
Francesco Banterle, Ph.D.

Monte-Carlo Methods and
Sampling for Computing
Estimating Averages, Quantiles, and Ratios

Monte-Carlo Algorithms
Introduction

• In simple Monte-Carlo, we typically want to estimate three possible
quantities:

• Averages/Expected values

• Median values/Quantiles

• Ratios

Monte-Carlo:
Estimating Averages

Monte-Carlo Algorithms
Estimating Averages

• In a simple Monte-Carlo problem, we want to estimate the expected value of a
random variable ; i.e., .

• To achieve that, we draw independently and random samples, , that
have distribution.

• Finally, we average them:

where is our estimate of .

Y μ = 𝔼(Y)

n Y1, …, Yn
Y

̂μn =
1
n

n

∑
i=1

Yi

̂μn μ

Monte-Carlo Algorithms
Estimating Averages

• Typically, we have that:

,

where that has a PDF .

• Therefore:

.

Y = f(x)

x ∈ 𝒟 ⊂ ℝd p(x)

𝔼(Y) = μ = ∫𝒟
f(x)p(x)dx

Monte-Carlo Algorithms
Estimating Averages: Law of Large Numbers

• Let’s assume that for exists, and we have i.i.d. samples
drawn according to distribution. The weak law of large numbers tells us:

.

• More interesting is the strong laws:

• Here the error will get below .

μ = 𝔼(Y) Y Y1, …, Yn
Y

lim
n→∞

P(| ̂μn − μ | ≤ ϵ) = 1 ∀ϵ > 0

P(lim
n→∞

| ̂μn − μ | = 0) = 1

ϵ

Monte-Carlo Algorithms
Estimating Averages: Law of Large Numbers

• Let’s suppose that:

.

• Note that is a random variable with mean:

.

• and variance:

.

Var(Y) = σ2 < ∞

̂μn

𝔼(̂μn) =
1
n

n

∑
i=1

𝔼(Yi) = μ

Var(̂μn) = 𝔼((̂μn − μ)2) =
σ2

n

Monte-Carlo Algorithms
Estimating Averages: Law of Large Numbers

• tells us that simple Monte-Carlo is unbiased.

• tells us another interesting thing:

• The root mean squared error (RMSE) of is:

.

• This means that if we want to improve our estimate by one more decimal (i.e.,
1/10) we need a 100-fold more samples!

̂μn = μ

𝔼((̂μn − μ)2) =
σ2

n
̂μn

𝔼((̂μn − μ)2) =
σ

n

Monte-Carlo Algorithms
Estimating Averages: Error Estimation

• Typically, we can have a rough idea of the error:

.

• Note that the average squared error is:

.

• It is rare to know , but we use estimates of it:

.

̂μn − μ

σ2

n
σ2

s2 =
1

n − 1

n

∑
i=1

(Yi − ̂μn)2 ̂σ2 =
1
n

n

∑
i=1

(Yi − ̂μn)2

Monte-Carlo Algorithms
Estimating Averages: Error Estimation

• So, if we use (), the error is on the order of:

.

• From the Center Limit Theorem (CLT), we know that has more or less a normal
distribution with mean 0 and variance .

• Normal distribution for a variable :

.

s2 𝔼(s2) = σ2

s

n

̂μn − μ
σ2/n

X ∼ 𝒩(0,1)

ϕ(x) =
e− 1

2 z2

2π
Φ(y) = ∫

y

−∞
ϕ(x)dx

Monte-Carlo Algorithms
Estimating Averages: Error Estimation

• CLT: given i.i.d. random variable with mean and finite variance ,

where . Then, we have:

, as .

• Note, we can change with for , and we obtain:

.

X1, …, Xn μ σ2 > 0
̂μn =

1
n

n

∑
i=1

Yi

∀x∈ℝ P(n
σ (̂μn − μ) ≤ x) → Φ(x) n → ∞

s σ n → ∞

P(n
s (̂μn − μ) ≤ x) → Φ(x)

Monte-Carlo Algorithms
Estimating Averages: Error Estimation

• So we have:

• At this point, we set , and we move things around obtaining:

.

