Surface Reconstruction

Gianpaolo Palma

Surface reconstruction

Input

- Point cloud
- With or without normals
- Examples: multi-view stereo, union of range scan vertices
- Range scans

- Each scan is a triangular mesh
- Normal vectors derived by local connectivity
- All the scans in the same coordinate system

Problem

Given a set of points $P=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$ with $\mathbf{p}_{i} \in \mathbb{R}^{3}$
Find a manifold surface $S \subset \mathbb{R}^{3}$ which approximates P

Surface Reconstruction

- Explicit approach
- Delaunay Triangulation
- Ball Pivoting
- Zippering
- Implicit approach
- Radial Basis Function
- Signed distance field from range scan
- Moving Least Square
- Smoothed Signed Distance Surface Reconstruction
- Poisson Surface Reconstruction

Delaunay Algorithm

- General triangulation on n points in d-dimensional space by partition of the covex-hull with dsimplex
- A triangulation such that for
 each d-simplex the circumhypersphere doesn't contains any other points
- The triangulation covers all the covex-hull defined by the input
 points

Delaunay Algorithm

- 2D case

Delaunay Algorithm

- 2D case

Delaunay Algorithm

- 2D case

VALID DELAUNAY

Delaunay Algorithm

- 2D case

VALID DELAUNAY

NO VALID DELAUNAY

Delaunay Algorithm

- 3D case (triangle -> tetrahedron, circle->sphere)

Delaunay Algorithm

- Need a sculpting operation to extract the limit surface

[Boissonnat, TOG 84]

Delaunay Algorithm

- Problems
- Need clean data
- Slow
- Not always exist for $\mathrm{d}>=3$

Ball Pivoting

[Bernardini et al., TVCG 99]

- Pick a ball radius, roll ball around surface, connect what it hits
- Pivoting of a ball of fixed radius around an edge of the current front adds a new triangles to the mesh

Ball Pivoting

Ball Pivoting

Ball Pivoting

Ball Pivoting

Ball Pivoting

- Problem with different sampling density, but we can use ball of increasing radius
- Problem with concavities

Ball Pivoting

Ball Pivoting

- Iterative approach
- Small Radius, capture high frequencies
- Large Radius, close holes (keeping mesh from previous pass)

Zippering

[Turk et al., SIGGRAPH 94]

- "Zipper" several scans to one single model

Zippering

- Remove overlap regions (all the vertices of the triangle have as neighbor a no-border vertex)

Zippering

- Project and intersect the boundary of B

Zippering

- Incorporate the new points in the triangulation

Zippering

- Remove overlap regions of A

Zippering

- Optimize triangulation

Zippering

- Preserve regular structure of each scan but problems with intricate geometry, noise and small misalignment

Implicit Reconstruction

- Define a distance function f with value <0 outside the shape and >0 inside the shape

$$
f: \mathbb{R}^{3} \leftarrow \mathbb{R}
$$

- Extract the zero-set

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{3}: f(\mathbf{x})=0\right\}
$$

Implicit Reconstruction Algorithm

- Input: Point cloud or range map

1. Estimation of the signed distance field
2. Evaluation of the function on an uniform grid
3. Mesh extraction via Marching Cubes

- Output: Triangular Mesh

- The existing algorithms differ on the method used to compute the signed distance filed

Signed Distance Function

- Construct SDF from point samples
- Distance to points is not enough
- Need inside/outside information
- Requires normal vectors

Normal Estimation for Range Map

- Per-face normal

$$
\overrightarrow{\mathbf{n}}=\frac{\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)}{\left\|\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)\right\|}
$$

- Per-vertex normal

$$
\overrightarrow{\mathbf{n}}\left(\mathbf{p}_{i}\right)=\sum_{j \in T_{i}} \overrightarrow{\mathbf{n}}_{j} /\left\|\sum_{j \in T_{i}} \overrightarrow{\mathbf{n}}_{j}\right\|
$$

Normal Estimation for Point Cloud

[Hoppe et al., SIGGRAPH 92]

- Estimate the normal vector for each point

1. Extract the k-nearest neighbor point
2. Compute the best approximating tangent plane by covariance analysis
3. Compute the normal orientation

Normal Estimation for Point Cloud

[Hoppe et al., SIGGRAPH 92]

