3D from Photographs:
Camera Calibration

Francesco Banterle, Ph.D.
francesco.banterle@isti.cnr.it



mailto:francesco.banterle@isti.cnr.it
mailto:francesco.banterle@isti.cnr.it

3D from Photographs

Automatic
Vateting o Calibration
Images
Surface Dense
Reconstruction Matching

3D model



3D from Photographs

3D model

Automatic
Matching of
Images

Surface
Reconstruction

Camera

Calibration

Dense
Matching




Back to the
Camera Model



Camera Model:
lmage Formation

-

Real-world MNx
Camera




Camera Model:
lmage Formation

-

Real-world MNx
Camera




Camera Model:
lmage Formation

-

Real-world MNx
Camera




Camera Model:
Pinhole Camera

Image
Plane




Camera Model: Image Plane

U

* Pixels have difterent height and width; i.e., (ku, k).
* ¢oIs called the principal point.
 The image plane has a finite size: w (width) and 4 (height)



Camera Model

« M is a point in the 3D world, and it is defined as:

—_— N = =

* mis a 2D point, the projection of M, and it lives in the image
plane UV:




Camera Model

* By analyzing the two triangles (real-world and projected
one), the following relationship emerges:

I u %

e This means that:



Camera Model:
INtrinsic Parameters

e |f we take all into account of the optical center, and pixel size we obtain:

{u=—f~§ku+uo

v=—f-%kv+v0

* |f we put this in matrix form, we obtain:

—fk‘u 0 Uo 0 —fk‘u 0
P=| 0 —fk, v O|=K[Il0] K=| 0 —fk,
0 0 1 0 0 0

e

mz =P M m~P- M m=|v




Camera Model:
Pinhole Camera

* [he perspective projection is defined as:

m~ FP-M

P = K[I|0]G = K[R|t]

Intrinsic Matrix
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Camera Model:
Thin Lens

» Typically, we model a thin lens system after projection:

/ u u' = (u— uy)(l +k1r§+ +knr,f”) + Uy
m = v’ — ,
1 v’=(v—v0)(1+k1r§+...+knrn”)+v0
-
m=1\1vV| ~P-M
1

where n is usually set to 3, and ry is defined as:

_ 2 . 2\ 2
7'5 _ ((l/t MO) | (V Vo) ) a, = —fku a, —fkv

a’ az
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Camera Model:
Thin Lens
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Barrel distortion




Camera Model:
. Thin Lens

Pincushion distortion
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Pre-Calibration: Why?

e |n some cases, when we know the camera, It IS
useful to avoid intrinsics matrix estimation:

* |t s more precise.

* We reduce computations.



Pre-Calibration:
Parameters Estimation

e If we can have an " of K from camera parameters that are available in
the camera specifications:

a 0 uo_
K=10 b v,
0 0 1]

 What do we need?

 Focal length of the camera in mm (f), we can obtain it from the EXIF file of the
JPEG/RAW file.

« Resolution of the picture in pixels (w, i), we can find it in the manual of the
camera or from the manufacturer specifications.

« CCD/CMOS sensor size in mm (w, h,), we can find it in the manual of the
camera or from the manufacturer specifications.



Pre-Calibration:
Parameters Estimation

ca=f-wlw,

. b=f-hih
° M():W/z

° VO:h/2



Pre-Calibration:
Parameters Estimation

ca=f-wlw,

. b=f-hih

° MO — W/2
Assuming it in the center!
° VO — h/2



DLT:
Direct Linear Transtorm



DLT: Direct Linear Transform

* Input: a photograph of a non-coplanar calibration
(e.qg., a checkerboard) with m 2D points
(extracted manually or automatically) with known
3D coordinates (we know them because we built
the calibration .

* Output: X of the camera. We can optionally
recover [R|t].



t Linear Transform

irec

D

DLIT




DLI: laea

2D-3D matches



DLI: laea

e At this point, if we get the projection equation back,
we can notice that we know something:

| pT°Ml
P1 0, = —
P L —l_ p3 .Ml
T V. = P> l
p3 l p; - M,



2D-3D matches



DLT: Linear System

This leads to:

M 0 —uMT| P
T T |
O - Ml ViMi 1 p3

For each point, we need to stack this equations obtaining a
matrix 4.

We obtain a 2m x 12 linear system to solve.

The minimum number of points to solve is 6, but more points are
required to have robust and stable solutions.



What's the problem
with this method?



DLT: Direct Linear Transform

 DLI minimizes an algebraic error:
* |t does not have geometric meaning!!!
 Hang on, is it all wrong?

 Nope, we can use it as input for a non-linear
method.



