Segmentation with Machine Learning

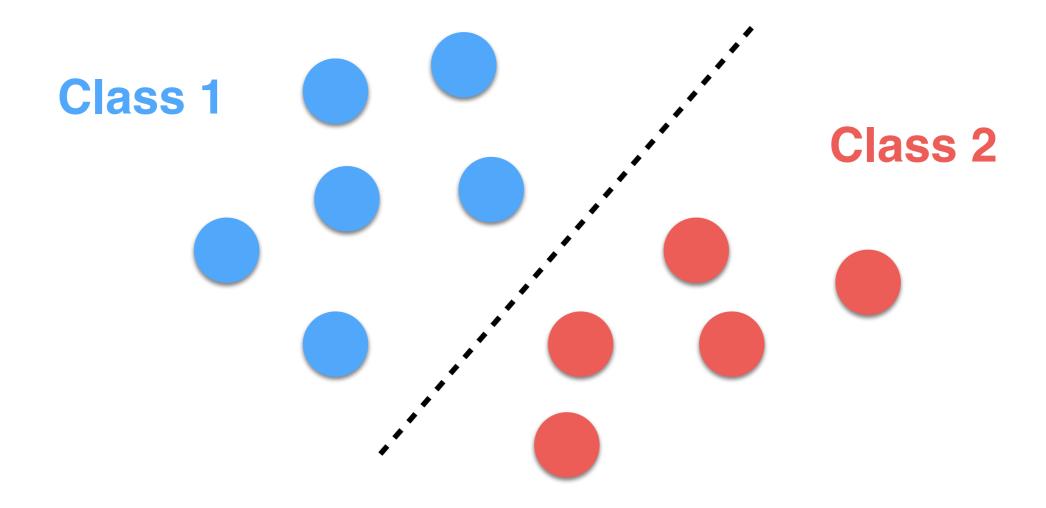
Francesco Banterle, Ph.D. francesco.banterle@isti.cnr.it

Machine Learning

- Machine learning algorithms:
 - The use of computers algorithm that may improve automatically through experience and/ or the use of data.
 - Unsupervised: we do not have labels.
 - Supervised: we have labelled data:
 - Neural Networks.

Machine Learning

- Machine learning algorithms work very well for classification: drawing a plane or hyperplane to divide samples into classes.
- Similarly to k-Means (unsupervised) this works for segmentation too!



Machine Learning

Training Set

Model

Learning Method

Machine Learning: Learning

- Training set: a dataset of n couples: input and output.
 - The larger the better:
 - at least 10,000 couples for high-quality segmentation.
 - This represents a **knowledge** to be trained. "Learn by example"; i.e., supervised learning.

Machine Learning: Learning

- Learning Method: a mathematical model/function that transfers the knowledge of the training set to the model:
 - It is a mix between:
 - Minimization method (i.e., Gradient Descent);
 - Loss function (how to minimize the differences).

Machine Learning: Learning

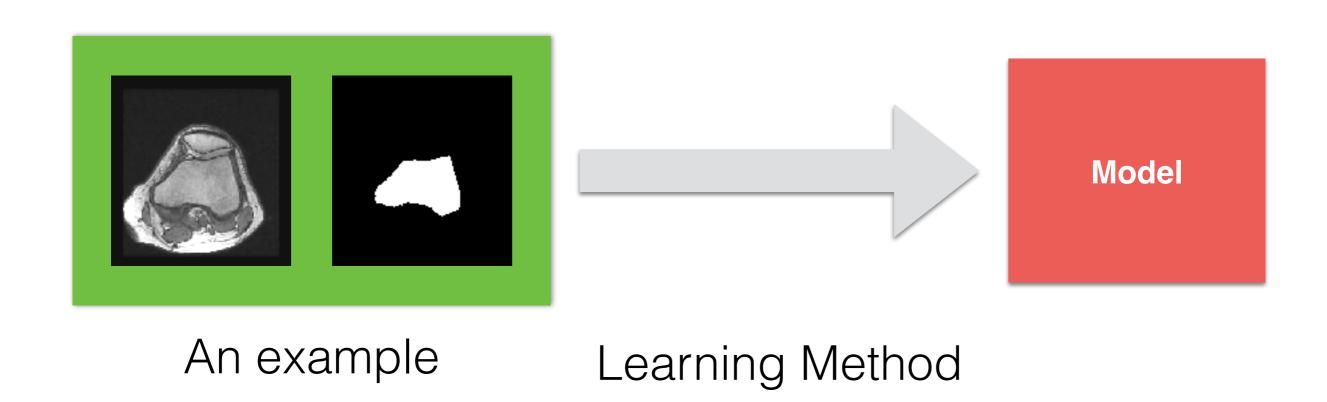
- Model: a mathematical model that can store the knowledge of the dataset into its parameters (called weights).
- For example:
 - A neural network;
 - A decision tree/forest.

Machine Learning: Supervised Learning

- There are two steps:
 - Learning
 - Prediction/Evaluation

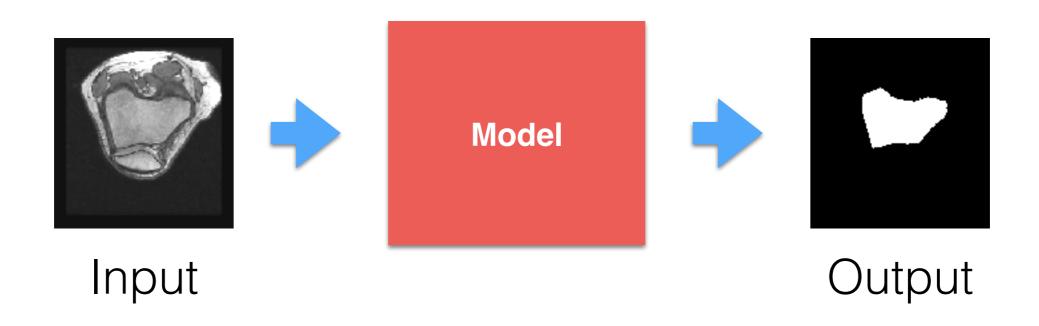
Machine Learning: Supervised Learning

 We need to collect examples and transfer that knowledge into a model.

