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Meet Your Instructor
Francesco Banterle

• Ph.D. in Engineering from Warwick University, UK.


• Monte-carlo and sampling are daily tools for my research:


• Computer Graphics;


• Computer Vision;


• Imaging.



Course
Reference Material

• The beautiful book by prof. Art Owen:


• “Monte Carlo theory, methods and examples”


• https://statweb.stanford.edu/~owen/mc/


• Other references:


• Christian P. Robert, George Casella. “Monte Carlo Statistical Methods”. Springer 
Texts in Statistics. 2004.


• Kurt Binder, Dieter Heermann. “Monte Carlo Simulation in Statistical Physics”. 
Springer. 2010.


•

https://statweb.stanford.edu/~owen/mc/


Course
Exam

• Different options:


• Seminar on a paper;


• Programming project 1-2 people maximum;


• Literature review on a few papers;


• Interview.



Course
Schedule

• 23/05/2023: 9:00–13:00:


• INTRODUCTION


• UNIFORM RANDOM NUMBERS


• 01/06/2023: 09:00 —13:00:


• NON-UNIFORM RANDOM NUMBERS


• LOW DISCREPANCY SEQUENCES


• 06/06/2023: 09:00 —13:00:


• VARIANCE REDUCTION TECHNIQUES


• 13/06/2023 10:30 —12:30: 


• METROPOLIS SAMPLING


• MONTE-CARLO APPLICATIONS



What is the most visible 
application of Monte-Carlo today?



Monte-Carlo
Everyday

• Movies;


• Cars advertisement; 


• IKEA Catalog;



Randomized Algorithms



Randomized Algorithms
The Basics

• Randomized algorithms try to solve a problem using randomness.


• Why?


• It may be too computationally expensive without.


• Typically, we have two classes of randomized algorithms:


• Las Vegas Methods


• Monte-Carlo Methods


• They both use pseudo-random number generators as source of randomness.



Las Vegas Algorithms
Main Idea

• A Las Vegas algorithm outputs a correct solution for a given problem.


• The running time may be unbounded; the expected running time is required 
to be bounded.


• A classic Las Vegas algorithms:


• QuickSort;


• Karger’s algorithm (Minimum cut of a connected graph);


• etc.



Monte-Carlo Algorithms
Main Idea

• A Monte-Carlo algorithm outputs an approximated solution for a given 
problem.


• Typically, we want to compute a quantity of interest:


• The average of some random variable;


• Quantiles;


• Ratio


• The running time is bounded.



Monte-Carlo History



Monte-Carlo Algorithms
History

• 18th Century: Buffon’s Needle — Based on a question by Georges-Louis Leclerc, Comte de Buffon:


• “What’s the probability that a needle (that we threw on the floor) will lie across two strips on a 
floor made of parallel strips of wood?” 

t

l
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• 18th Century: Buffon’s Needle — Based on a question by Georges-Louis Leclerc, Comte de Buffon:
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P(X = btwstrips) =

2
π

l
t

This holds for short needles: l < t



Monte-Carlo Algorithms
History

• 1900s: Gosset (pen-name Student); while developing the Student’s t-
distribution he ran some simulations;


• 1930s: Fermi first experiments with Monte-Carlo;


• 1940s: Ulam, von Neumann, Metropolis during Manhattan project developed 
the modern Monte-Carlo especially for running simulations of nuclear 
weapons. 


• 1950s: The method becomes popular in different fields such as physics, 
chemistry, etc.



Monte-Carlo Algorithms
History

• Montecarlo algorithms won three technical Oscars:


• 1997: Ken Perlin for “solid noise” used in the movie Tron (1982);


• 2003: Thomas Driemeyer’s team for MentalRay that uses quasi-montecarlo;


• 2014: Eric Veach for multiple importance sampling;


• 2014: Matt Pharr, Pat Hanrahan, and Greg Humphreys for formalization and 
reference implementation of Montecarlo methods for Computer Graphics.



Basics



Monte-Carlo Algorithms
Probability Theory Review

• A variable, , is random/stochastic if its value cannot be determined before 
observing it; i.e., it depends on a random phenomenon.


• Even though we cannot know in advance the value of a variable , we can 
say something about it in terms of probabilities.


• In general, , is the probability of an event  to happen.


• Our main focus will be on continuous random variables.

