3D Models

Francesco Banterle, Ph.D.
francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it
mailto:francesco.banterle@isti.cnr.it

3D Models

A 3D model is a computational representahonof a
real-world object. This Is typically: AN

CO
Closed (not always!)

Discretized

3D Models

* [wo main representations:

 Boundary representations (b-rep): a 3D object
IS represented as a collection of connected
surface elements; i.e., the boundary between
solid and non-solid

* Volume representations: a 3D object Is
represented by its interior volume. For example,
3D volumes or volume mesh (FEM)

QOur focus Is on

boundary representations

Polygonal Meshes

Surfaces

* A 2-dimensional region of 3-dimensional space

e A portion of space having length and breadth but
no thickness

3D Representation:
Polygonal Meshes

e Discretize the surface in a set of simple primitives:
 Many points
* Triangles
* Quads
e Polygons
* Qur focus is on:

e simplicial complexes, e.g., triangles!

Why triangular meshes?

 [wo main practical reasons:
» Data-structures are straighttorward

» (GGraphics hardware (e.g., a GPU) uses triangles;

Why triangular meshes?

* [wo main theoretical reasons:
* Nice theory, I.e., simplicial complexes
* Less limiting cases:
* atriangle is always planar!

* |f we remove a vertex, we get another
simpliciall

Simplex

o A k-simplex, o, is convex combination of k + 1 points, p,,
that are linearly independent in the k-dimensional Euclidian

space, R¥:
X = E & - P
pi:co

ZO&@Zl N\ QZZOVZ

« A point p; Is called a vertex.

. kis the order of the simplex.

Simplices Example

A A

k=0 k=1

Sub-Simplex

« A sub-simplex ¢’ is called a face of a simplex o if it is a
sub-set of vertices of o.

A/

A Simplicial k-Complex

A simplicial k-complex, 2, is a finite collection of n
simplices such that:

(i) The intersection of any two simplices of 2. is a
face of each of them

(i) Every face of a simplex, o, of is in 2

NOTE: k is the maximum order of all ¢ in X

Simplicial Complexes
Example

Simplicial Complexes
Example

BAD: is not valid! —> Condition (i)

Simplicial Complexes
Example

Simplicial Complexes

« A simplex, o, is maximal in a simplicial complex, 2.,
if it does not belong to any other simplex o, of 2.

« A k-simplicial complex, 2, is maximal if all maximal
simplices have order k.

A Maximal
Simplicial Complex Example

A Non-Maximal
Simplicial Complex Example

Manifoldness

. Asurface, S € R? is manifold if and only if:

* The neighborhood of each point is
homeomorphic to an Euclidean space in two
dimension or in other words:

* The neighborhood of each point is
homeomorphic to a disk or a semi-disk if the
surface has boundaries!

Manifoldness

e |n other words:

 Each edge, E, is incident to only one or two
faces!

e The faces that are incident to a vertex form a
closed or an open fan

Manifoldness Example

A A

Manifoldness Example

BAD!

Borders

Closed sequence
of edges with only
a face

— Border

Orientabillity

A surface, §, is orientable If it is possible to set a
coherent normal to each point of the surface

* NOTE: Md&bius strip and Klein bottle and non-
manifold surfaces are not orientable;

/]

Mobius strip Klein bottle

Orientability

V3
Vi

J

Vs

Front
(counter-clockwise)

Vs

~

Back
(clockwise)

\Vliesn

A mesh is maximal 2-simplicial complexes that is a
2-manifold orientable surface.

e \We can have non 2-manifold meshes

 \We assume that they are maximal

(Genus

« The genus,G , is the maximum number of cuttings

along non-intersecting closed simple curves without
rendering the resultant manifold disconnected

Ooc

2
e Genus —> “the number of handles”

Fuler Characteristic

* (Given V vertices, E edges, and F faces of a polygonal
closed and orientable surface with genus G, we have:

2-2G=V-E+F
y=V—-E+F

* More in general for a 2-manitold orientable polygonal
mesh (with S connected components and B borders):

V-L+F=2S-G)-B

Fuler Characteristic
Example

The Euler characteristic is 2 for any simply connected polyhedron

xX=V-E+F xX=V-E+F
X=4—-6+4=2 X=6—9+5=2

Fuler Characteristic
Example

e

Adjacency Relations

« Given two simplices, oy and o,, they are incident if oy is
a face of 0, or vice-versa:

Adjacency Relations

« Two k-simplices are m-adjacent (k > m) if a
m-simplex exists such that it is a face of both.

