3D from Volume:
Part ||

Francesco Banterle, Ph.D.
francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it
mailto:francesco.banterle@isti.cnr.it

I'he Processing Pipeline

/1

5 » Enhancement || » Segmentation |

4

)

RAW Volume

I'he Processing Pipeline

Points Mesh
Extractions Extraction

3D Mesh

I'he Processing Pipeline

/1

5 » Enhancement || » Segmentation ||

4

)

RAW Volume

2D/3D Segmentation

Segmentation

Segmentation is a process after which we obtain a
mask of a structure in an/a image/volume.

A mask is binary image/volume; i.e., its values can
be only either O or 1.

1 —> the pixel/voxel belongs to a structure of our
INnterest

0 —> the pixel/voxel does not!

Segmentation Example

Segmentation Example

Segmentation Example

Segmentation Example

Segmentation

« Obviously, if we need to segment k objects in the
image/volume we have two ways to proceed:

1. We create k-masks, one for each object.

2. We create an mask In which
each object as label a number in [1,k].
Background is always 0!

3D Segmentation

* There are typically two approaches:
e 2D segmentation for each slice

e 2D segmentation of a slice and propagation of
the segmentation

Manual Segmentation

Manual Segmentation:
Painting Approacnh

* We manually paint the mask using a GUI.

* Obviously, the segmentation mask is created in a
different layer and not on the input image!

-100 -75 -50 -25 0
I I N N N I T I A A I A I I I

25
P I T T

50
I I T B

75
I I I I

100
P T

125
1l)yl

150
P

175
PR

200
P

Manual Segmentat
Painting Approac

¥4 Tool Options =
Pencil
Mode: | Normal =
|Opaa1y 1000

Brush
‘ ®_ | [2 Hardness 050 4
|Size 2000 3| &
|Aspec1 Ratio 000 7| &

A

|Angle 000 5| 3
eo | Dynamics
L)

Pressure Opacit, 7
‘ ‘ ressure Opacity [#
> Dynamics Options

Apply Jitter
| Smooth stroke
| Incremental
&} .
W = Layers | O)
Mode: | Normal =
|0pamy 1000

-100 -75 -50 -25 0
I I N N N I T I A A I A I I I

25
P I T T

50
I I T B

75
I I I I

100
P T

125
1l)yl

150
P

175
PR

200
P

Manual Segmentat
Painting Approac

¥4 Tool Options =
Pencil
Mode: | Normal :
Opacity 100.0
v

Brush
‘ ®_ | [2 Hardness 050 4
|Size 2000 3| &
|Aspec1 Ratio 000 7| &
|Angle 0.00 : S
ee | Dynamics
L)

Pressure Opacit, 7
‘ ‘ ressure Opacity [#
> Dynamics Options

Apply Jitter
| Smooth stroke
| Incremental
&} .
W = Layers | O)
Mode: | Normal :
[Eas ag al

Manual Segmentation:
Boundary Definition

 We manually define the mask boundary using a
GUI (e.g., GIMP, Adobe PhotoShop, etc.).

* We either define it using polygons or free-hand.

 \We can use image gradients and Laplacian to stick
polygons to our object of interest.

anual Segmentation:

Boundary Defin

*[knee1] (imported)-1.0 (RGB color, 1 layer) 220x233 - GIMP

ition

100 75 150 25 0 125 I50 75 1100 I125 I150 1175 200
IS I O N Y S O S O U O N O T O O N O O Y 0 Y O O Y O ., o I A ' 78| Tool Options
Free Select
moce: i Fg I0: L]
(M Antialiasing
| Feather edges
=

r
& K
@
_ /
o L

=
-

Layers =
Mede: | Normal :
|Opac:ty 1000

Lock: "' #

100 75 150 25 0 125 I50 I75 1100 I125 1150 1175 200
IS I O N Y S O S O U O N O T O O N O O Y 0 Y O O Y O ., o I A '

Manual Segmentation:

Boundary Defin

*[knee1] (imported)-1.0 (RGB color, 1 layer) 220x233 - GIMP

r
& K
@
_ /
o L

¥&| Tool Options

Free Select

ition

Mode: 5 B ;)

(M Antialiasing

| Feather edges

=
-

Layers = P
Mede: | Normal :
|Opac:ty 1000
Lock: "' #

/D4
@

Thresholding

Thresholding Example

* \We assume that each object in an image/volume has
a unigue intensity value

Obiject

Skull

Grey Matter

Veins

Thresholding

e This means:

1 itdd(,), 1) <t

0 otherwise

M@, j) = {

e \We can have different distance functions:

dx,y) = |x—Yy]
d(x,y) = (x — y)*
—v)2\?
dx,y,0) = exp((xzo_z))

Thresholding

e This means:

1 ifd{(, j)L) <t

0 otherwise

M@, j) = {

e \We can have different distance functions:

dx,y) = |x—Yy]
d(x,y) = (x — y)*
—v)2\?
dx,y,0) = exp((xzo_i))

Thresholding

e This means:

1 ifd(,)),L) <|t

0 otherwise

M@, j) = {

e \We can have different distance functions:

dx,y) = |x—Yy]
d(x,y) = (x — y)*
—v)2\?
dx,y,0) = exp((xzo_i))

Thresholding

Number of Pixels
w
o
o
o
[

0 0.2 0.4 0.6 0.8 1
Intensity value

Thresholding

Number of Pixels
W
o
o
o
[

I
0 02 | o4)

Intensity value

Thresholding Example

Thresholding Example

Thresholding Example

Thresholding:
Connected Components

* After segmentation we may
end up with different pieces
that are not connected.

Thresholding:
Connected Components

* A two-pass algorithm that works in scan order (from
left to right and from top to bottom).

 1-Pass: it creates labels to groups of pixel.

e 2-Pass: it merges groups that are connected.

Thresholding:
Connected Components

=---———'
E— — 1 | 1 [
—t 1 | | [
I N I s
— — 1
LT
— 1 | | 1
L a7
E »

Scan order

FIrst Pass

Thresholding:
Connected Components

... .. We check up and
left neighbors to
see if they
HEEREREN

Thresholding:
Connected Components

... .. If not we create a

Thresholding:
Connected Components

RN BN
right, and we

repeat the

HEEEEE

Thresholding:
Connected Components

e BN e

RN BN
left neighbor has a

L L | .
it

Thresholding:
Connected Components

N BN BN

RN BN
left neighbor has a

L L | .
it

Thresholding:
Connected Components

Thresholding:
Connected Components

HE BH EE

Thresholding:
Connected Components

Thresholding:
Connected Components

.

Thresholding:
Connected Components

Thresholding:
Connected Components

EEE = EN

Thresholding:
Connected Components

.
5 | - In this case, we
... N .. choose the lowest
label, and we store
o e
EE BH BN

Thresholding:
Connected Components

EEE HE

Thresholding:
Connected Components

Thresholding:
Connected Components

aHE_ = NN

Thresholding:
Connected Components

Thresholding:
Connected Components

HE B NN

Thresholding:
Connected Components

Thresholding:
Connected Components

EEEEEEEE
HE BH EE
HE |
HEEEEEEE
HE B EE
EEEEEEEE

Second Pass

Thresholding:
Connected Components

B | N
We go through all
‘NN BN
pixel we set the
) AENEENEN -
equivalent.
- AN

Thresholding:
Connected Components

1

HE B EE
- | |
.
- AEEEEEER

Thresholding:
Connected Components

1

HE B HE
- | |
.
- AEEEEEER

Thresholding:
Connected Components

1

HE BH EE
- | |
.
- AEEEEEER

Thresholding:
Connected Components

- AEEEEEEE
BEE B BB
' BEE Bl
1
. NN
“==ll=l==

— 2

Thresholding:
Connected Components

Al N N
- AENEEEER
Al 1 BN

Thresholding:
Connected Components Example

Thresholding

|t works if each object has a unique intensity value/
color; this Is a very limiting constraint!