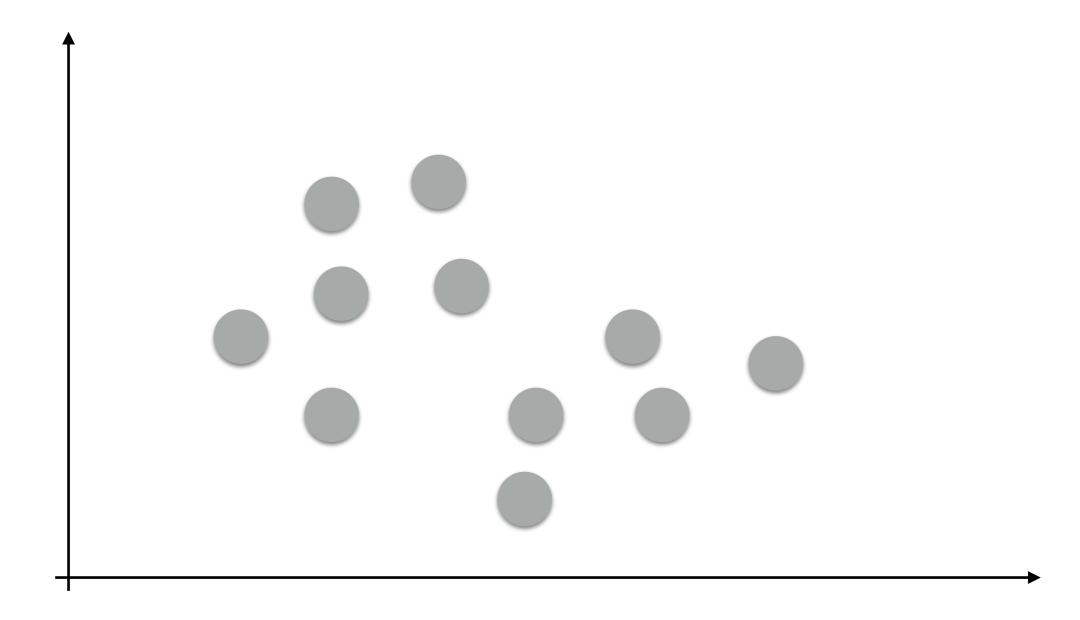


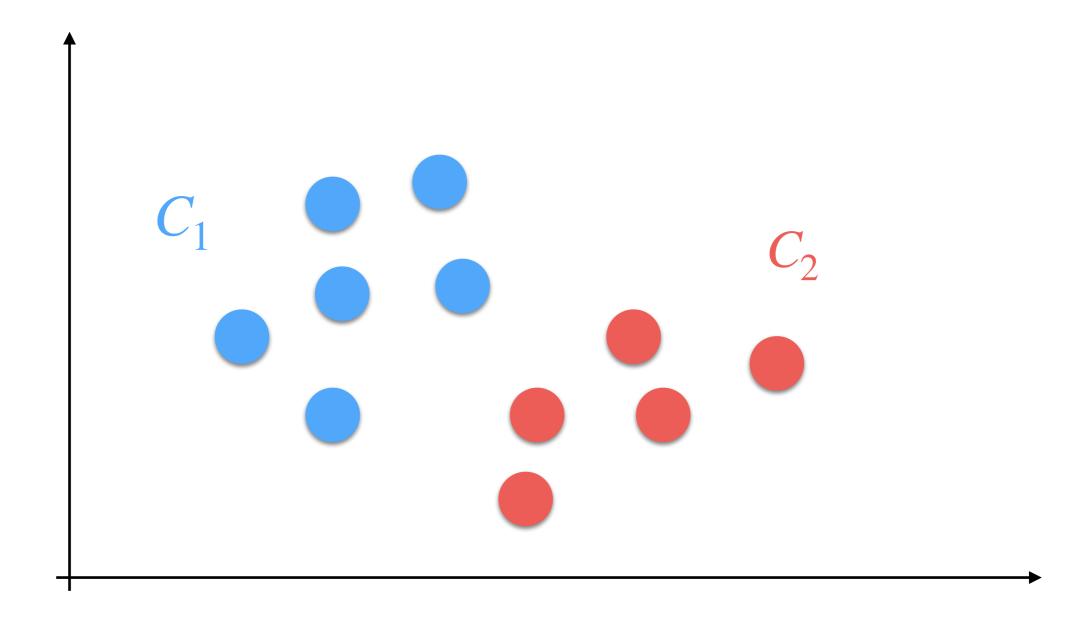
Machine Learning: Supervised Prediction/Evaluation

 After learning the dataset, we just need to pass data to the model (i.e., we evaluate it) to get results:

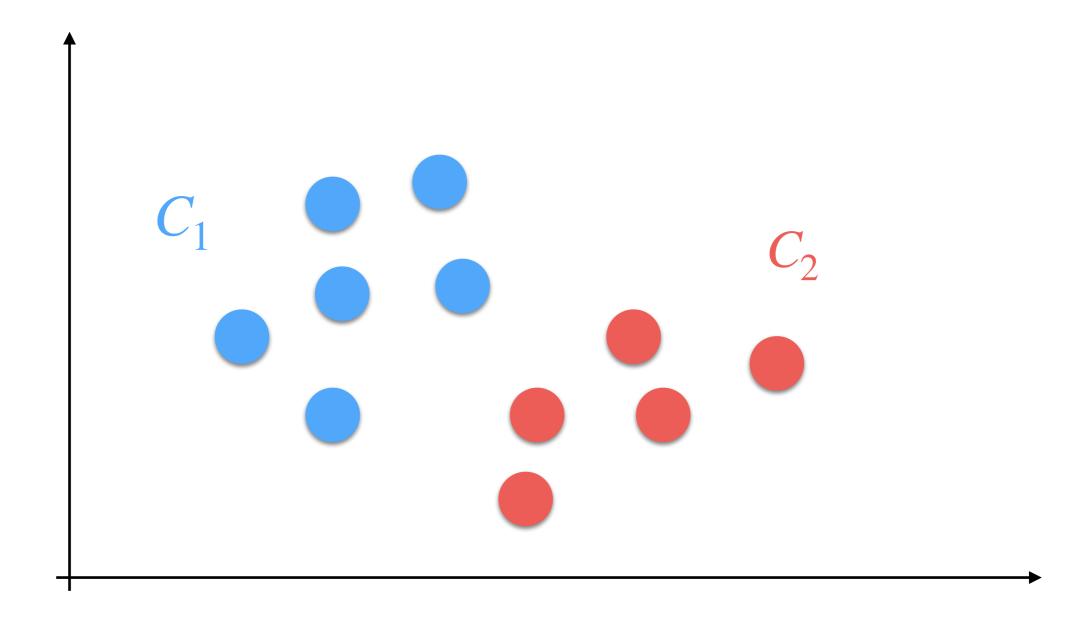


A Simple Example

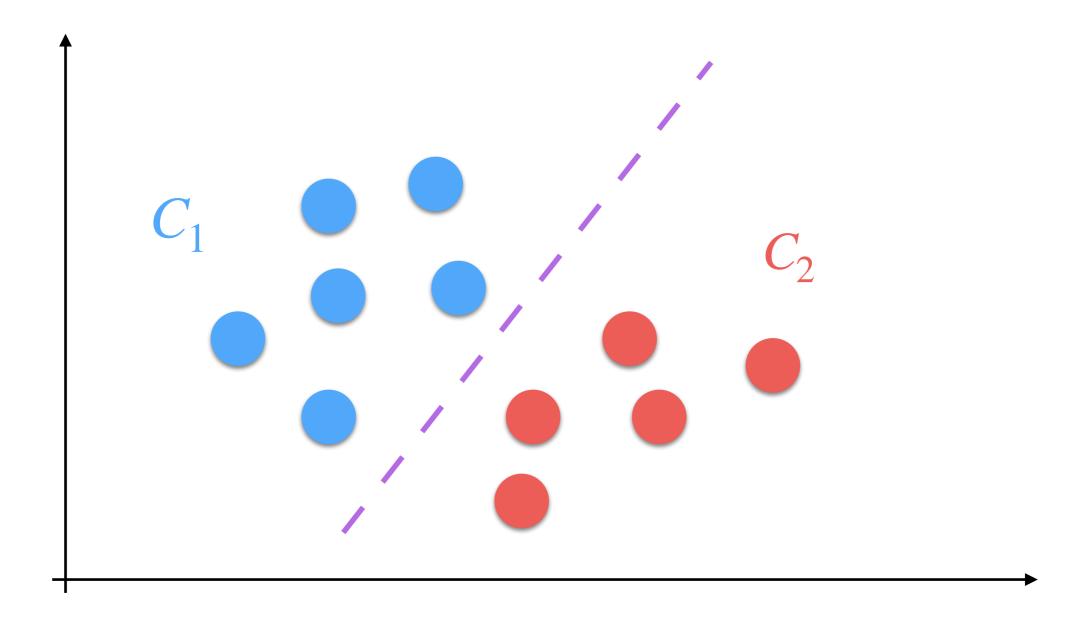




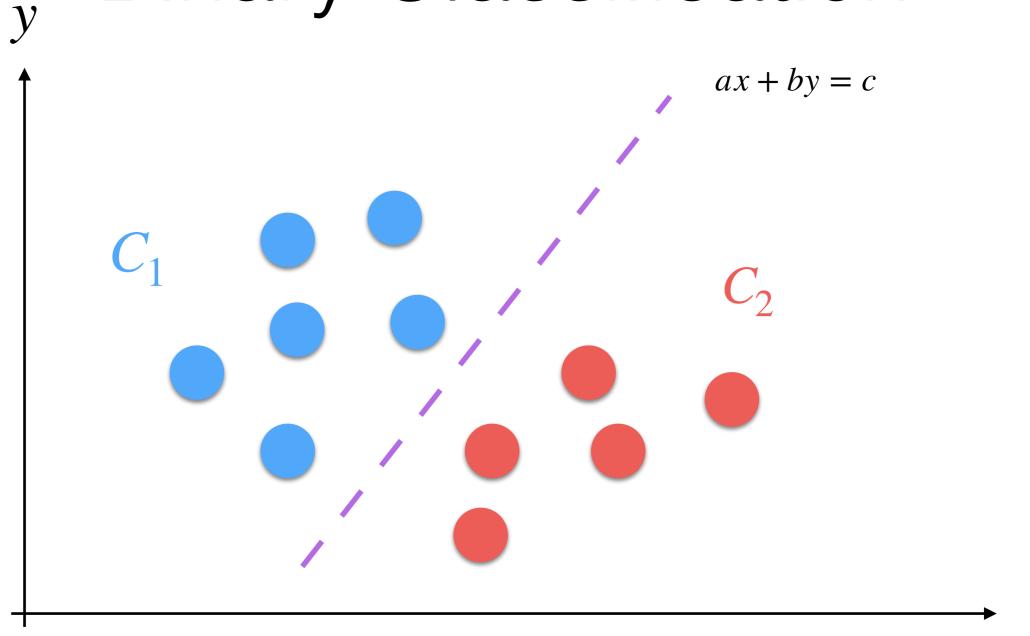
$$h: \mathbb{R}^n \to \{C_1, C_2\}$$



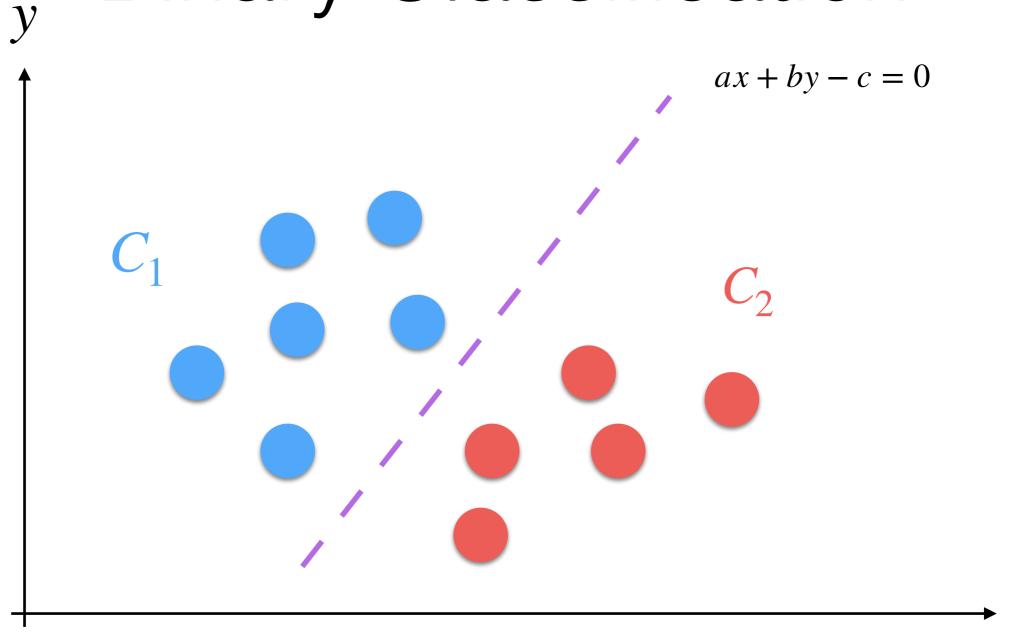
$$h: \mathbb{R}^2 \to \{0,1\}$$



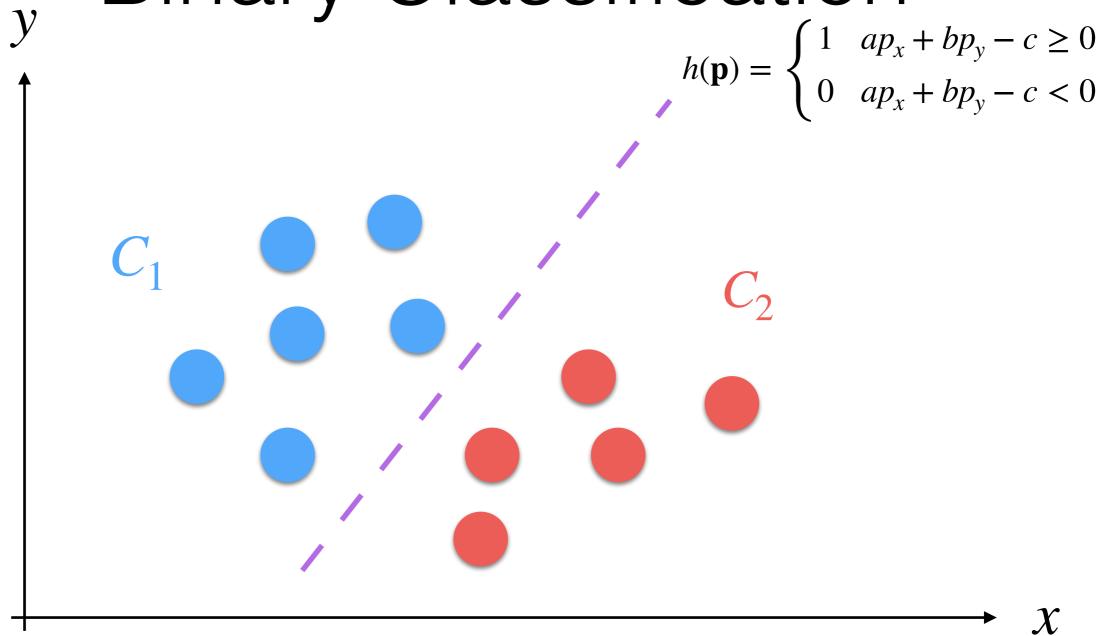
$$h: \mathbb{R}^2 \to \{0,1\}$$



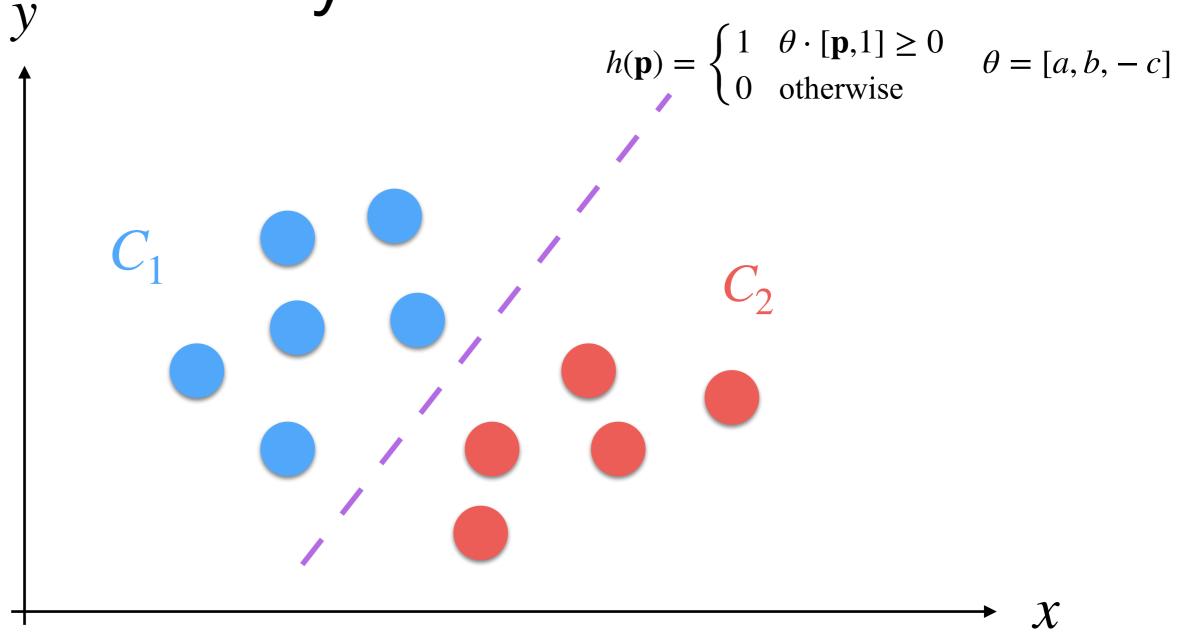
$$h: \mathbb{R}^2 \to \{0,1\}$$



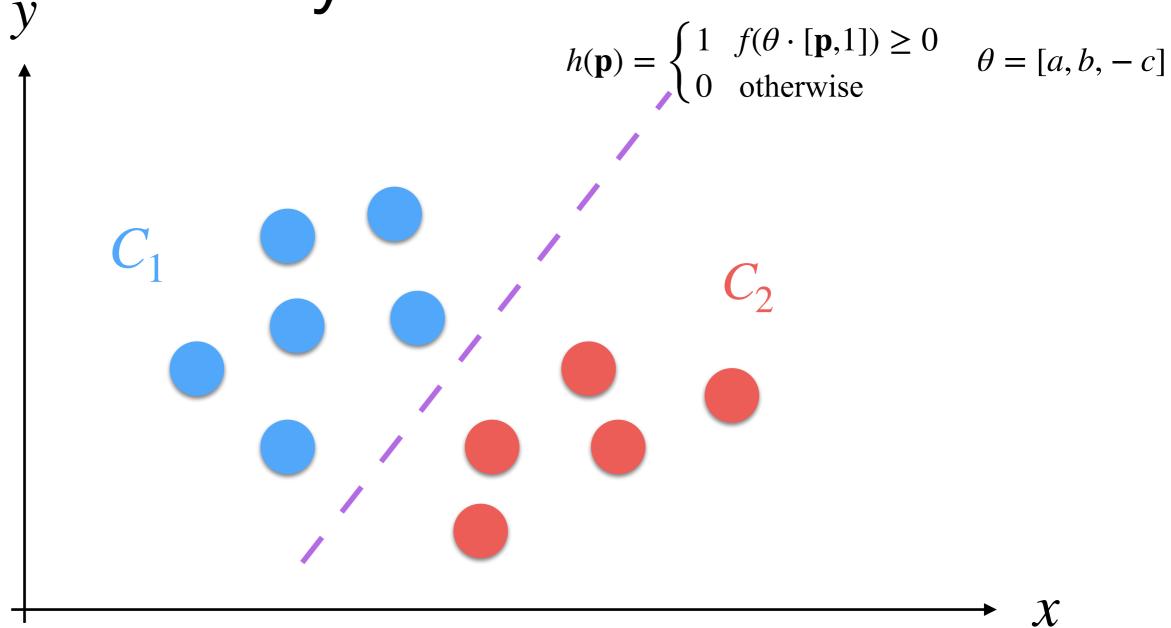
$$h: \mathbb{R}^2 \to \{0,1\}$$



$$h: \mathbb{R}^2 \to \{0,1\}$$



