
3D from Volume:
Part II

Francesco Banterle, Ph.D.
francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it
mailto:francesco.banterle@isti.cnr.it

The Processing Pipeline

Enhancement

RAW Volume

Segmentation

The Processing Pipeline

Mesh
Extraction

Points
Extractions

3D Mesh

The Processing Pipeline

Enhancement

RAW Volume

Segmentation

2D/3D Segmentation

Segmentation
• Segmentation is a process after which we obtain a

mask of a structure in an/a image/volume.

• A mask is binary image/volume; i.e., its values can
be only either 0 or 1.

• 1 —> the pixel/voxel belongs to a structure of our
interest

• 0 —> the pixel/voxel does not!

Segmentation Example

Segmentation Example

Segmentation Example

Segmentation Example

Segmentation

• Obviously, if we need to segment objects in the
image/volume we have two ways to proceed:

1. We create -masks, one for each object.

2. We create an unsigned integer mask in which
each object as label a number in .
Background is always !

k

k

[1,k]
0

3D Segmentation

• There are typically two approaches:

• 2D segmentation for each slice

• 2D segmentation of a slice and propagation of
the segmentation

Manual Segmentation

Manual Segmentation:
Painting Approach

• We manually paint the mask using a GUI.

• Obviously, the segmentation mask is created in a
different layer and not on the input image!

Manual Segmentation:
Painting Approach

Manual Segmentation:
Painting Approach

Manual Segmentation:
Boundary Definition

• We manually define the mask boundary using a
GUI (e.g., GIMP, Adobe PhotoShop, etc.).

• We either define it using polygons or free-hand.

• We can use image gradients and Laplacian to stick
polygons to our object of interest.

Manual Segmentation:
Boundary Definition

Manual Segmentation:
Boundary Definition

Thresholding

• We assume that each object in an image/volume has
a unique intensity value

•

Thresholding Example

Object Value

Skull 255

Grey Matter 153

Veins 77

• This means:

• We can have different distance functions:

M(i, j) = {1 if d(I(i, j), It) < t
0 otherwise

d(x, y) = |x − y |

d(x, y) = (x − y)2

d(x, y, σ) = exp(−
(x − y)2

2σ2)
2

Thresholding

• This means:

• We can have different distance functions:

M(i, j) = {1 if d(I(i, j), It) < t
0 otherwise

d(x, y) = |x − y |

d(x, y) = (x − y)2

d(x, y, σ) = exp(−
(x − y)2

2σ2)
2

Thresholding
Reference Value

• This means:

• We can have different distance functions:

M(i, j) = {1 if d(I(i, j), It) < t
0 otherwise

d(x, y) = |x − y |

d(x, y) = (x − y)2

d(x, y, σ) = exp(−
(x − y)2

2σ2)
2

Thresholding

Threshold

Reference Value

Thresholding

0

1000

2000

3000

4000

5000

6000

N
um

be
r o

f P
ix

el
s

0 0.2 0.4 0.6 0.8 1
Intensity value

Thresholding

0

1000

2000

3000

4000

5000

6000

N
um

be
r o

f P
ix

el
s

0 0.2 0.4 0.6 0.8 1
Intensity value

Thresholding Example

It = 1 t = 0.1

Thresholding Example

It = 0.6 t = 0.1

Thresholding Example

It = 0.6 t = 0.1

Thresholding:
Connected Components

• After segmentation we may
end up with different pieces
that are not connected.

Thresholding:
Connected Components

• A two-pass algorithm that works in scan order (from
left to right and from top to bottom).

• 1-Pass: it creates labels to groups of pixel.

• 2-Pass: it merges groups that are connected.

Thresholding:
Connected Components

Scan order

First Pass

Thresholding:
Connected Components

We check up and
left neighbors to
see if they
have a label.

Thresholding:
Connected Components

If not we create a
new one.

Thresholding:
Connected Components

Then, we move
right, and we
repeat the
process.

Thresholding:
Connected Components

In this case, the
left neighbor has a
label, so we reuse
it.

Thresholding:
Connected Components

In this case, the
left neighbor has a
label, so we reuse
it.

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

1

2
In this case, we
choose the lowest
label, and we store
that 1 is equivalent
to 2

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Second Pass

Thresholding:
Connected Components

1

2

3

4

We go through all
pixels. For each
pixel we set the
value of lowest
equivalent.

Thresholding:
Connected Components

1

2

3

4

Thresholding:
Connected Components

1

2

3

4

Thresholding:
Connected Components

1

2

3

4

Thresholding:
Connected Components

1

2

3

4

1 2=

Thresholding:
Connected Components

1

3

4

Thresholding:
Connected Components Example

Thresholding
• It works if each object has a unique intensity value/

color; this is a very limiting constraint!

• However, it could be used as a starting point for
other algorithms.

• The user needs to set the threshold!

• The It value for each class may be inferred by
analyzing the histogram of the input image.

• Its 3D extension is trivial!

-Meansk

-Meansk
• -means is a clustering algorithm for clustering n-D

vectors/points in an -D space:

• A pixel with position and intensity is a 3D
vector:

• A voxel with position and intensity is a 4D
vector:

• Let’s assume we have objects in the image.