* However, it could be used as a starting point for
other algorithms.

e [he user needs to set the threshold!

* The I; value for each class may be interred by
analyzing the histogram of the input image.

e |ts 3D extension is trivial!

k-Means

k-Means

« k-means is a clustering algorithm for clustering n-D
vectors/points in an n-D space:

o A pixel with position (x, y) and intensity [is a 3D
vector: < x,y,[>

« A voxel with position (x, y, z) and intensity [is a 4D
vector: < Xx,Vy,z,[>

« Let's assume we have k objects in the image.

e SO we have to determine

k-Means: How it Works

O O
O O
O
O O OO A 2D exampl
O
O

k-Means: Initialization

Q o Let's assume k

O Q « We make arando
uess on
-centro
stars

k-Means: Initialization

Q o Let's assume k

O Q « We make arando
uess on
-centro
stars

k-Means: lteration

« We now assign a
sample to a cluster
if the distance (L1,
L2, etc.), between
a centroid Is the
minimum.

k-Means: lteration

k-Means: lteration

« We repeat the
process until
convergence (no
more changes) or
after m iterations.

k-Means: lteration

We repeat the

O ,
‘ ‘ process until
convergence (no

more changes) or

after m iterations.

k-Means Example

k-Means: Outliers

Cluster A Cluster B

k-Means: Oscillation

© @
S
@ O

Even lteration

k-Means: Oscillation
© @
e
OXN O

Odd lteration

k-Means: Oscillation

© @
S
@ O

Even lteration

k-Means: Oscillation
© @
e
OXN O

Odd lteration

k-Means: Advantages

 The method is fully automatic
e This works for 2D and 3D volumes

* [his can “understand” neighbors in an implicit way

k-Means: Disadvantages

* We need to know how many objects (including the
background) are in the image:

 We may run k-means multiple times until a certain criterion
iIs met (e.g., reaching the 80% of percentage of explained
variance)
e Quitliers:
e better initialization (sampling)

* The method converge

e Wwe need to set a number of iterations

Region Growing

Region Growing

* This algorithms expands a painted initial mask until
it reaches strong edges

e Therefore, we need to compute edges first!

Region Growing

Region Growing

Seed

Region Growing

Region Growing

after a while. ..

Region Growing

Region Growing

A\ 4

Ah .
N
-

/[
N

A

B
/

“
_
N

Region Growing

e |tis straightforward to extend to 3D!
e This algorithm depends on:

* The threshold of edge detection
e |t may be slow:

e From an initial seed, the growing region needs to reach
the farthest edge pixel/voxel.

« Computational complexity is a function of the area/
volume of the object we want to segment.

Region Growing:
Epic Fall

Region Growing:
Epic Fall

Region Growing:
Epic Fall

Active Contour Model
aka Snakes

Snakes

A snake Is a parametric curve:

v(?) = [x(2); y(©)] t € [0,1]

e Typically, it is a spline (original paper), but for sake
of simplicity let's assume a piecewise linear curve.

Snakes

 [he snake curve is defined by a set of control point
that is defined as:

C = {Vl-‘i - [l,n]} VvV, = [xiayi]
Vi+1

Vi() Q

Vi-1 ® O 5

Snakes

» Afirst step, we draw
a snake close to the
boundary of the
object we want to
segment.

Snakes

 Then, we deform its
control points in order
to move them
towards the object’s
boundary.

Snakes

 Then, we deform its
control points in order
to move them
towards the object’s
boundary.

Snakes

 Then, we deform its
control points in order
to move them
towards the object’s
boundary.

Snakes

 How do we deform the control points”?

* An energy function E is associated with the curve.

 We deform control points by minimizing E; i.e., we
solve an optimization problem.

Snakes

 How do we define the energy function?