- Estimate the normal vector for each point

1. Extract the k-nearest neighbor point
2. Compute the best approximating tangent plane by covariance analysis
3. Compute the normal orientation

Normal Estimation for Point Cloud

[Hoppe et al., SIGGRAPH 92]

- Estimate the normal vector for each point

1. Extract the k-nearest neighbor point
2. Compute the best approximating tangent plane by covariance analysis
3. Compute the normal orientation

Principal Component Analysis

- Fit a plane with center \mathbf{c} and normal $\overrightarrow{\mathbf{n}}$ to a set of points $\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{k}\right\}$
- Minimize least squares error

$$
\min _{\mathbf{c}, \overrightarrow{\mathbf{n}}} \sum_{j=0}^{k}\left(\overrightarrow{\mathbf{n}}^{T}\left(\mathbf{p}_{j}-\mathbf{c}\right)\right)^{2}
$$

- Subject non-linear constraint

$$
\|\overrightarrow{\mathbf{n}}\|=1
$$

Principal Component Analysis

1. Compute barycenter (plane center)

$$
\mathbf{c}=\frac{1}{k} \sum_{j=0}^{k} \mathbf{p}_{j}
$$

2. Compute covariance matrix

$$
\begin{aligned}
& \mathbf{C}=\mathbf{M M}^{T} \in \mathbb{R}^{3 \times 3} \\
& \quad \text { with }
\end{aligned}
$$

$$
\mathbf{M}=\left[\left(\mathbf{p}_{1}-\mathbf{c}\right), \ldots,\left(\mathbf{p}_{k}-\mathbf{c}\right)\right] \in \mathbb{R}^{3 \times k}
$$

3. Select as normal the eigenvector of the covariance matrix with the smallest eigenvalue

Normal Estimation for Point Cloud

[Hoppe et al., SIGGRAPH 92]

- Estimate the normal vector for each point

1. Extract the k-nearest neighbor point
2. Compute the best approximating tangent plane by covariance analysis
3. Compute a coherent normal orientation

Normal Orientation

- Build graph connecting neighboring points
- Edge (ij) exists if $\mathbf{p}_{i} \in \operatorname{kNN}\left(\mathbf{p}_{j}\right)$ or $\mathbf{p}_{j} \in \operatorname{kNN}\left(\mathbf{p}_{i}\right)$
- Propagate normal orientation through graph
- For edge (ij) flip $\overrightarrow{\mathbf{n}_{j}}$ if $\overrightarrow{\mathbf{n}_{j}}{ }^{T} \overrightarrow{\mathbf{n}_{i}}<0$
- Fails at sharp edges/corners
- Propagate along "safe" paths
- Build a minimum spanning tree with angle-based edge weights $\quad w_{i j}=1-{\overrightarrow{\mathbf{n}_{j}}}^{T} \overrightarrow{\mathbf{n}_{i}}$

SDF from tangent plane

[Hoppe et al., SIGGRAPH 92]

- Signed distance from tangent planes
- Points and normals determine local tangent planes
- Use distance from closest point's tangent plane
- Simple and efficient, but SDF is not continuous

SDF from tangent plane

[Hoppe et al., SIGGRAPH 92]

Smooth SDF Approximation

- Use radial basis functions (RBFs) to implicitly represent surface

$$
\begin{aligned}
& \phi(\mathbf{x})=\phi(\|\mathbf{x}\|) \\
& \phi(\mathbf{x})=\phi(\|\mathbf{x}-\mathbf{c}\|)
\end{aligned}
$$

- Function such that the value depends only on the distance from the origin or from a center
- Sum of radial basis functions used to approximate a function

Smooth SDF Approximation

[Carr et al., SIGGRAPH 01]

- Give the n input points $\left\{\mathbf{x}_{i}: f\left(\mathbf{x}_{i}\right)=0\right\}$
- Approximate distance field with a shifted weighted sum of radial basis functions

$$
f(\mathbf{x})=\sum_{i=1}^{n} w_{i} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{i}\right\|\right)
$$

- Use the input points as centers of the radial functions
- Constrain:
- The approximated SDF must be continuous and smooth

Estimate the RBF weight

[Carr et al., SIGGRAPH 01]