P(n
s (̂μn − μ) ≤ x) → Φ(x)

Δ = x

P(| ̂μn − μ | ≥
Δs

n)

Monte-Carlo Algorithms
Estimating Averages: Error Estimation

• We find for that:

• By symmetry of :

.

Δ > 0

P(| ̂μn − μ | ≥
Δs

n) = P(n
̂μn − μ
s

≤ − Δ) + P(n
̂μn − μ
s

≥ Δ) → Φ(−Δ) + (1 − Φ(Δ))

𝒩(0,1)

Φ(−Δ) + (1 − Φ(Δ)) = 2Φ(−Δ)

Monte-Carlo Algorithms
Estimating Averages: Error Estimation

• Assuming a 99% of coverage, we have that:

.

• Finally:

.

• Therefore, a 99% confidence interval for is computed as:

.

• This leads to .

2Φ(−Δ) = 1 − 0.99 = 0.01 → Φ(−Δ) = 0.005

Δ = − Φ−1(0.005) = Φ−1(0.995) = 2.58

μ

[̂μn − 2.58
s

n
, ̂μn + 2.58

s

n]
̂μn ± 2.58

s

n

Monte-Carlo Algorithms
Estimating Averages: Error Estimation

• Note that requires a two-pass algorithm that is not very ideal; i.e., we need
to store samples!

• A solution would be to compute it as:

,

but this version is not numerically stable.

s

̂σ2 =
1

n − 1

n

∑
i=1

y2
i − (1

n

n

∑
i=1

yi)
2

Monte-Carlo Algorithms
Estimating Averages: Error Estimation

• There are other two popular solutions. The first one:

.

where and .

• The other option is:

, which works well for a large .

δi = yi − ̂μi−1 ̂μi = ̂μi−1 +
1
i

δi Si = Si−1 +
i − 1

i
δ2

i

̂μ1 = y1 S1 = 0

σ̃2 =
1
n

n
2

∑
i=1

(x2i − x2i−1)2 n

Monte-Carlo Algorithms
Estimating Averages: How Many Samples?

• If we know , we can say something about .

• Given a random variable , Chebychev’s inequality tells us:

, for .

• In our case, , , and :

Var(Y) = σ2
0 n

X

P(|X − 𝔼(X) | ≥ ϵ) ≤
Var(X)

ϵ2
ϵ > 0

X = ̂μn 𝔼(X) = μ Var(̂μn) = σ2
0 /n

P(| ̂μn − μ | ≥ ϵ) ≤
σ2

0

n
1
ϵ2

Monte-Carlo Algorithms
Estimating Averages: How Many Samples?

• So if at confidence level :

,

• Solving for , we obtain:

.

α

P(| ̂μn − μ | ≥ ϵ) ≤
σ2

0

n
1
ϵ2

= 1 − α

n

n ≥
σ2

0

ϵ2

1
1 − α

Monte-Carlo:
Estimating Quantiles

Monte-Carlo Algorithms
Estimating Averages: Quantiles

• Given a random variable , the quantile is defined as:

.

• To estimate with , we use the corresponding quantile of the sample.

• We draw sample, , from , and then these are sorted. Obtaining:

.

• The quantile estimation is given by:

.

X β

P(X ≤ Qβ) = β

Qβ β ∈ [0,1]

X1, …, Xn X

Xs(1), …, Xs(n)

Q̂β
n = Xs(⌈αn⌉)

Monte-Carlo Algorithms
Estimating Averages: Quantiles

• When we estimate quantiles, we need to generate at least:

 samples,

otherwise or .

n >
1

min(β,1 − β)

Q̂β
n = Xs(1) Q̂β

n = Xs(n)

Monte-Carlo Algorithms
Estimating Averages: Quantiles

• In this case, the 99%, , confidence interval is:

 ;

where:

and,

.

α = 0.01

[Ys(L), Ys(R)]

L = max[l ∈ {0,…, n + 1}
l−1

∑
x=0

(n
x) θx(1 − θ)n−x ≥

α
2]

R = min[r ∈ {0,…, n + 1}
n

∑
x=r

(n
x) θx(1 − θ)n−x ≥

α
2]

Monte-Carlo:
Estimating Ratios

Monte-Carlo Algorithms
Estimating Averages: Ratios

• Given two random variables and , we would like to compute their ratio:

.