* The energy of a snake has three components:

E = Einternal t Eexternal T Econstraint

Snakes: Internal Energy

* This energy represents the internal energy of the
cure due to bending. It is defined per point as

Einternal (V(1)) = l(a(t) dtlfft) +60) dd‘;it))

* [he total energy is defined as

1
Einterna,l :/ Einternal(v(t))dt
0

Snakes: Internal Energy

* This energy represents the internal energy of the
cure due to bending. It is defined per point as

Einternal (V(1)) = l(a(t) dtlfft) T dd‘;it))

* [he total energy is defined as

1
Einterna,l :/ Einternal(v(t))dt
0

Snakes: Internal Energy

* This energy represents the internal energy of the
cure due to bending. It is defined per point as

Einternal (V(1)) = l(a(t) dtlfft) TIP®) dd‘;it))

* [he total energy is defined as

1
Einterna,l :/ Einternal(v(t))dt
0

Snakes: Internal Energy

* The first term is an elastic energy:

®
dv(t)
dt

~ Vitl — Vy

» The second term is a bending energy: ®

d*v(t)
d?t

R Vipl — 2V + Vi

Snakes: Internal Energy

* The first term is an elastic energy:

®
dv(t)
dt

~ Vitl — Vy

 [he second term is a bending energy:

d*v(t)
d?t

R Vipl — 2V + Vi

Snakes: Internal Energy

* The first term is an elastic energy:

®
d\;it) ~ Vitl — Vy
®
 [he second term is a bending energy: ®
d*v(t) |

oy S Vil ~ 2vi + Vi1

Snakes: External Energy

* This energy determines how well the snake matches
with the image locally!

e How can we achieve this?

* GGradients magnitude

Snakes: External Energy

e |tis defined per point as

* [he total energy is defined as

1
Eexternal :/ Eexternal(v(t))dt
0

Snakes: Constraint Energy

* This energy is meant for interactive systems.

* The user interactively monitors the minimization, and

she/he can push/pull vertices using the mouse cursor’s
position:

1

. Repulsion forces or “vulcano™: —
r

. Spring forces: —k||x; — X, ||

Snakes: Constraint Energy

Snakes: Constraint Energy

Snakes: Constraint Energy

Snakes: Constraint Energy

Snakes: Constraint Energy

How do we solve E?

L = Eintemal T Eextemal T Econstraint

Gradient Descent

It is a first-order iterative optimization method:

. . 0 .
xtl = x! — g— f(X’
=)

We need to start with a g

't will find a | @
fhas to be difterentiable.

x0 IS a "good” guess. X

Gradient Descent

It is a first-order iterative optimization method:

. . 0 .
xtl = x! — g— f(X’
=)

We need to start with a g

't will find a | @
fhas to be difterentiable.

x0 IS a "good” guess. X

Gradient Descent

It is a first-order iterative optimization method:

. . 0 .
xtl = x! — g— f(X’
=)

We need to start with a g

't will find a | @
fhas to be difterentiable.

x0 IS a "good” guess. X

Gradient Descent

It is a first-order iterative optimization method:

. . 0 .
xtl = x! — g— f(X’
=)

We need to start with a g

't will find a | @
fhas to be difterentiable.

x0 IS a "good” guess. X

Gradient Descent

It is a first-order iterative optimization method:

. . 0 .
xtl = x! — g— f(X’
=)

We need to start with a g

't will find a | @
fhas to be difterentiable.

x0 IS a "good” guess. X

Gradient Descent

N S »

XO\—/\/
>

[
Gradient Descen

[
Gradient Descen

Nt
Gradient Desce

Nt
Gradient Desce

Gradient Descent

XW

Gradient Descent

W
/

Gradient Descent

W
/

Snakes: Gradient Descent

e \What is our x%in the snake minimization?

 We need to click a few points in the image around
our object of interest!

Snakes An Example

Snakes

e Extension to the 3D case:

* Instead of a curve we have a parametric surface; e.g., we
can start using a sphere.

* Disadvantages:
 We may have an over-smooth boundaries when using splines

* How many n control points? O

e Not trivial to avoid self-intersection! O

Stroke-Based

Stroke-Based

e Stroke-based algorithms are based on the idea to
define with a stroke what is foreground (i.e., our
object of interest) and what is background.

* [hese strokes are roughly painted.