- Set a system of n equations

$$
\begin{aligned}
\forall j f\left(\mathbf{x}_{j}\right) & =\sum_{i=1}^{n} w_{i} \phi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|\right) \\
f\left(\mathbf{x}_{j}\right) & =d_{j}
\end{aligned}
$$

- Solve a linear system

$$
\mathbf{A w}=\mathbf{d} \Rightarrow\left[\begin{array}{ccc}
\phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \ldots & \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{n}\right\|\right) \\
\vdots & \ddots & \vdots \\
\phi\left(\left\|\mathbf{x}_{n}-\mathbf{x}_{1}\right\|\right) & \ldots & \phi\left(\left\|\mathbf{x}_{n}-\mathbf{x}_{n}\right\|\right)
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right]
$$

Estimate the RBF weight
 [Carr et al., SIGGRAPH 01]

- For the input point we have $f\left(\mathbf{x}_{j}\right)=d_{j}=0$
- The RBF system is $\mathbf{A w}=0$
- Problem: It gets the trivial solution $f(\mathbf{x})=0$
- We need additional constrains
- Off-surface point

Off-surface Points

[Carr et al., SIGGRAPH 01]

- For each point in data add 2 off-surface points on both sides of surface
- Use normal data to find offsurface points

$$
\begin{aligned}
f\left(\mathbf{x}_{i}\right) & =0 \\
f\left(\mathbf{x}_{i}+\lambda \overrightarrow{\mathbf{n}}_{i}\right) & =\lambda \\
f\left(\mathbf{x}_{i}-\lambda \overrightarrow{\mathbf{n}}_{i}\right) & =-\lambda
\end{aligned}
$$

Off-surface Points

[Carr et al., SIGGRAPH 01]

- Select an offset such that off-surface points do not intersect other parts of the surface
- Adaptive offset: the off-surface point is constructed so that the closest point is the surface point that generated it

Radial Basis Function

- Wendland basis functions

$$
\phi(r)=\left(1-\frac{r}{\sigma}\right)_{+}^{4}\left(\frac{4 r}{\sigma}+1\right)
$$

- Compactly supported in $[0, \sigma]$
- Leads to sparse, symmetric positive-definite linear system
- Resulting SDF C^{2} is smooth
- But surface is not necessarily fair
- Not suited for highly irregular sampling

Radial Basis Function

- Triharmonic basis functions

$$
\phi(r)=r^{3}
$$

- Globally supported function
- Leads to dense linear system
- SDF C^{2} is smooth
- Provably optimal fairness
- Works well for irregular sampling

Radial Basis Function

SDF FROM
TANGENT PLANE

RBF
WENDLAND

RBF
TRIHARMONIC

RBF Reconstruction Example
 [Carr et al., SIGGRAPH 01]

SDF from Range Scan

- Compute the SDF for each range scan $f\left(\mathbf{x}_{i}\right)$
- Distance along scanner's line of sight
- Compute a weighting function for each scan $w\left(\mathbf{x}_{i}\right)$
- Use of different weights
- Compute global SDF by weighted average

$$
F(\mathbf{x})=\frac{\sum_{i} w_{i} f_{i}(\mathbf{x})}{\sum_{i} w_{i}}
$$

SDF from Range Scan

SDF from Range Scan

- Weighting functions
- Scanning angle

- Distance from the border of the scan

SDF from Range Scan

- Restrict the function near the surface to avoid interference with other scans

d

Moving Least Square

[Alexa et al., VIS 01]

- Approximates a smooth surface from irregularly sampled points
- Create a local estimate of the surface at every point in space
- Implicit function is computed by local approximations
- Projection operator that projects points onto the MSL surface

Moving Least Square

[Alexa et al., VIS 01]

- How to project e on the surface defined by the input points

1. Get Neighborhood of e

Moving Least Square

[Alexa et al., VIS 01]

- How to project e on the surface defined by the input points

2. Find a local reference plane

$$
H=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid \overrightarrow{\mathbf{n}}^{T}(\mathbf{x}-\mathbf{q})=0\right\}
$$

minimizing the energy

Moving Least Square

[Alexa et al., VIS 01]

- How to project e on the surface defined by the input points

3. Find a polynomial approximation

$$
g: H \rightarrow \mathbb{R}^{3}
$$

minimizing the energy

Moving Least Square

[Alexa et al., VIS 01]