• To estimate , we draw independent pairs from target
distributions, and we compute the ratio as:

, where .

X Y

θ =
𝔼(X)
𝔼(Y)

θ n (Xi, Yi)

̂θn =
X̂n

̂Yn
X̂n =

1
n

n

∑
i=1

Xi
̂Yn =

1
n

n

∑
i=1

Yi

Monte-Carlo Algorithms
Estimating Averages: Ratios

• In this case, the 99% confidence interval is:

 ;

where:

.

̂θ ± 2.58 ̂Var(̂θ)

̂Var(̂θ) =
1

n2X̂2

n

∑
i=1

(Yi − ̂θXi)2

Monte-Carlo:
Failure

Monte-Carlo Algorithms
When MC fails

• Monte-Carlo methods are typically robust; but it can fail:

• We may have a failure when does not exist. Its existence is linked to:

.

• We may have a failure when is finite, , but the variance is infinite; i.e.,
:

• The Law of Large Numbers still converge!

• We lose the rate and the CLT’s confidence intervals.

μ = 𝔼(X)

𝔼(X) < ∞

μ 𝔼(X) < ∞
Var(X) = ∞

O(n− 1
2)

Monte-Carlo Algorithms
When MC Fails: Saint Petersburg Lottery

• A fair coin will be flipped until tails appear for the first time.

• is the total number of flips.

• If then you will get euros.

• For independent coin flips .

• The expected pay off is:

.

X = x

X = x 2x

∀i>0P(X = i) = 2−i

μ =
∞

∑
i=1

P(X = i) ⋅ 2i =
∞

∑
i=1

2−i ⋅ 2i =
∞

∑
i=1

1 = ∞

Monte-Carlo Algorithms
When MC Fails: Long Lived Comets

• Hammersley and Handscomb proposed how to calculate the lifetime of a long
lived comet.

• A comet has an energy level :

• if it leaves the solar system.

• Otherwise, the comet completes an orbit in time.

• varies when the comet interacts with planets:

• Model:

xe

xe > 0

(−xe)− 3
2

xe

xe + Z Z ∼ 𝒩(0,σ2)

Monte-Carlo Algorithms
When MC Fails: Long Lived Comets

• How long does the comet stay in the solar system?

.

• is random itself —> difficult to study this analytically!

T =
n

∑
i=1

(−xi)− 3
2 xi+1 = xi + zi

n

Monte-Carlo Algorithms
When MC Fails: Long Lived Comets

• Hammersely showed that:

• for large ;

• So .

• This means that , and so the
variance is infinite!

P(T > t) ∝ t− 3
2 t

fT(t) ∝ t− 5
3

𝔼(T) = 𝔼(T2) = ∞

Monte-Carlo Algorithms
When MC Fails: Long Lived Comets

100 101 102 103 104

T

0

50

100

150

200

250

300

350

400

Fr
eq
ue
nc
y

Monte-Carlo:
A Final Note

Monte-Carlo Algorithms
A Final Note

• In this process, we draw independently samples that are distributed with a
given PDF.

• The fact that samples are independent is extremely important:

• We can generate samples in parallel on different threads, cores, CPUs, and
machines.

• This means that Monte-Carlo algorithms are massively parallel.

Monte-Carlo Algorithms
A Final Note

X1 Xn…

f(X1) f(Xn)

Gathering

…

…

…

Bibliography

• Art Owen. “Chapter 1: Introduction” from the book “Monte Carlo theory,
methods and examples”. 2013.

• Art Owen. “Chapter 2: Simple Monte Carlo” from the book “Monte Carlo
theory, methods and examples”. 2013.

• Peter Shirley, Changyaw Wang, Kurt Zimmerman. “Monte Carlo Techniques
for Direct Lighting Calculations”. ACM Transactions on Graphics. Volume 15.
Issue 1. Jan. 1996.

Thank you for your attention!