$$h: \mathbb{R}^2 \to \{0,1\}$$



$$h: \mathbb{R}^2 \to \{0,1\}$$

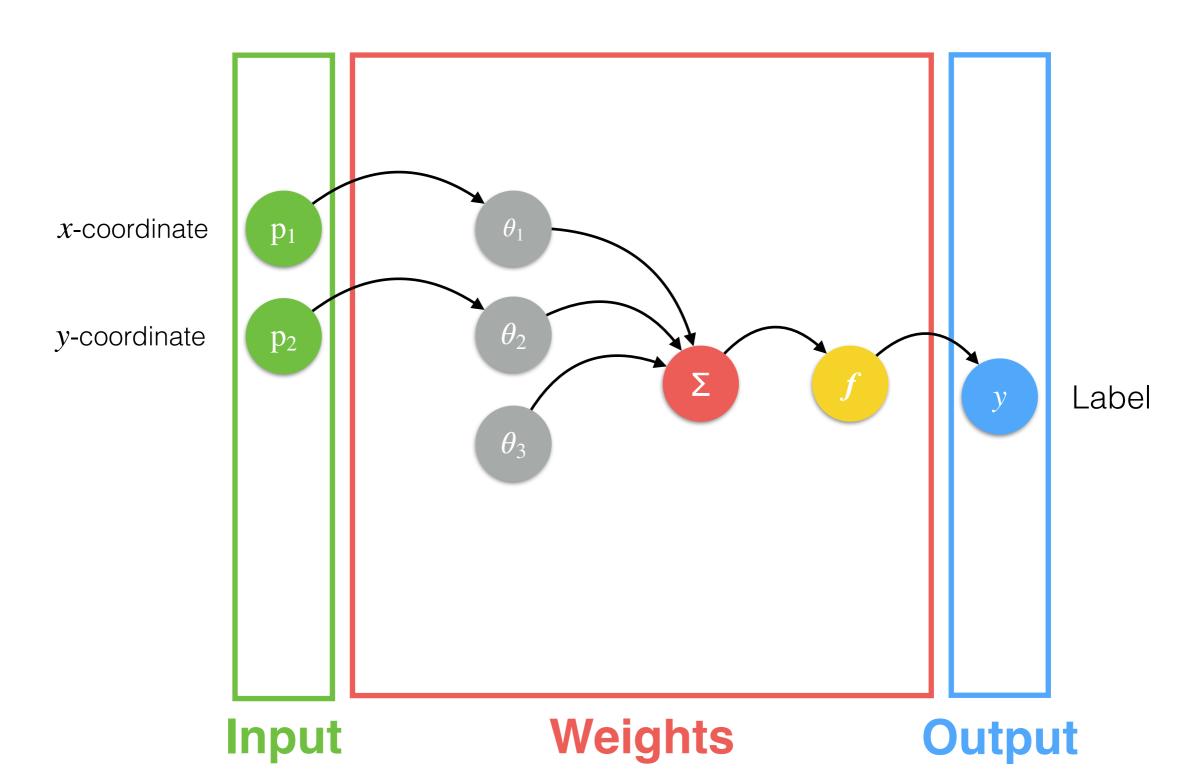
 $f^{(z)} = \frac{1}{1 + e^{-z}}$ Machine Learning: The Activation Function

- To add non-linear effect to h, we apply a non-linear function f that is called the activation function.
- It can be defined in many ways. For example:

$$f(z) = \frac{1}{1 + e^{-z}}$$
 $f(z) = \max(0,z)$

 This is because the result has to be either belonging or not to a class; i.e., our area of interest.

Neural Networks: Our Model *h*