DLT: Non-linear Refinement

* The non-linear refinement minimizes (at least
squares) the distance between 2D points of the
image (m;) and projected 3D points (M,):

™ /bl - M. 2 T .M. 2
argminZ(plT - uz> + (pQT - vz-)
P \ps - M; p; - M;

(

* Different methods for solving it such as Gradient
Descent (we need gradients), Nelder-Mead’s
method (MATLAB's ), etc.




Now we have a nice
matrix P...



DLT: Direct Linear Transform

e |et's recap:

* K has to be upper-triangular. K =

* R Is orthogonal.

+ P=K[R|t] = [K - RIK - t] = [P'|p4]




DLT: Direct Linear Transform

* QR decomposition of a matrix 4:
A=0-T
e where:
O is orthogonal.
* Tis upper-triangular.
* |In our case, we have:

P=K R—P)Y'=RrR' K



DLT: Direct Linear Transform

e QR decomposition to P’

Plor=0-T
 |[n our case, we have:
R=0""' K=1"1

 We compute ¢ as:



DLT: Direct Linear Transform

e QR decomposition to P’
Plogr=0"T
* |n our case, we have:
R=0"' K=1T"1

 We compute ¢ as:
t=K ' ps



and what's about the
radial distortion?



Estimating Radial Distortion

* |Lets start with simple radial distortion; I.e., only a
coefficient:

u' = (u—ug) - (14 k17r3) + ug
v = (v —wg) - (1+ k173) + vg

r2 = <(“_“0))2+ ((”_”0)>2 Oy =—f ky ay=—fk,

Xy Xy

e Can we solve it?



Estimating Radial Distortion

» \We have only one unknown, which is linear; i.e., k;:

e, — u' —u

1 (u — Mo)l’g
fe. — Vi—vy

1 (V — Vo)l’c%

* |ntheory, a single point is enough, but it Is better
to use more points to get a more robust solution.



Homograpny



2D Transformations

* We can have different type of transformation (defined by a
matrix) of 2D points:

e Translation (2 degree of freedom [DoF]):
* |t preserves orientation.
e Rigid/Euclidian (3 DoF); translation, and rotation:
* |t preserves lengths.
e Similarity (4DoF); translation, rotation, and scaling:

* |t preserves angles.



2D Transformations

» Affine (6 degree of freedom [DoF]); D

* |t reserves parallelism.

* Projective (8 DoF):

* |t preserves straight lines.



2D Transtformations:
Homography




2D Transtformations:
Homography

* Homography is defined as

Xp
mb = H - ma —> mb — yb — mb/mbﬁ
1

* This s typically expressed as
m, ~ H-m,

where H is a 3 X 3 non-singular matrix with 8 Dok



Homography Estimation

Xa b
m, ~ H-m, m, = |, m, = |JVp
1 1
Y, = hi1 X, + iy, + hys
D hyux, + hyy, + ha
mb —

hy X, + hypy, + hos

yb - hyix, + hsyy, + has




Homography Estimation

{Xb(h31.xa + h32ya + h33) — hl 1Xa + hlzya -+ h13 — O
yb(h31xa + h32ya + h33) — h21xa -+ h22ya -+ h23 — O

Stacking multiple equations;
one for each match (at least 5!)

A-vec(H)=0



Homography Estimation

* Again, we have minimized an algebraic error!!

* Jechnically speaking, we should run a non-linear
optimization:

" hi -M;\° h] -M;\°
. / 1 / 1
o 11<xz h; M) " (yz h; Mz>

where H= [h; h, h;].



/hang’s Method



/hang’s Method

* Input: a set of n photographs capturing a
checkerboard (fully visible) or other patterns. From
these, we have to extract m points (i.e., all corners
of a checker!) in each photograph.

 Output: K. We can optionally compute G = [R|t] for
each photograph.



/hang’s Method




/hang’s Method




/hang’s Method

& C Ug
K =10 ﬁ (%)
0 0 1

Note: c is a function of the angle between the u-axis and
v-axis in the image plane.



/hang’s Method

& |C| Ug
K =10 ﬁ (%)
0 0 1

Note: c is a function of the angle between the u-axis and
v-axis in the image plane.



/hang’s Method

 Assumption:

* We have a set of photographs of a plane so Z is
equal O.

* SO we have 3D points defined as

<
|
— o 8




/hang’s Method

e This meansthatwe have: m~ P - M

P-M=K -[Rt] -

:r—\ o &:

=K - [rirors|t] -

:r—\ o 5%:

=K -[riraft] - |y| =
1



/hang’s Method

=K - [1'11'2“3] Y




/hang’s Method

=K - [1'11'2“3] Y




/hang’s Method

This is a homography!




/hang's Methoo

This is a homography!
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/hang's Methoo
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/hang's Methoo

This is a homography!




/hang's Methoo

This is a homography!

H=[h; hy hy]



/hang’s Method

 What to do?
* For each photograph:

 We compute the homography H between
photographed checkerboard corners and its
model.



