
Francesco Banterle, Ph.D.

Monte-Carlo Methods and 
Sampling for Computing
Estimating Averages, Quantiles, and Ratios



Monte-Carlo Algorithms
Introduction

• In simple Monte-Carlo, we typically want to estimate three possible 
quantities:


• Averages/Expected values


• Median values/Quantiles


• Ratios
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Estimating Averages

• In a simple Monte-Carlo problem, we want to estimate the expected value of a 
random variable ; i.e., .


• To achieve that, we draw  independently and random samples, , that 
have  distribution.


• Finally, we average them:





where  is our estimate of .

Y μ = 𝔼(Y)

n Y1, …, Yn
Y

̂μn =
1
n

n

∑
i=1

Yi

̂μn μ
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Estimating Averages

• Typically, we have that:


,


where  that has a PDF .


• Therefore:


.

Y = f(x)

x ∈ 𝒟 ⊂ ℝd p(x)

𝔼(Y) = μ = ∫𝒟
f(x)p(x)dx
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Estimating Averages: Law of Large Numbers

• Let’s assume that  for  exists, and we have i.i.d. samples  
drawn according to  distribution. The weak law of large numbers tells us:


.


• More interesting is the strong laws:





• Here the error will get below .

μ = 𝔼(Y) Y Y1, …, Yn
Y

lim
n→∞

P( | ̂μn − μ | ≤ ϵ) = 1 ∀ϵ > 0

P( lim
n→∞

| ̂μn − μ | = 0) = 1

ϵ
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Estimating Averages: Law of Large Numbers

• Let’s suppose that:


.


• Note that  is a random variable with mean:


.


• and variance:


.

Var(Y) = σ2 < ∞

̂μn

𝔼( ̂μn) =
1
n

n

∑
i=1

𝔼(Yi) = μ

Var( ̂μn) = 𝔼(( ̂μn − μ)2) =
σ2

n
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Estimating Averages: Law of Large Numbers

•  tells us that simple Monte-Carlo is unbiased.


•  tells us another interesting thing:


• The root mean squared error (RMSE) of  is:


.


• This means that if we want to improve our estimate by one more decimal (i.e., 
1/10) we need a 100-fold more samples!

̂μn = μ

𝔼(( ̂μn − μ)2) =
σ2

n
̂μn

𝔼(( ̂μn − μ)2) =
σ

n
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Estimating Averages: Error Estimation

• Typically, we can have a rough idea of the error:


.


• Note that the average squared error is:


.


• It is rare to know , but we use estimates of it:


.

̂μn − μ

σ2

n
σ2

s2 =
1

n − 1

n

∑
i=1

(Yi − ̂μn)2 ̂σ2 =
1
n

n

∑
i=1

(Yi − ̂μn)2
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Estimating Averages: Error Estimation

• So, if we use  (  ), the error is on the order of:


.


• From the Center Limit Theorem (CLT), we know that  has more or less a normal 
distribution with mean 0 and variance .


• Normal distribution for a variable :


.

s2 𝔼(s2) = σ2

s

n

̂μn − μ
σ2/n

X ∼ 𝒩(0,1)

ϕ(x) =
e− 1

2 z2

2π
Φ(y) = ∫

y

−∞
ϕ(x)dx
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Estimating Averages: Error Estimation

• CLT: given  i.i.d. random variable with mean  and finite variance , 

where . Then, we have:


,   as .


• Note, we can change  with  for , and we obtain:


.

X1, …, Xn μ σ2 > 0
̂μn =

1
n

n

∑
i=1

Yi

∀x∈ℝ P( n
σ ( ̂μn − μ) ≤ x) → Φ(x) n → ∞

s σ n → ∞

P( n
s ( ̂μn − μ) ≤ x) → Φ(x)
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• So we have:





• At this point, we set , and we move things around obtaining:


.

P( n
s ( ̂μn − μ) ≤ x) → Φ(x)

Δ = x

P( | ̂μn − μ | ≥
Δs

n )
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Estimating Averages: Error Estimation

• We find for  that:





• By symmetry of  :


.

Δ > 0

P( | ̂μn − μ | ≥
Δs

n ) = P( n
̂μn − μ
s

≤ − Δ) + P( n
̂μn − μ
s

≥ Δ) → Φ(−Δ) + (1 − Φ(Δ))

𝒩(0,1)

Φ(−Δ) + (1 − Φ(Δ)) = 2Φ(−Δ)
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• Assuming a 99% of coverage, we have that:


.


• Finally:


.


• Therefore, a 99% confidence interval for  is computed as:


.


• This leads to .

2Φ(−Δ) = 1 − 0.99 = 0.01 → Φ(−Δ) = 0.005

Δ = − Φ−1(0.005) = Φ−1(0.995) = 2.58

μ

[ ̂μn − 2.58
s

n
, ̂μn + 2.58

s

n ]
̂μn ± 2.58

s

n
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Estimating Averages: Error Estimation

• Note that  requires a two-pass algorithm that is not very ideal; i.e., we need 
to store samples!


• A solution would be to compute it as:


,


but this version is not numerically stable. 

s

̂σ2 =
1

n − 1

n

∑
i=1

y2
i − (1

n

n

∑
i=1

yi)
2
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Estimating Averages: Error Estimation

• There are other two popular solutions. The first one:


.


where  and .