- How to project e on the surface defined by the input points

4. Projection of e

$$
\mathbf{e}^{\prime}=\mathbf{q}+g(0,0) \overrightarrow{\mathbf{n}}
$$

5. Iterate if

$$
g(0,0)>\epsilon
$$

Moving Least Square

- Simpler projection approach using weighted average position and normal

$$
\begin{aligned}
& \mathbf{a}(\mathbf{x})=\frac{\sum_{i} \theta\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right) \mathbf{p}_{i}}{\sum_{i} \theta\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right)} \\
& \overrightarrow{\mathbf{n}}(\mathbf{x})=\frac{\sum_{i} \theta\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\| \overrightarrow{\mathbf{n}}_{i}\right.}{\left\|\sum_{i} \theta\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right) \overrightarrow{\mathbf{n}}_{i}\right\|}
\end{aligned}
$$

1) $\overrightarrow{\mathbf{n}} \leftarrow \overrightarrow{\mathbf{n}}\left(\mathbf{x}^{\prime}\right)$
2) $\mathbf{a} \leftarrow \mathbf{a}\left(\mathrm{x}^{\prime}\right)$
3) if $\overrightarrow{\mathbf{n}}^{T}\left(\mathbf{a}-\mathbf{x}^{\prime}\right)<\epsilon$ return \mathbf{x}^{\prime}
4) else $\mathbf{x}^{\prime} \leftarrow \mathbf{x}^{\prime}+\overrightarrow{\mathbf{n}} \overrightarrow{\mathbf{n}}^{T}\left(\mathbf{a}-\mathbf{x}^{\prime}\right)$ go to 1$)$

Moving Least Square

Poisson Surface Reconstruction

[Kazhdan et al., SGP 06]

- Reconstruct the surface of the model by solving for the indicator function of the shape

$$
\chi_{M}(p)= \begin{cases}1 & \text { if } p \in M \\ 0 & \text { if } p \notin M\end{cases}
$$

Indicator function χ_{M}

Indicator Function

[Kazhdan et al., SGP 06]

- How to compute the indicator function?

Oriented points

Indicator function χ_{M}

Indicator Function

[Kazhdan et al., SGP 06]

- The gradient of the indicator function is a vector field that is zero almost everywhere except at points near the surface, where it is equal to the inward surface normal

Oriented points

Indicator gradient $\nabla \chi_{M}$

Integration as a Poisson Problem

Re $\vec{V} \quad$ [Kardan et al. SGP o6]

- Represent the points by a vector field V
- Find the function χ whose gradient best approximates \vec{V} :

$$
\min _{\chi}\|\nabla \chi-\vec{V}\|
$$

- Applying the divergence operator, we can transform this into a Poisson problem:

$$
\nabla \cdot(\nabla \chi)=\nabla \cdot \vec{V} \quad \Leftrightarrow \quad \Delta \chi=\nabla \cdot \vec{V}
$$

Poisson Surface Reconstruction

[Kazhdan et al., SGP 06]

1. Compute the divergence

Poisson Surface Reconstruction

1. Compute the divergence
2. Solve the Poisson equation

Poisson Surface Reconstruction

[Kazhdan et al., SGP 06]
Solve the Poisson equation

- Discretize over an octree
- Update coarse \rightarrow fine

Poisson Surface Reconstruction

[Kazhdan et al., SGP 06]
Solve the Poisson equation

- Discretize over an octree
- Update coarse \rightarrow fine

Poisson Surface Reconstruction

[Kazhdan et al., SGP 06]
Solve the Poisson equation

- Discretize over an octree
- Update coarse \rightarrow fine

Poisson Surface Reconstruction

[Kazhdan et al., SGP 06]
Solve the Poisson equation

- Discretize over an octree
- Update coarse \rightarrow fine

Poisson Surface Reconstruction

[Kazhdan et al., SGP 06]

- Advantages:
- Robust to noise
- Adapt to the sampling density
- Can handle large models
- Disadvantages
- Over-smoothing

Smooth Signed Distance Surface Reconstruction

[Calakli et al., PG 11]