* For example:
* Jwo triangles sharing an edge are 1-adjacent

* [wo triangle sharing a vertex are O-adjacent

Adjacency Relations

 An adjacency relations is an ordered couple of the
following elements:

e E—> edge
e F—> Face
e \/ —> Vertex

* For example: (E,E), (V,V), (FF), (E,F), (FE), (E,V),
(VE), (FV), (V,F), (E,V), and (V,E).

Adjacency Relations
Example

 Meaning of some relations:
* FF—> adjacency between triangles
e FV —> vertices of a triangle

* VF—> triangles sharing a vertex

Adjacency Relations
Example

4« @

FV VF

Adjacency Relations
Example

<

EF FE

Normals

The Unit Normal

» The unit normal, T, to a point, x, is the unit vector
perpendicular to the tangent plane

Ng=—

The Unit Normal

A normalis an important

. outside
attribute for a vertex:

* |t defines the direction
of the object boundary

inside

How to compute triangle
normal’?

* (GGiven atriangle (7, V2, and V3), V3
its normal (outer-pointing normal):

E)z(V:S_Vz)X(Vl_Vz) n

_>
_ n
n =—
|]

V1

e [his means that vertices order IS
important! Typically is counter-
clockwise

How to compute per
vertex normal?

We compute normals for each triangle

For each vertex:

 We compute the sum of normals of all triangles VF
sharing that vertex:

ﬁS(V) — Z nr,
{z|VET;}
e \We normalize this sum

Note: per-vertex normals are usetul but not correct!

How tO compute per
vertex normal”

e Problems:

« We may end up with a null vector n, = [0,0,0]".

 |If the model does not have too many triangles we may have a poor
result. For example, for this cube (top view):

Data Structures
for
3D Meshes

|ist of Triangles

e For each triangle of the 3D

model, we store Its
coordinates.

* For example: T,

Triangle 1: (3,-2,5); (2,2,4); (-6,2,4)
Triangle 2: (2,2,4) ; (0,-1,-2); (9,4,0)
Triangle 3: (1,2,-2); (3,-2,5); (-6,2,4)

Triangle n: (—8,2,?);.(—2,3,9); (1,2,-7)

What's very wrong
with this??

Triangle 1: (3,-2,5); (2,2,4); (-6,2,4)
Triangle 2: (2,2,4) ; (0,-1,-2); (9,4,0)
Triangle 3: (1,2,-2); (3,-2,5); (-6,2,4)

Triangle n: (—8,2,?);.(—2,3,9); (1,2,-7)

What's very wrong
with this??

Triangle 1: (3,-2,5): (2,2,4); (-6,-2,4)
Triangle 2: (2,2,4) ; (0,-1,-2); (9,4,0)
Triangle 3: (1,2,-2); (3,-2,5); (-6,-2,4)

Triangle n: (—8,2,7.).;. I(—2,3,9); (1,2,-7)

|ist of Triangles

* Disadvantages:
 Wasted disk and memory space:
* Vertices are duplicated!
e Memory: |V| X |T]
e Difficult to manage:

e |f we modity a vertex of a triangle, we will need to find and
update its clones!