Machine Learning: Neural Networks

- The idea is to try to "mimic the neurons" in our brains:
 - A neuron receives multiple inputs or stimuli, that we can represent as a vector p.
 - Depending on previous knowledge, θ , a neuron can react to \mathbf{p} , and if the stimulus is strong enough there is an activation
 - The reaction to stimuli is typically modeled as a dot product between \mathbf{p} and θ . Plus the activation function to handle non-linearities.

Neural Networks: Supervised Learning

- We need to collect m couples (\mathbf{x}^i, y^i) .
- We need to minimize an error function *J*:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h(\mathbf{x}^{i}, \theta) - y^{i} \right)^{2}$$

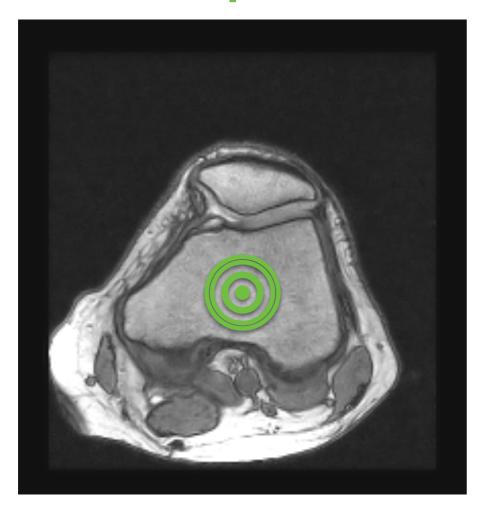
- How do we minimize it?
 - Gradient descent
 - Starting solution for θ ?
 - Random values in [-1,1].

A Segmentation Example

Neural Networks: Dataset Set (1)

Input

Output



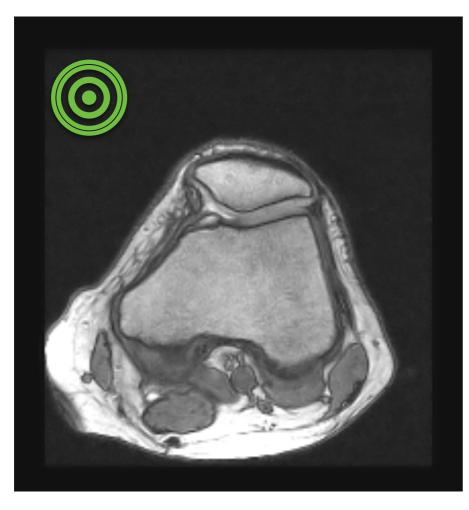
$$\mathbf{p} = \{100, 100, 0.67\}$$

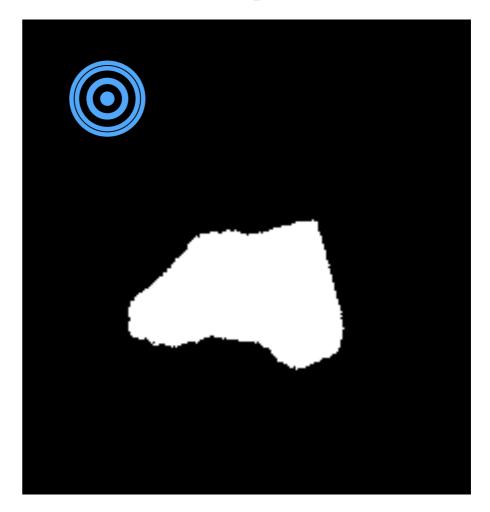
$$y = 1$$

Neural Networks: Dataset Set (2)