- Oriented point set $D=\left\{\left(\mathbf{p}_{i}, \overrightarrow{\mathbf{n}_{i}}\right)\right\}$
- Implicit surface $S=\{\mathbf{x} \mid f(\mathbf{x})=0\}$

$$
\forall\left(\mathbf{p}_{i}, \overrightarrow{\mathbf{n}_{i}}\right) f\left(\mathbf{p}_{i}\right)=0 \text { and } \nabla f\left(\mathbf{p}_{i}\right)=\overrightarrow{\mathbf{n}_{i}}
$$

- Least square energy (data term and regularization term)

$$
\begin{gathered}
E(f)=E_{D}(f)+E_{R}(f) \\
E_{D}(f)=\sum f\left(\mathbf{p}_{i}\right)^{2}+\lambda_{1} \sum\left\|\nabla f\left(\mathbf{p}_{i}\right)-\overrightarrow{\mathbf{n}}_{i}\right\|^{2} \\
E_{R}(f)=\lambda_{2} \int_{V}\|\mathbf{H} f(\mathbf{x})\|^{2} d \mathbf{x}
\end{gathered}
$$

Smooth Signed Distance Surface Reconstruction

$$
E(f)=\sum f\left(\mathbf{p}_{i}\right)^{2}+\lambda_{1} \sum\left\|\nabla f\left(\mathbf{p}_{i}\right)-\overrightarrow{\mathbf{n}}_{i}\right\|^{2}+\lambda_{2} \int_{V}\|\mathbf{H} f(\mathbf{x})\|^{2} d \mathbf{x}
$$

- Near the point data dominates the energy
- Make the function approximate the signed distance function
- Away from the point data dominates the regularization energy
- Tend to make the gradient vector field constant

Smooth Signed Distance Surface Reconstruction

 [Calakli et al., PG 11]

POISSON

SSD

Screened Poisson Surface Reconstruction

[Kazhdan et al., TOG 13]

- Add discrete interpolation to the energy

$$
E(\chi)=\int\|\nabla \chi(\mathbf{p})-V(\mathbf{p})\|^{2} d \mathbf{p}+\lambda \sum_{\mathbf{p} \in D} \chi^{2}(\mathbf{p})
$$

- Encourage indicator function to be zero at samples

Screened Poisson Surface Reconstruction

POISSON

SSD
[Kazhdan et al., TOG 13]

SCREENED POISSON

Screened Poisson Surface Reconstruction

[Kazhdan et al., TOG 13]

- Sharper reconstruction
- Fast method (linear solver)
- But it assumes clean data

POISSON
SCREENED POISSON

References

- Boissonnat, Jean-Daniel. "Geometric structures for three-dimensional shape representation." ACM Transactions on Graphics (TOG) 3.4 (1984): 266-286.
- Bernardini, Fausto, et al. "The ball-pivoting algorithm for surface reconstruction." IEEE transactions on visualization and computer graphics 5.4 (1999): 349-359.
- Turk, Greg, and Marc Levoy. "Zippered polygon meshes from range images." Proceedings of the 21st annual conference on Computer graphics and interactive techniques. ACM, 1994.
- Hoppe, Hugues, et al. Surface reconstruction from unorganized points. Vol. 26. No. 2. ACM, 1992.
- Carr, Jonathan C., et al. "Reconstruction and representation of 3D objects with radial basis functions." Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, 2001.
- Curless, Brian, and Marc Levoy. "A volumetric method for building complex models from range images." Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, 1996.
- Alexa, Marc et al. "Point set surfaces". In: Proc. of IEEE Visualization 01.
- Alexa, Marc, and Anders Adamson. "On Normals and Projection Operators for Surfaces Defined by Point Sets." SPBG 4 (2004): 149-155.
- Kazhdan, Michael, Matthew Bolitho, and Hugues Hoppe. "Poisson surface reconstruction." Proceedings of the fourth Eurographics symposium on Geometry processing. Eurographics Association, 2006.
- Calakli, Fatih, and Gabriel Taubin. "SSD: Smooth signed distance surface reconstruction." Computer Graphics Forum. Vol. 30. No. 7. Blackwell Publishing Ltd, 2011.
- Kazhdan, Michael, and Hugues Hoppe. "Screened poisson surface reconstruction." ACM Transactions on Graphics (TOG) 32.3 (2013): 29.