X

X

P(E) E



Monte-Carlo Algorithms
Probability Theory Review

• A random variable  has an uncountably infinite number of possible values.


• Each variable has a probability density function (PDF) or  defined as:


• A non-negative function defined on an interval; e.g., ;


• Normalized in such interval: ;


• .

X

pX(x)

[a, b]

∫
b

a
pX(x)dx = 1

P(t0 ≤ X ≤ t1) = ∫
t1

t0

pX(x)dx



Monte-Carlo Algorithms
Probability Theory Review

1.0



Monte-Carlo Algorithms
Probability Theory Review

• The cumulative distribution function (CDF) of a single random variable, , is defined as:


.


• Properties:


• ;


• ;   .

X

FX(x) = ∫
x

a
pX(x)dx

P(t0 ≤ X ≤ t1) = ∫
t1

t0

pX(x)dx = FX(t1) − FX(t0)

P(X ≤ t) = ∫
t

b
pX(x)dx = Fx(t) − Fx(a) P(X ≥ t) = ∫

b

t
pX(x)dx = Fx(b) − Fx(t)



Monte-Carlo Algorithms
Probability Theory Review

• Properties:


•  is monotonically increasing;


• ;


•  and .

FX

P(X = x) = 0

FX(a) = 0 FX(b) = 1



Monte-Carlo Algorithms
Probability Theory Review

• Important measures of a PDF are its mean and its variance.


• The mean is defined as:


.


• The variance is defined as:


,


where .

𝔼(X) = μ(X) = ∫
b

a
x ⋅ pX(x)dx

σ2(X) = 𝔼((X − 𝔼(X))2) = 𝔼(X2) − 𝔼(X)2

𝔼(X2) = ∫
b

a
x2 ⋅ pX(x)dx



Some Practical Examples



Monte-Carlo Algorithms
An Example: Nagel-Schreckenberg Traffic Model

• This simulation has  cars running on a ring track.


• For each car at position  and speed  with distance  from the car ahead, we 
have the following rules:


• 


• 


• 


•

n

x v d

v ← min(v + 1,vmax)

v ← min(v, d − 1)

v ← max(0,v − 1) with p

x ← x + v



Monte-Carlo Algorithms
An Example: Nagel-Schreckenberg Traffic Model

• Let’s simulate this system with a track 
long  and  cars.


• All cars have speed .


• All cars are placed on the track randomly 
without repetition.


• An image in some cases is more important 
to understand how the simulations 
behaves.

m = 1000 n = 100

v = 0



Monte-Carlo Algorithms
An Example: Nagel-Schreckenberg Traffic Model
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Monte-Carlo Algorithms
An Example: Estimating π

• We want to estimate  using Monte-Carlo.


• We know that the area of a circle is .


• We draw samples in a square;  —> 


• Samples that falls inside a circle with  and center in  are used to 
estimate .

π

A = πr2

[0,2] × [0,2] r = 1

r = 1 (1,1)
π



Monte-Carlo Algorithms
An Example: Estimating π



Monte-Carlo Algorithms
An Example: Estimating π



Monte-Carlo Algorithms
An Example: Estimating π

πe = 4
| red_samples |

|blue_samples | + | red_samples |



Monte-Carlo Algorithms
An Example: Estimating π



`
An Example: Interpoint Distances

• We have two points;  and , where both are in .


• We define .


• The mean of  can be approximated as:


,


where  and  are independent and uniformly distributed samples in 
.

x = (x1, x2) y = (y1, y2) [0,a] × [0,b]

D(x, y) = (x1 − y1)2 + (x2 − y2)2

D

𝔼(D̂) =
1
n

n

∑
i=1

d(xi, yi)

xi yi
[0,a] × [0,b]

Monte-Carlo Algorithms



`
An Example: Interpoint Distances

• Let’s draw 1,000,000 samples in .


…


• This problem has a closed form introduced by Ghosh in 1951. In this case, the correct expected 
value for  would be:


…


• If we compute the relative error, we get:


.


• In many cases, we do not have a closed form for a problem!

[0,3] × [0,2]

𝔼(D̂) = 1.3171

D

𝔼(D) = 1.3171

𝔼(D̂) − 𝔼(D)
𝔼(D)

= 6.44 × 10−4

Monte-Carlo Algorithms
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Thank you for your attention!