Input

Output





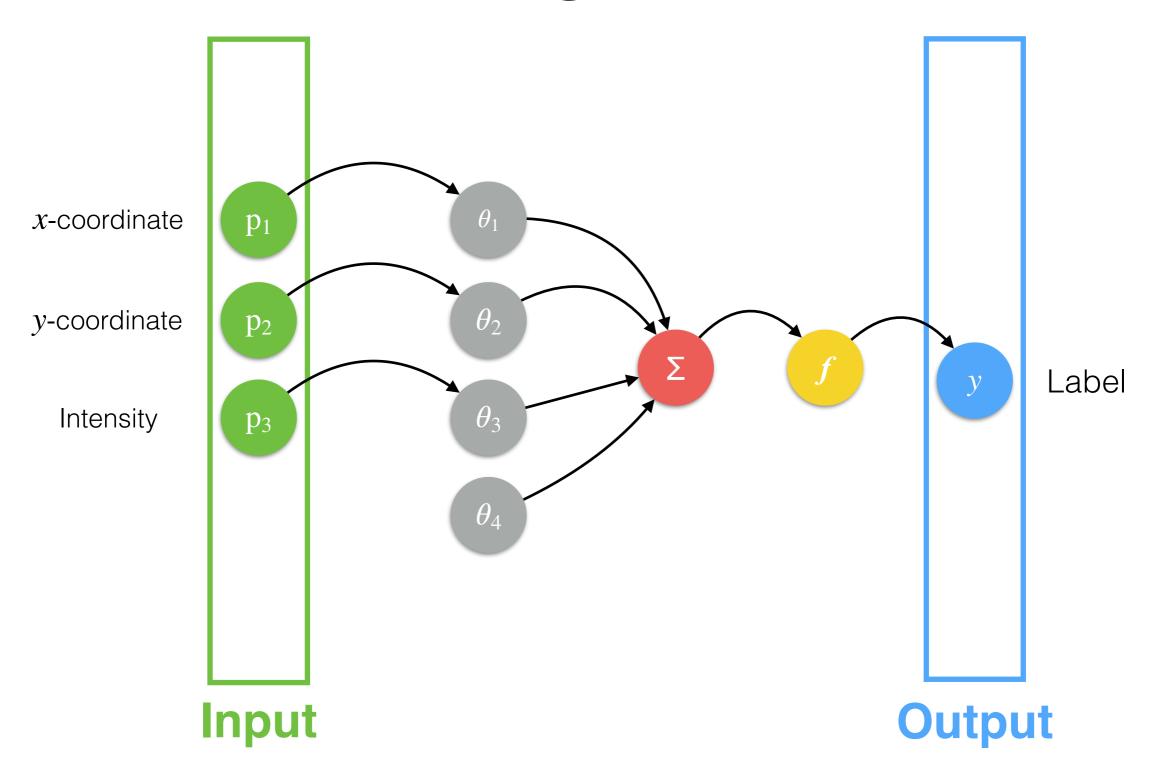
$$\mathbf{p} = \{20, 20, 0.0\}$$

$$y = 0$$

Machine Learning: Dataset Set (3)

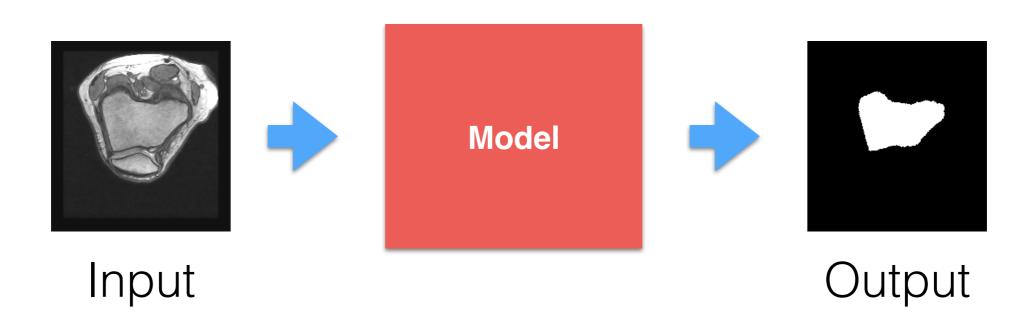
- The dataset needs to be balanced:
 - The same amount of examples for both classes:
 ROI and background.
- The dataset needs to be divided into:
 - Training set —> samples to train the network
 - Evaluation set —> samples to check if the model is not overfitting or under fitting.

