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2D/3D Segmentation



Segmentation

Segmentation is a process after which we obtain a
mask of a structure in an/a image/volume.

A mask is binary image/volume; i.e., its values can
be only either O or 1.

1 —> the pixel/voxel belongs to a structure of our
INnterest

0 —> the pixel/voxel does not!
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Segmentation

« Obviously, if we need to segment k objects in the
image/volume we have two ways to proceed:

1. We create k-masks, one for each object.

2. We create an mask In which
each object as label a number in [1,k].
Background is always 0!



3D Segmentation

* There are typically two approaches:
e 2D segmentation for each slice

e 2D segmentation of a slice and propagation of
the segmentation



Manual Segmentation



Manual Segmentation:
Painting Approacnh

* We manually paint the mask using a GUI.

* Obviously, the segmentation mask is created in a
different layer and not on the input image!
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Manual Segmentation:
Boundary Definition

 We manually define the mask boundary using a
GUI (e.g., GIMP, Adobe PhotoShop, etc.).

* We either define it using polygons or free-hand.

 \We can use image gradients and Laplacian to stick
polygons to our object of interest.
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Thresholding



Thresholding Example

* \We assume that each object in an image/volume has
a unigue intensity value

Obiject

Skull

Grey Matter

Veins




Thresholding

e This means:

1 itdd(, ), 1) <t

0 otherwise

M@, j) = {

e \We can have different distance functions:

dx,y) = |x—Yy]
d(x,y) = (x — y)*
—v)2\?
dx,y,0) = exp( (xzo_z) )
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Thresholding:
Connected Components

* After segmentation we may
end up with different pieces
that are not connected.




Thresholding:
Connected Components

* A two-pass algorithm that works in scan order (from
left to right and from top to bottom).

 1-Pass: it creates labels to groups of pixel.

e 2-Pass: it merges groups that are connected.



Thresholding:
Connected Components
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FIrst Pass



Thresholding:
Connected Components

... .. We check up and
left neighbors to
see if they
HEEREREN




Thresholding:
Connected Components

... .. If not we create a
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Thresholding:
Connected Components
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Thresholding:
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Second Pass



Thresholding:
Connected Components
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Thresholding:
Connected Components
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Connected Components

1

HE B HE
- | |
.
- AEEEEEER




Thresholding:
Connected Components

1

HE BH EE
- | |
.
- AEEEEEER




Thresholding:
Connected Components
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Thresholding:
Connected Components
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Thresholding:
Connected Components Example




Thresholding

|t works if each object has a unique intensity value/
color; this Is a very limiting constraint!

* However, it could be used as a starting point for
other algorithms.

e [he user needs to set the threshold!

* The I; value for each class may be interred by
analyzing the histogram of the input image.

e |ts 3D extension is trivial!



k-Means



k-Means

« k-means is a clustering algorithm for clustering n-D
vectors/points in an n-D space:

o A pixel with position (x, y) and intensity [ is a 3D
vector: < x,y,[ >

« A voxel with position (x, y, z) and intensity [ is a 4D
vector: < Xx,Vy,z,[>

« Let's assume we have k objects in the image.

e SO we have to determine



k-Means: How it Works
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Q o Let's assume k
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k-Means: lteration

« We now assign a
sample to a cluster
if the distance (L1,
L2, etc.), between
a centroid Is the
minimum.




k-Means: lteration




k-Means: lteration

« We repeat the
process until
convergence (no
more changes) or
after m iterations.




k-Means: lteration

We repeat the

O ,
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k-Means Example




k-Means: Outliers

Cluster A Cluster B



k-Means: Oscillation
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k-Means: Advantages

 The method is fully automatic
e This works for 2D and 3D volumes

* [his can “understand” neighbors in an implicit way



k-Means: Disadvantages

* We need to know how many objects (including the
background) are in the image:

 We may run k-means multiple times until a certain criterion
iIs met (e.g., reaching the 80% of percentage of explained
variance)
e Quitliers:
e better initialization (sampling)

* The method converge

e Wwe need to set a number of iterations



Region Growing



Region Growing

* This algorithms expands a painted initial mask until
it reaches strong edges

e Therefore, we need to compute edges first!



Region Growing
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Region Growing

e |tis straightforward to extend to 3D!
e This algorithm depends on:

* The threshold of edge detection
e |t may be slow:

e From an initial seed, the growing region needs to reach
the farthest edge pixel/voxel.

« Computational complexity is a function of the area/
volume of the object we want to segment.



Region Growing:
Epic Fall




Region Growing:
Epic Fall




Region Growing:
Epic Fall




Active Contour Model
aka Snakes



Snakes

A snake Is a parametric curve:

v(?) = [x(2); y(©)] t € [0,1]

e Typically, it is a spline (original paper), but for sake
of simplicity let's assume a piecewise linear curve.



Snakes

 [he snake curve is defined by a set of control point
that is defined as:

C = {Vl-‘i - [l,n]} VvV, = [xiayi]
Vi+1

Vi() Q

Vi-1 ® O 5



Snakes

» Afirst step, we draw
a snake close to the
boundary of the
object we want to
segment.




Snakes

 Then, we deform its
control points in order
to move them
towards the object’s
boundary.
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Snakes

 Then, we deform its
control points in order
to move them
towards the object’s
boundary.




Snakes

 How do we deform the control points”?

* An energy function E is associated with the curve.

 We deform control points by minimizing E; i.e., we
solve an optimization problem.



Snakes

 How do we define the energy function?

