A)) =2P(-A).

Monte-Carlo Algorithms

Estimating Averages: Error Estimation

Assuming a 99% of coverage, we have that:

2P(—A)=1-0.99 = 0.01 - ®(—A) = 0.005.

Finally:

Therefore, a 99% confidence interval for i1 is computed as:

)
This leads to ji, £ 2.58——.
n

A = — ®1(0.005) = ®(0.995) = 2.58.

\) \)
A —2.58—. 4 +2.58—|.

n

n

Monte-Carlo Algorithms

Estimating Averages: Error Estimation

 Note that s requires a two-pass algorithm that is not very ideal; I.e., we need
to store samples!

* A solution would be to compute it as:

R iy2_<liy.)2
n_1i=1l nizll |

but this version is not numerically stable.

Monte-Carlo Algorithms

Estimating Averages: Error Estimation

 There are other two popular solutions. The first one:

. . 1 l
0; =Y, — Hi_ Hi =M1 T 751’ 5, =351+ ;

where ji; =y, and §; = 0.

 The other option is:

1 2
~) :
0~ = " (le- — le-_l) , Which works well for a large n.

wE

1

l

Monte-Carlo Algorithms

Estimating Averages: How Many Samples?

o If we know Var(Y) =

ag, we can say something about 7.

« Given a random variable X, Chebychev’s inequality tells us:

P(IX -EX)| =€) <

 Inourcase, X = p,,

Var(X)

€

fore > 0.

~(X) = u, and Var(i,) = ag/n:

A oy |
P A, —nl 2 e) <2 —
n €

Monte-Carlo Algorithms

Estimating Averages: How Many Samples?

e So if at confidence level a:

2

n 0
P(IA,~nlze) < ——=1-a,
n €
e Solving for n, we obtain:
oo 1

Monte-Carlo:
Estimating Quantiles

Monte-Carlo Algorithms

Estimating Averages: Quantiles

« Given a random variable X, the f# quantile is defined as:
P(X < QF) = p.
. To estimate O with # € [0,1], we use the corresponding quantile of the sample.

« We draw sample, X, ..., X , from X, and then these are sorted. Obtaining:

X (1)> * > XS(H)

\)

* The quantile estimation is given by:

Vo

s _
O, = Xy([an))-

Monte-Carlo Algorithms

Estimating Averages: Quantiles

 When we estimate quantiles, we need to generate at least:

1

n > ———— samples,

otherwise Q'g — XS(I) or QIVBZ — Xs(n)

Monte-Carlo Algorithms

Estimating Averages: Quantiles

 |n this case, the 99%, a = .01, confidence interval is:

[Y s(L)? Y S(R)] :

where:

-1 /. .
L=max|l € {0,...,n+ 1} Z()HX(I—H)”_XZ— and,
= \x 2
R=mm|re{0,....n+1} i . 6”6(1—6’)”_x>ﬁ
= S 2\, =l

Monte-Carlo:
Estimating Ratios

Monte-Carlo Algorithms

Estimating Averages: Ratios

* Given two random variables X and Y, we would like to compute their ratio:

g— -

=(Y)

» To estimate 0, we draw n independent pairs (X, Y,) from target
distributions, and we compute the ratio as:

. X RO . N
0,==" where X,=—) X, YV,=—)7Y,
Yn ni=1 ni=1

Monte-Carlo Algorithms

Estimating Averages: Ratios

* In this case, the 99% confidence interval Is:

where:

Monte-Carlo:
Fallure

Monte-Carlo Algorithms
When MC fails

 Monte-Carlo methods are typically robust; but it can falil:

« We may have a failure when y = [E(X) does not exist. Its existence is linked to:

(X)) < 0.

« We may have a failure when y is finite, [E(X) < 0o, but the variance is infinite; i.e.,
Var(X) = oo:

 The Law of Large Numbers still converge!

. We lose the rate O (n_%> and the CLT’s confidence intervals.

Monte-Carlo Algorithms
When MC Fails: Saint Petersburg Lottery

A fair coin will be flipped until tails appear for the first time.
« X = x is the total number of flips.

« If X = x then you will get 2* euros.

« For independent coin flips Vi>OP(X = i) =27

e The expected pay off is:

o0

,u=iP(X=i)-2i=Z2_i-2i=il=oo.
i=1 =1

=1

Monte-Carlo Algorithms
When MC Fails: Long Lived Comets

« Hammersley and Handscomb proposed how to calculate the lifetime of a long
lived comet.

» A comet has an energy level x:

» if x, > () it leaves the solar system.

3
» Otherwise, the comet completes an orbit in (—x,)” 2 time.

» X, varies when the comet interacts with planets:

» Model: x, + Z 7 ~ N (0,067

Monte-Carlo Algorithms
When MC Fails: Long Lived Comets

 How long does the comet stay in the solar system?
L 3
I = 2 (—)Ci)_7 xl'_|_1 — Xl- + Zl"
i=1

e n IS random itself —> difficult to study this analytically!

Monte-Carlo Algorithms
When MC Fails: Long Lived Comets

« Hammersely showed that:
e P(T > 1) t_% for large f;

» This means that E(T) = E(T?) = o0, and so the
variance is infinite!

Monte-Carlo Algorithms
When MC Fails: Long Lived Comets

400

350

Frequency

— N N oy
Ol o Ol -
o o o o

—h
-
o

50

Monte-Carlo:
A Final Note

Monte-Carlo Algorithms

A Final Note

* |n this process, we draw samples that are distributed with a
given PDF.

* The fact that samples are independent is extremely important:

 We can generate samples in parallel on different threads, cores, CPUs, and
machines.

* This means that Monte-Carlo algorithms are massively parallel.

Monte-Carlo Algorithms

A Final Note '

Bibliography

* Art Owen. “Chapter 1: Introduction” from the book “Monte Carlo theory,
methods and examples”. 2013.

 Art Owen. “Chapter 2: Simple Monte Carlo” from the book “Monte Carlo
theory, methods and examples”. 2013.

* Peter Shirley, Changyaw Wang, Kurt Zimmerman. “Monte Carlo Techniques
for Direct Lighting Calculations”. ACM Transactions on Graphics. Volume 15.
Issue 1. Jan. 1996.

Thank you for your attention!