Neural Networks: Training Phase

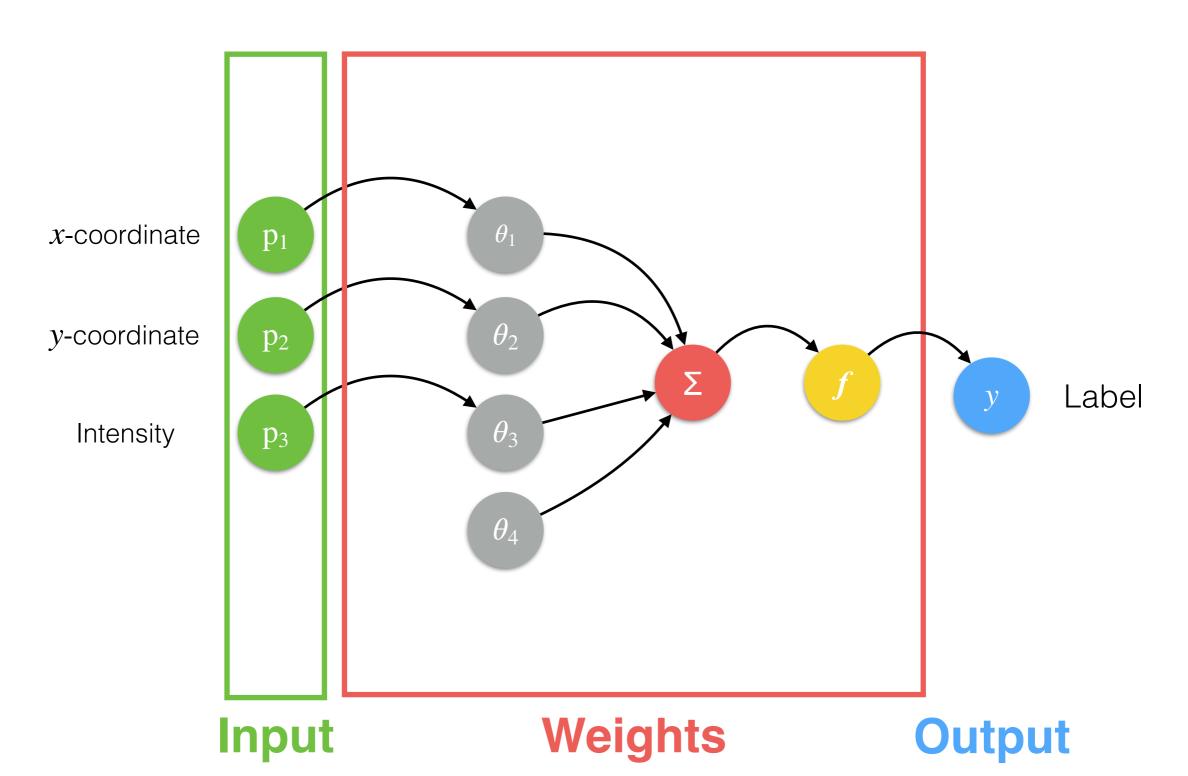


Machine Learning: Prediction Phase

 After learning, we can use our network on new images to segment the image:



Neural Networks: Prediction Phase



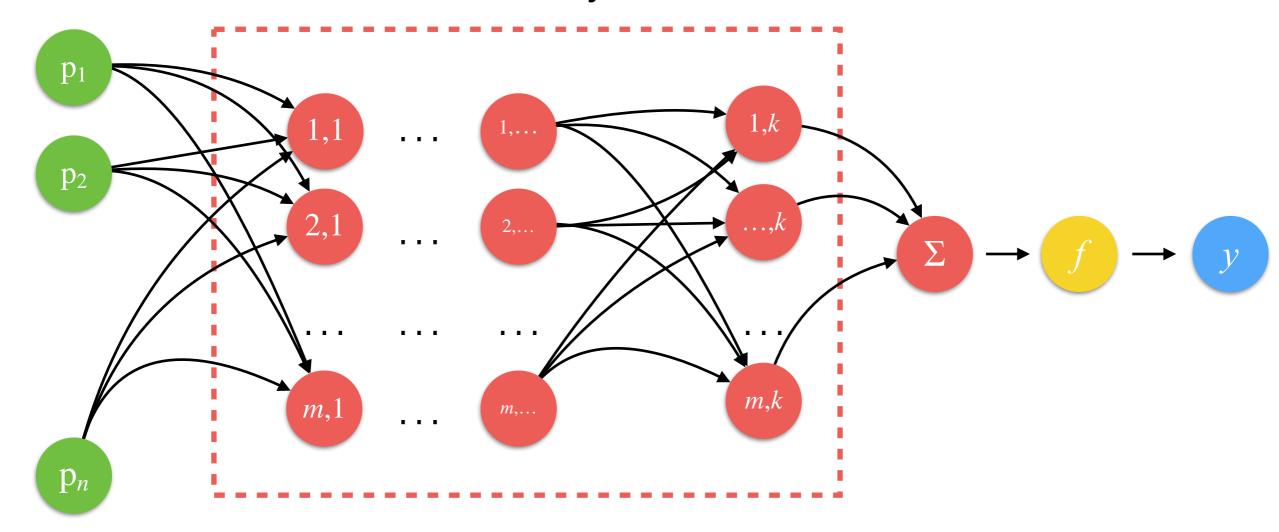
More Complex Examples

More Complex Nets

- To achieve high-quality results, a network needs to "see" and "understand" more data at the same time; not only a couple such as the pixel coordinates and its pixel intensity and its classification as in the previous example!
- We need to use more pixels/voxels at the same time:
 - How?
 - Adding and mixing more neurons

Neural Networks: Bigger Networks

Hidden Layers



$$y = h^i(\mathbf{p}, \theta)$$

Neural Networks

- Advantages:
 - fully automatic!
 - computationally fast to evaluate (not the learning though); especially using GPUs.
- Disadvantages:
 - they required many many examples:
 - more than 1,000 to get some decent results;
 - better >10,000 training example!

that's all folks!