 How do we query neighbors?

|_ist of Unique Vertices

e \We store vertices In a list

* For each triangle of the >

3D model, we store

indices to the vertices’ list T+
1. ('-1.0, -1.0, -1.0) |
2.(-1.0,-1.0, 1.0) Fac‘fsi »
3.(-1.0, 1.0, -1.0) |

2.576

4.(-1,1,1.0) 3 150
5. (1.0, -1.0, -1.0)) 34
6.(1.0,-1.0, 1.0) M
7.(1.0, 1.0, -1.0) '
8. (1.0, 1.0, 1.0)

|_ist of Unique Vertices

* Wasted disk and memory space:

« Common edges between two triangles are stored
two times In the list of faces!

e Memory: |V |+ |T]
e Better management:
 Easy to edit a vertex’s attribute (e.g., its position)!

 How do we query neighbors?

List of Unique Edges

e We store vertices In a list

* For each edge, we store 5
indices to the vertices’ list

e For each triangle of the 3D
model, we store indices to

edges’s list
1.(-1.0, -1.0, -1.0) ; ;g :
2.(-1.0,-1.0, 1.0) 3'42 1.125
3.(-1.0, 1.0, -1.0) 4' 34 4 3
4.(-1,1,1.0) £ 13

List of Unique Edges

* Better management:
 Easy to edit an edge’s attribute (e.qg., its color)!

 We can do some queries, but not all of them!

Extended List of
Unigue Edges

* We add to an edge the indices
of its left and right triangle

e This simplifies edge-face
queries!

: 1.12 1.1 1 ,
1.(-1.0,-1.0, -1.0) s oall o 1o .
2.(-1.0, -1.0, 1.0) Sanll 545 1.125
3.(-1.0, 1.0, -1.0) aall a5 43
411,10 513 5 1-1

File Formats

File Formats

* There are many 3D file formats. The most used, and de-facto
standard:

¢ STL
o PLY
+ OBJ
e Standards:

« COLLADA: https://www.khronos.org/collada/

« X3D: http://www.web3d.org/x3d/

https://www.khronos.org/collada/
http://www.web3d.org/x3d/
https://www.khronos.org/collada/
http://www.web3d.org/x3d/

STL File Format

e Standard Triangle Language (STL) created by 3D
Systems

e This format represents only the 3D geometry:
* No color/texture
 No other attributes

e [he format specities both ASCIl and binary
representations

STL File Format

Data structure: list of triangles
Vertices are ordered using the right-hand rule
3D coordinates must be positive

No scale metadata; i.e., units are arbitrary

STL File Format

* The file begins as

solid

e A face is defined as

facet normal
outer loop
vertex
vertex
vertex
endloop
endfacet

STL File Format:
An Example

solid triangle
facet normal O 1 O
outer loop
vertex 0.0 0.0 0.0
vertex 1.0 0.0 0.0
vertex 0.0 1.0 1.0
endloop
endfacet
endsolid triangle

PLY File Format

* Polygon File Format (PLY) is a popular format
created by Stanford University (Greg Turk)

 The format is very flexible:
* we can add many attributes

* we can define triangular and polygonal meshes

* The format specifies both ASCII and binary
representations

PLY File Format

e Data structure: list of unique vertices
 No scale metadata; i.e., units are arbitrary
* The file is divided into two parts:

 Header that specities vertices and tfaces

* Body that specifies the concrete data

PLY File Format: Header

* The file begins as

ply
format ascii 1.0

* Vertex specification is defined as

element vertex
property float
property float
property float

can be: char, uchar, short, ushort, int, uint float, double, etc.

PLY File Format: Header

e Faces are defined as

element face
property list uchar int vertex_indices

end _header

PLY File Format: Body

 Each I-th vertex is specitied as

 Each face is specified as

3

PLY File Format: An Example

ply

format ascii 1.0

element vertex 4

property float x

property float y

property float z

element face 4

property list uchar int vertex_indices
end_header

-0.60 -0.97 0.37
-0.34 0.98 0.76
0.037 0.65 -1.06
0.88 -0.75-0.25
3132

3012

3031

3302

Acknowledgements

 Some images and text are based on work by:

* Dr. Paolo Cignoni:

e http://vcg.isti.cnr.it/~cignoni/

http://vcg.isti.cnr.it/~cignoni/
http://vcg.isti.cnr.it/~cignoni/