* However, they have to be placed in areas where
we are 100% sure how to classity the image.

Stroke-Based

Stroke-Based

Stroke-Based

Stroke-Based: Grow-Cut

e (Grow-cut is a stroke-based method.

* The idea Is to propagate the label of the current
pixels if its neighbors are “similar”.

Stroke-Based: Grow-Cut

* [or each pixel, we have:
<l;;0;;C; >
 |nitialization for pixels by a stroke (s):
<[=0;0.=0;C, =I(x;,y,) > V.s(x;,y)=0
* |nitialization for pixels by a stroke (s):

< li — S(xia)’i); ‘91' = 1; Ci = I(xia yi) > vis(xia)’i) * 0

Stroke-Based: Grow-Cut

* [or each pixel, we have:
< 1;10;:C; >
 |nitialization for pixels by a stroke (s):
<[=0;0.=0;C, =I(x;,y,) > V.s(x;,y)=0
* |nitialization for pixels by a stroke (s):

< li — S(xia)’i); ‘91' = 1; Ci = I(Xia yi) > vis(xia)’i) * 0

Stroke-Based:
A Single Grow-Cut Pass

* [For each pixel I'in the image:
 \We copy the previous status:
<[l s =< Lo I >
* For each neighbor j of i:

. if g(ICf = C!]I,)8! > 0! then

t+1 _ gt
[=t

0; = 9(|C} = Cjll2) - 6]

Stroke-Based:
A Single Grow-Cut Pass

* Note that g is a decreasing function. For example:

o(x) = {l—x ifx <1

0 otherwise

A

>

e This means that if the two pixels, which we compare, are close Iin
intensity/color values they should have the same label /.

e They should also share the same label the neighbors have a higher
strength!

Stroke-Based:
Example 1 - Switching Labels

J

g(IC! = I8! > 6!

Stroke-Based:
Example 1 - Switching Labels

J

g([11.0 — 1.0[|)6! > 6

Stroke-Based:
Example 1 - Switching Labels

J

8(110.0[1)¢" > 6

Stroke-Based:
Example 1 - Switching Labels

J

(1.0-6) > 6;

Stroke-Based:
Example 1 - Switching Labels

J

t A
(9j>9i

Stroke-Based:
Example 1 - Switching Labels

J
4 !
li 6’]? is greater than
6}?, we definitely

switch label.

Stroke-Based:
Example 2- Keeping Labels

J

g(IC! = I8! > 6!

Stroke-Based:
Example 2- Keeping Labels

J

g(111.0 = 0.25]1,)6! > 6

Stroke-Based:
Example 2- Keeping Labels

J

8(110.75]1,)60; > 6;

Stroke-Based:
Example 2- Keeping Labels

J

(0.25 -) > 6]

Stroke-Based:
Example 2- Keeping Labels

J
. n . 025-691> 4
If 6’; intensity is greatly
reduced here; we may

not switch label. Note

we still need to check
the inequality!!

Stroke-Based: Grow-Cut

» Stopping criteria:

* [his process is iterated until either convergence;
l.e., no changes in the labels!

* [abels have been propagated for enough
iterations; e.q., the number of pixels of the
diagonal. This trick is helpful for reducing the
total computational time.

Stroke-Based: Grow-Cut

Stroke-Based: Grow-Cut
Example

lteration = 0O

Stroke-Based: Grow-Cut
Example

lteration = 10

Stroke-Based: Grow-Cut
Example

lteration = 20

Stroke-Based: Grow-Cut
Example

lteration = 30

Stroke-Based: Grow-Cut
Example

lteration = 40

Stroke-Based: Grow-Cut
Example

lteration = 50

Stroke-Based: Grow-Cut
Example

lteration = 100

Stroke-Based: Grow-Cut
Example

lteration = 200

Stroke-Based: Grow-Cut
Example

lteration = 318

Stroke-Based: Grow-Cut

* This algorithm can be extended to 3D in a
straightforward way, and it can be parallelized on
the GPU.

* Disadvantages:

* |tis computationally slow!

that’s all folks!

