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Surface reconstruction



Input
• Point cloud

• With or without normals

• Examples: multi-view 
stereo, union of range scan 
vertices

• Range scans

• Each scan is a triangular 
mesh

• Normal vectors derived by 
local connectivity

• All the scans in the same 
coordinate system



Problem



Surface Reconstruction

• Explicit approach
• Delaunay Triangulation

• Ball Pivoting

• Zippering 

• Implicit approach
• Radial Basis Function

• Signed distance field from range scan

• Moving Least Square

• Smoothed Signed Distance Surface Reconstruction

• Poisson Surface Reconstruction



Delaunay Algorithm

• General triangulation on n points 
in d-dimensional space by 
partition of the covex-hull with d-
simplex

• A triangulation such that for 
each d-simplex the circum-
hypersphere doesn’t contains 
any other points 

• The triangulation covers all the 
covex-hull defined by the input 
points



Delaunay Algorithm

• 2D case



Delaunay Algorithm

• 2D case



Delaunay Algorithm

• 2D case

VALID DELAUNAY



Delaunay Algorithm

• 2D case

VALID DELAUNAY NO VALID DELAUNAY



Delaunay Algorithm

• 3D case (triangle -> tetrahedron, circle->sphere)



Delaunay Algorithm

• Need a sculpting operation to extract the limit surface

[Boissonnat, TOG 84] 



Delaunay Algorithm

• Problems

• Need clean data

• Slow

• Not always exist for d >= 3



Ball Pivoting

• Pick a ball radius, roll ball around surface, connect 

what it hits

• Pivoting of a ball of fixed radius around an edge of the 

current front adds a new triangles to the mesh

[Bernardini et al., TVCG 99] 



Ball Pivoting
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Ball Pivoting



Ball Pivoting

• Problem with different sampling density, but we can 

use ball of increasing radius

• Problem with concavities



Ball Pivoting



Ball Pivoting

• Iterative approach

• Small Radius, capture high frequencies

• Large Radius, close holes (keeping mesh from 

previous pass)



Zippering

• “Zipper” several scans to one single model

[Turk et al., SIGGRAPH 94] 



Zippering

• Remove overlap regions (all the vertices of the 

triangle have as neighbor a no-border vertex)



Zippering

• Project and intersect the boundary of B



Zippering

• Incorporate the new points in the triangulation



Zippering

• Remove overlap regions of A



Zippering

• Optimize triangulation



Zippering

• Preserve regular structure of each scan but problems 

with intricate geometry, noise and small misalignment



Implicit Reconstruction

• Define a distance function 

f with value < 0 outside 

the shape and > 0 inside 

the shape

• Extract the zero‐set



Implicit Reconstruction 

Algorithm
• Input: Point cloud or range map

1. Estimation of the signed 
distance field

2. Evaluation of the function on 
an uniform grid

3. Mesh extraction via Marching 
Cubes

• Output: Triangular Mesh

• The existing algorithms differ on 
the method used to compute the 
signed distance filed 



Signed Distance Function

• Construct SDF from point samples

• Distance to points is not enough

• Need inside/outside information

• Requires normal vectors



Normal Estimation for 

Range Map

• Per-face normal

• Per-vertex normal



Normal Estimation for Point 

Cloud

• Estimate the normal vector for each point

1. Extract the k-nearest neighbor point 

2. Compute the best approximating tangent plane by 

covariance analysis

3. Compute the normal orientation

[Hoppe et al., SIGGRAPH 92] 
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Normal Estimation for Point 

Cloud

• Estimate the normal vector for each point

1. Extract the k-nearest neighbor point 

2. Compute the best approximating tangent plane by 

covariance analysis

3. Compute the normal orientation

[Hoppe et al., SIGGRAPH 92] 



Principal Component 

Analysis

• Fit a plane with center and normal to a set of 

points

• Minimize least squares error

• Subject non‐linear constraint



Principal Component 

Analysis
1. Compute barycenter (plane center)

2. Compute covariance matrix 

3. Select as normal the eigenvector of the 
covariance matrix with the smallest 
eigenvalue 



Normal Estimation for Point 

Cloud

• Estimate the normal vector for each point

1. Extract the k-nearest neighbor point 

2. Compute the best approximating tangent plane by 

covariance analysis

3. Compute a coherent normal orientation

[Hoppe et al., SIGGRAPH 92] 



Normal Orientation

• Build graph connecting neighboring points

• Edge (ij) exists if                       or 

• Propagate normal orientation through graph

• For edge (ij) flip       if

• Fails at sharp edges/corners

• Propagate along “safe” paths

• Build a minimum spanning tree with angle‐based edge 

weights



SDF from tangent plane

• Signed distance from 

tangent planes

• Points and normals determine 

local tangent planes

• Use distance from closest 

point’s tangent plane

• Simple and efficient, but SDF 

is not continuous

[Hoppe et al., SIGGRAPH 92] 



SDF from tangent plane
[Hoppe et al., SIGGRAPH 92] 

150 SAMPLES
RECONSTRUCTION 

WITH A 503 GRID



Smooth SDF Approximation

• Use radial basis functions 

(RBFs) to implicitly 

represent surface

• Function such that the 

value depends only on 

the distance from the 

origin or from a center

• Sum of radial basis 

functions used to 

approximate a function 



Smooth SDF Approximation

• Give the n input points 

• Approximate distance field with a shifted weighted 

sum of radial basis functions

• Use the input points as centers of the radial functions

• Constrain:

• The approximated SDF must be continuous and 

smooth

[Carr et al., SIGGRAPH 01] 



Estimate the RBF weight

• Set a system of n equations

• Solve a linear system

[Carr et al., SIGGRAPH 01] 