• The other option is:


, which works well for a large .

δi = yi − ̂μi−1 ̂μi = ̂μi−1 +
1
i

δi Si = Si−1 +
i − 1

i
δ2

i

̂μ1 = y1 S1 = 0

σ̃2 =
1
n

n
2

∑
i=1

(x2i − x2i−1)2 n
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Estimating Averages: How Many Samples?

• If we know , we can say something about .


• Given a random variable , Chebychev’s inequality tells us:


, for .


• In our case, , , and :


Var(Y) = σ2
0 n

X

P( |X − 𝔼(X) | ≥ ϵ) ≤
Var(X)

ϵ2
ϵ > 0

X = ̂μn 𝔼(X) = μ Var( ̂μn) = σ2
0 /n

P( | ̂μn − μ | ≥ ϵ) ≤
σ2

0

n
1
ϵ2
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• So if at confidence level :


,


• Solving for , we obtain:


.

α

P( | ̂μn − μ | ≥ ϵ) ≤
σ2

0

n
1
ϵ2

= 1 − α

n

n ≥
σ2

0

ϵ2

1
1 − α
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Estimating Averages: Quantiles

• Given a random variable , the  quantile is defined as:


.


• To estimate  with , we use the corresponding quantile of the sample.


• We draw sample, , from , and then these are sorted. Obtaining:


.


• The quantile estimation is given by:


.

X β

P(X ≤ Qβ) = β

Qβ β ∈ [0,1]

X1, …, Xn X

Xs(1), …, Xs(n)

Q̂β
n = Xs(⌈αn⌉)
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Estimating Averages: Quantiles

• When we estimate quantiles, we need to generate at least:


 samples,


otherwise  or .

n >
1

min(β,1 − β)

Q̂β
n = Xs(1) Q̂β

n = Xs(n)
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• In this case, the 99%, , confidence interval is:


 ;  


where:


and,


.

α = 0.01

[Ys(L), Ys(R)]

L = max[l ∈ {0,…, n + 1}
l−1

∑
x=0

(n
x) θx(1 − θ)n−x ≥

α
2 ]

R = min[r ∈ {0,…, n + 1}
n

∑
x=r

(n
x) θx(1 − θ)n−x ≥

α
2 ]
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Estimating Averages: Ratios

• Given two random variables  and , we would like to compute their ratio:


.


• To estimate , we draw  independent pairs  from target 
distributions, and we compute the ratio as:


,        where   .

X Y

θ =
𝔼(X)
𝔼(Y)

θ n (Xi, Yi)

̂θn =
X̂n

̂Yn
X̂n =

1
n

n

∑
i=1

Xi
̂Yn =

1
n

n

∑
i=1

Yi
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Estimating Averages: Ratios

• In this case, the 99% confidence interval is:


 ;  


where:


.

̂θ ± 2.58 ̂Var( ̂θ)

̂Var( ̂θ) =
1

n2X̂2

n

∑
i=1

(Yi − ̂θXi)2
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When MC fails

• Monte-Carlo methods are typically robust; but it can fail:


• We may have a failure when  does not exist. Its existence is linked to:


.


• We may have a failure when  is finite, , but the variance is infinite; i.e., 
:


• The Law of Large Numbers still converge!


• We lose the rate  and the CLT’s confidence intervals.

μ = 𝔼(X)

𝔼(X) < ∞

μ 𝔼(X) < ∞
Var(X) = ∞

O(n− 1
2 )
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When MC Fails: Saint Petersburg Lottery

• A fair coin will be flipped until tails appear for the first time.


•  is the total number of flips.


• If  then you will get  euros.


• For independent coin flips .


• The expected pay off is:


.


X = x

X = x 2x

∀i>0P(X = i) = 2−i

μ =
∞

∑
i=1

P(X = i) ⋅ 2i =
∞

∑
i=1

2−i ⋅ 2i =
∞

∑
i=1

1 = ∞
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When MC Fails: Long Lived Comets

• Hammersley and Handscomb proposed how to calculate the lifetime of a long 
lived comet.


• A comet has an energy level :


• if  it leaves the solar system.


• Otherwise, the comet completes an orbit in  time.


•  varies when the comet interacts with planets:


• Model: 

xe

xe > 0

(−xe)− 3
2

xe

xe + Z Z ∼ 𝒩(0,σ2)
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When MC Fails: Long Lived Comets

• How long does the comet stay in the solar system?


.


•  is random itself —> difficult to study this analytically!

T =
n

∑
i=1

(−xi)− 3
2 xi+1 = xi + zi

n
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• Hammersely showed that:


•  for large ; 


• So .


• This means that , and so the 
variance is infinite!

P(T > t) ∝ t− 3
2 t

fT(t) ∝ t− 5
3

𝔼(T) = 𝔼(T2) = ∞
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A Final Note

• In this process, we draw independently samples that are distributed with a 
given PDF.


• The fact that samples are independent is extremely important:


• We can generate samples in parallel on different threads, cores, CPUs, and 
machines.


• This means that Monte-Carlo algorithms are massively parallel.
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A Final Note

X1 Xn…

f(X1) f(Xn)
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…

…
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Thank you for your attention!