/hang's Methoo

Photograph

Model



/hang’s Method

e At this point, starting from H for each photograph,
we need to compute K, R, and t.

e Note that r1 and r, are orthonormal, so we have the
following:

« h/K"'"K™'h, =0

. h/ K"'K~'"hy =h) K 'K 'h,



/hang’s Method

* Note that all K parameters can be compressed

INto:
- 1 c cvo—uof -
02 ] a2 3 a2 3
B K T 53 St C(C?;?Q_ﬁ"z"om 3
cvg—uof clcvo—uoB) vy  (cvo—uoB)® | vg | 1
B 0425 042[32 52 aQBQ ! 52 I+

B 1s symmetric = defined only by six values:
vec(B) = [by1, b1y, byy, by3, by3, b33]'



/hang’s Method

e (Given that:

e \We have so:

. h/ -B-h;=v - vec(B)

e where:

. H=|h; h, hj

. h; = [hil hiy h13]T

hi1hij
hirthjo + hiahji
hiahjo

hizhji

+ hi1hjs

hish o -

- hiahs

hish;s




/hang’s Method

e (Given that r1 and r; are orthonormal, and that:
h/K~"K~'h, =0

e \We obtain:

.
[ e ] -vec(B) =0

.
(Vi1 — Vi)



/hang’s Method

* It n iImages of the model plane are observed, we
obtain the following by stacking n of such equations:

.
Vi

v—vt| 0

 This leads to:
V.vec(B) =0

e VIS 2n X 6 matrix, sowe need n > 2.



/hang’s Method

e At this point, we can compute elements of K as

Uy = (b1,013 — by1by3)/ (b1, by — b122)
A = b3 — (bi5 + vo(byobi3 — by — by3) by,

p = \//11711/(19111922—%2)
C = — blzazﬁ//l

g = cvola — byya®/ A



/hang’s Method

 Furthermore, we can extract the pose as

r{ =M\ K 'hy
ro = \- K 'h,
rs = 1] X I's
t = AK 'hs



/hang's Methoa:
Non-Linear Refinement

* S0 far, we have obtained a solution through minimizing
an algebraic distance that is not physically meaningtul!

 From that solution, we can use a non-linear method for
minimizing the following error:

n m

S iy — m(K, Ry ti, M;)|?
1=1 5=1

* where n is the number of photographs, and m is the
number of matched points.



/hang's Methoa:
Non-Linear Refinement

* S0 far, we have obtained a solution through minimizing
an algebraic distance that is not physically meaningtul!

 From that solution, we can use a non-linear method for
minimizing the following error:

n m

SN T imy; (K, Ryt M|
1=1 5=1

* where n is the number of photographs, and m is the
number of matched points.



/hang's Methoa:
Optical Distortion

 What's about the parameters for modeling the radial
distortion”

(w—uo)ry (u—wuo)ry| [ki| _ [u —u]

(v—vo)r; (v—wo)ry| |k2| |V —v

PR (CE) S () Y

oy
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/hang's Methoa:
Optical Distortion

 What's about the parameters for modeling the radial
distortion”

(uw—uo)ry (u—wuo)ry| [ki]| _ [u/ —u]
(v—vo)r; (v—wo)ry| |k2| |V —wv
2 2
r2 = ((u;uo)> n ((v;vo)> = —f ke ay=—fk



/hang's Methoa:
Optical Distortion

 What's about the parameters for modeling the radial
distortion”

(w—uo)ry (u—wuo)ry| [ki| _ [u —u]

(v—vo)r; (v—wo)ry| |k2| |V —v

o)>2

- (552

au:_f'ku au:_f'kv

(v —w

Uy
~
D-k=d

N



/hang's Methoa:
Optical Distortion

 What's about the parameters for modeling the radial
distortion”

(u—uo)ry (u—wuo)ry| [ki| _ |u —u]
(v—wvo)r; (v—wo)ry| |k2| |V —wv
Tczi:((u;uo au:_f'ku au:_f Koy




/hang's Methoa:
Non-Linear Refinement

* As beforeg, first algebraic solution, and then a non-linear
solution.

* We extend the previous non-linear model to include
optical distortion:

S‘S‘ |m; ; — m(K, R;, t;, k, M;)|?

1=1 3=1

* where n is the number of photographs, and m is the
number of matched points.



/hang's Methoa:
Non-Linear Refinement

* As beforeg, first algebraic solution, and then a non-linear
solution.

* We extend the previous non-linear model to include
optical distortion:

This function

projects M; points
S‘S‘ |m; ; —m(K, R, t;, k, M;)||? (3D)
| =[R ] 1],

i=1 j—1 given K Gl‘. |
and radial distortion.

* where n is the number of photographs, and m is the
number of matched points.



that’s all folks!