Estimate the RBF weight

• For the input point we have 

• The RBF system is 

• Problem: It gets the trivial solution 

• We need additional constrains

• Off-surface point

[Carr et al., SIGGRAPH 01] 



Off-surface Points

• For each point in data add 2 

off-surface points on both 

sides of surface

• Use normal data to find off-

surface points

[Carr et al., SIGGRAPH 01] 



Off-surface Points

• Select an offset such that off-surface points do not 

intersect other parts of the surface

• Adaptive offset: the off-surface point is constructed so 

that the closest point is the surface point that 

generated it

FIXED OFFSET ADAPTIVE OFFSET

[Carr et al., SIGGRAPH 01] 



Radial Basis Function

• Wendland basis functions

• Compactly supported in

• Leads to sparse, symmetric positive-definite linear 

system

• Resulting SDF         is smooth

• But surface is not necessarily fair

• Not suited for highly irregular sampling



Radial Basis Function

• Triharmonic basis functions

• Globally supported function

• Leads to dense linear system

• SDF        is smooth

• Provably optimal fairness 

• Works well for irregular sampling



Radial Basis Function

SDF FROM

TANGENT PLANE
RBF

WENDLAND

RBF

TRIHARMONIC



RBF Reconstruction 

Example [Carr et al., SIGGRAPH 01] 



SDF from Range Scan

• Compute the SDF for each range scan

• Distance along scanner’s line of sight

• Compute a weighting function for each scan

• Use of different weights

• Compute global SDF by weighted average  

[Curless et al., SIGGRAPH 96] 



SDF from Range Scan
[Curless et al., SIGGRAPH 96] 

SDF

WEIGHTS



SDF from Range Scan

• Weighting functions

• Scanning angle

• Distance from the border 

of the scan
WITH BORDER WEIGHT

WITHOUT BORDER WEIGHT



SDF from Range Scan

• Restrict the function near the surface to avoid 

interference with other scans



Moving Least Square

• Approximates a smooth surface from irregularly 

sampled points 

• Create a local estimate of the surface at every point in 

space

• Implicit function is computed by local approximations

• Projection operator that projects points onto the MSL 

surface

[Alexa et al., VIS 01] 



• How to project e on the surface defined by the input 

points 

1. Get Neighborhood of e

Moving Least Square
[Alexa et al., VIS 01] 



• How to project e on the surface defined by the input 

points 

2. Find a local reference plane

minimizing the energy

Moving Least Square

Smooth, positive, and

monotonically decreasing 

weight function

[Alexa et al., VIS 01] 



• How to project e on the surface defined by the input 

points 

3. Find a polynomial approximation

minimizing the energy

Moving Least Square

2D coordinate of 

the projection on H

[Alexa et al., VIS 01] 



• How to project e on the surface defined by the input 

points 

4. Projection of e

5. Iterate if

Moving Least Square
[Alexa et al., VIS 01] 



Moving Least Square
• Simpler projection approach using weighted average 

position and normal

[Alexa et al., SPBG 04] 



Moving Least Square



Poisson Surface 

Reconstruction
• Reconstruct the surface of the model by solving for 

the indicator function of the shape
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MIndicator function

[Kazhdan et al., SGP 06] 



Indicator Function

• How to compute the indicator function?

MIndicator functionOriented points

[Kazhdan et al., SGP 06] 



Indicator Function

• The gradient of the indicator function is a vector field that is 

zero almost everywhere except at points near the surface, 

where it is equal to the inward surface normal

Oriented points
MIndicator gradient

0 0

0

0

0

0

[Kazhdan et al., SGP 06] 



Integration as a Poisson Problem

• Represent the points by a vector field

• Find the function     whose gradient best 

approximates    : 

• Applying the divergence operator, we can transform 

this into a Poisson problem:

[Kazhdan et al., SGP 06] 



Poisson Surface 

Reconstruction

1. Compute the divergence

𝑉 𝑞

∇⋅

[Kazhdan et al., SGP 06] 



Poisson Surface 

Reconstruction

1. Compute the divergence

2. Solve the Poisson equation

𝑉 𝑞

∇⋅ Δ−1

𝜒 𝑞

[Kazhdan et al., SGP 06] 



Poisson Surface 

Reconstruction
Solve the Poisson equation

▪ Discretize over an octree

▪ Update coarse → fine

[Kazhdan et al., SGP 06] 
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Poisson Surface 

Reconstruction
Solve the Poisson equation

▪ Discretize over an octree

▪ Update coarse → fine
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Poisson Surface 

Reconstruction

• Advantages:

• Robust to noise

• Adapt to the sampling 

density

• Can handle large models

• Disadvantages

• Over-smoothing

[Kazhdan et al., SGP 06] 



Smooth Signed Distance 

Surface Reconstruction

• Oriented point set

• Implicit surface

• Least square energy (data term and regularization 

term)

[Calakli et al., PG 11] 



Smooth Signed Distance 

Surface Reconstruction

• Near the point data dominates the energy 

• Make the function approximate the signed distance 

function

• Away from the point data dominates the regularization 

energy

• Tend to make the gradient vector field constant

[Calakli et al., PG 11] 



Smooth Signed Distance 

Surface Reconstruction

POISSON SSD

[Calakli et al., PG 11] 



Screened Poisson Surface 

Reconstruction

• Add discrete interpolation to the energy

• Encourage indicator function to be zero at samples

[Kazhdan et al., TOG 13] 



Screened Poisson Surface 

Reconstruction
[Kazhdan et al., TOG 13] 
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Screened Poisson Surface 

Reconstruction

• Sharper reconstruction

• Fast method (linear solver)

• But it assumes clean data

[Kazhdan et al., TOG 13] 
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