* The energy of a snake has three components:

E = Einternal t Eexternal T Econstraint



Snakes: Internal Energy

* This energy represents the internal energy of the
cure due to bending. It is defined per point as

Einternal (V(1)) = l(a(t) dtlfft) +60) dd‘;it) )

* [he total energy is defined as

1
Einterna,l :/ Einternal(v(t))dt
0
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Snakes: Internal Energy

* The first term is an elastic energy:

®
dv(t)
dt

~ Vitl — Vy

» The second term is a bending energy: ®

d*v(t)
d?t

R Vipl — 2V + Vi
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Snakes: Internal Energy

* The first term is an elastic energy:

®
d\;it) ~ Vitl — Vy
®
 [he second term is a bending energy: ®
d*v(t) |

oy S Vil ~ 2vi + Vi1



Snakes: External Energy

* This energy determines how well the snake matches
with the image locally!

e How can we achieve this?

* GGradients magnitude




Snakes: External Energy

e |tis defined per point as

* [he total energy is defined as

1
Eexternal :/ Eexternal(v(t))dt
0



Snakes: Constraint Energy

* This energy is meant for interactive systems.

* The user interactively monitors the minimization, and

she/he can push/pull vertices using the mouse cursor’s
position:

1

. Repulsion forces or “vulcano™: —
r

. Spring forces: —k||x; — X, ||



Snakes: Constraint Energy
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Snakes: Constraint Energy




How do we solve E?

L = Eintemal T Eextemal T Econstraint



Gradient Descent

It is a first-order iterative optimization method:

. . 0 .
xtl = x! — g— f(X’
= )

We need to start with a g

't will find a | @
fhas to be difterentiable.

x0 IS a "good” guess. X
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Gradient Descent
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Snakes: Gradient Descent

e \What is our x%in the snake minimization?

 We need to click a few points in the image around
our object of interest!



Snakes An Example




Snakes

e Extension to the 3D case:

* Instead of a curve we have a parametric surface; e.g., we
can start using a sphere.

* Disadvantages:
 We may have an over-smooth boundaries when using splines

* How many n control points? O

e Not trivial to avoid self-intersection! O




Stroke-Based



Stroke-Based

e Stroke-based algorithms are based on the idea to
define with a stroke what is foreground (i.e., our
object of interest) and what is background.

* [hese strokes are roughly painted.

* However, they have to be placed in areas where
we are 100% sure how to classity the image.



Stroke-Based
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Stroke-Based: Grow-Cut

e (Grow-cut is a stroke-based method.

* The idea Is to propagate the label of the current
pixels if its neighbors are “similar”.



Stroke-Based: Grow-Cut

* [or each pixel, we have:
<l;;0;;C; >
 |nitialization for pixels by a stroke (s):
<[=0;0.=0;C, =I(x;,y,) > V.s(x;,y)=0
* |nitialization for pixels by a stroke (s):

< li — S(xia )’i); ‘91' = 1; Ci = I(xia yi) > vis(xia )’i) * 0



Stroke-Based: Grow-Cut

* [or each pixel, we have:
< 1;10;:C; >
 |nitialization for pixels by a stroke (s):
<[=0;0.=0;C, =I(x;,y,) > V.s(x;,y)=0
* |nitialization for pixels by a stroke (s):

< li — S(xia )’i); ‘91' = 1; Ci = I(Xia yi) > vis(xia )’i) * 0



Stroke-Based:
A Single Grow-Cut Pass

* [For each pixel I'in the image:
 \We copy the previous status:
<[l s =< Lo I >
* For each neighbor j of i:

. if g(ICf = C!]I,)8! > 0! then

t+1 _ gt
[ =t

0; = 9(|C} = Cjll2) - 6]



Stroke-Based:
A Single Grow-Cut Pass

* Note that g is a decreasing function. For example:

o(x) = {l—x ifx <1

0 otherwise

A

>

e This means that if the two pixels, which we compare, are close Iin
intensity/color values they should have the same label /.

e They should also share the same label the neighbors have a higher
strength!



Stroke-Based:
Example 1 - Switching Labels

J

g(IC! = I8! > 6!
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J

g([11.0 — 1.0[|)6! > 6
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Stroke-Based:
Example 1 - Switching Labels

J

(1.0-6) > 6;
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Stroke-Based:
Example 1 - Switching Labels

J
4 !
li 6’]? is greater than
6}?, we definitely

switch label.




Stroke-Based:
Example 2- Keeping Labels

J

g(IC! = I8! > 6!



Stroke-Based:
Example 2- Keeping Labels

J

g(111.0 = 0.25]1,)6! > 6



Stroke-Based:
Example 2- Keeping Labels

J

8(110.75]1,)60; > 6;



Stroke-Based:
Example 2- Keeping Labels

J

(0.25 - ) > 6]



Stroke-Based:
Example 2- Keeping Labels

J
. n . 025-691> 4
If 6’; intensity is greatly
reduced here; we may

not switch label. Note

we still need to check
the inequality!!




Stroke-Based: Grow-Cut

» Stopping criteria:

* [his process is iterated until either convergence;
l.e., no changes in the labels!

* [abels have been propagated for enough
iterations; e.q., the number of pixels of the
diagonal. This trick is helpful for reducing the
total computational time.




Stroke-Based: Grow-Cut



Stroke-Based: Grow-Cut
Example

lteration = 0O



Stroke-Based: Grow-Cut
Example

lteration = 10



Stroke-Based: Grow-Cut
Example
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Stroke-Based: Grow-Cut
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Stroke-Based: Grow-Cut
Example
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Stroke-Based: Grow-Cut
Example
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Stroke-Based: Grow-Cut
Example
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Stroke-Based: Grow-Cut
Example

lteration = 200



Stroke-Based: Grow-Cut
Example

lteration = 318



Stroke-Based: Grow-Cut

* This algorithm can be extended to 3D in a
straightforward way, and it can be parallelized on
the GPU.

* Disadvantages:

* |tis computationally slow!



that’s all folks!