• So we have to determine -clusters.

k
n

(x, y) l
< x, y, l >

(x, y, z) l
< x, y, z, l >

k

k

-Means: How it Worksk

• A 2D example

-Means: Initializationk

• Let’s assume

• We make a random
guess on the
-centroids; i.e., the

stars.

k = 3

k

-Means: Initializationk

• Let’s assume

• We make a random
guess on the
-centroids; i.e., the

stars.

k = 3

k

-Means: Iterationk

• We now assign a
sample to a cluster
if the distance (L1,
L2, etc.), between
a centroid is the
minimum.

-Means: Iterationk

• We re-compute the
centroid as the
mean of samples of
a cluster.

-Means: Iterationk

• We repeat the
process until
convergence (no
more changes) or
after iterations.m

-Means: Iterationk

• We repeat the
process until
convergence (no
more changes) or
after iterations.m

-Means Examplek

-Means: Outliersk

Cluster A Cluster B

-Means: Oscillationk

Even Iteration

Odd Iteration

-Means: Oscillationk

Even Iteration

-Means: Oscillationk

Odd Iteration

-Means: Oscillationk

-Means: Advantagesk

• The method is fully automatic

• This works for 2D and 3D volumes

• This can “understand” neighbors in an implicit way

-Means: Disadvantagesk
• We need to know how many objects (including the

background) are in the image:

• We may run k-means multiple times until a certain criterion
is met (e.g., reaching the 80% of percentage of explained
variance)

• Outliers:

• better initialization (sampling)

• The method may not converge

• we need to set a maximum number of iterations

Region Growing

Region Growing

• This algorithms expands a painted initial mask until
it reaches strong edges

• Therefore, we need to compute edges first!

Region Growing

Structure
Edge

Region Growing

Seed

Region Growing

Region Growing

after a while…

Region Growing

Region Growing

Region Growing
• It is straightforward to extend to 3D!

• This algorithm depends on:

• The threshold of edge detection

• It may be slow:

• From an initial seed, the growing region needs to reach
the farthest edge pixel/voxel.

• Computational complexity is a function of the area/
volume of the object we want to segment.

Region Growing:
Epic Fail

Region Growing:
Epic Fail

Region Growing:
Epic Fail

Active Contour Model
aka Snakes

Snakes
• A snake is a parametric curve:

• Typically, it is a spline (original paper), but for sake
of simplicity let’s assume a piecewise linear curve.

v(t) = [x(t); y(t)] t ∈ [0,1]

• The snake curve is defined by a set of control point
that is defined as:

 C = {vi | i ∈ [1,n]} vi = [xi, yi]

Snakes

vi vi+1

vi-1

Snakes

• A first step, we draw
a snake close to the
boundary of the
object we want to
segment.

Snakes

• Then, we deform its
control points in order
to move them
towards the object’s
boundary.

Snakes

• Then, we deform its
control points in order
to move them
towards the object’s
boundary.

Snakes

• Then, we deform its
control points in order
to move them
towards the object’s
boundary.

Snakes

• How do we deform the control points?

• An energy function is associated with the curve.

• We deform control points by minimizing ; i.e., we
solve an optimization problem.

E

E

Snakes

• How do we define the energy function?

• The energy of a snake has three components:

 E = Einternal + Eexternal + Econstraint

Snakes: Internal Energy
• This energy represents the internal energy of the

cure due to bending. It is defined per point as

• The total energy is defined as

Einternal =

Z 1

0
Einternal(v(t))dt

Einternal(v(t)) =
1

2

✓
↵(t)

����
dv(t)

dt

����
2

+ �(t)

����
d2v(t)

d2t

����
2◆

Snakes: Internal Energy
• This energy represents the internal energy of the

cure due to bending. It is defined per point as

• The total energy is defined as

Einternal =

Z 1

0
Einternal(v(t))dt

Elasticity

Einternal(v(t)) =
1

2

✓
↵(t)

����
dv(t)

dt

����
2

+ �(t)

����
d2v(t)

d2t

����
2◆

Snakes: Internal Energy
• This energy represents the internal energy of the

cure due to bending. It is defined per point as

• The total energy is defined as

Einternal =

Z 1

0
Einternal(v(t))dt

Elasticity Stiffness

Einternal(v(t)) =
1

2

✓
↵(t)

����
dv(t)

dt

����
2

+ �(t)

����
d2v(t)

d2t

����
2◆

• The first term is an elastic energy:

• The second term is a bending energy:

Snakes: Internal Energy

d2v(t)

d2t
⇡ vi+1 � 2vi + vi�1

dv(t)

dt
⇡ vi+1 � vi

• The first term is an elastic energy:

• The second term is a bending energy:

Snakes: Internal Energy

d2v(t)

d2t
⇡ vi+1 � 2vi + vi�1

dv(t)

dt
⇡ vi+1 � vi

• The first term is an elastic energy:

• The second term is a bending energy:

Snakes: Internal Energy

d2v(t)

d2t
⇡ vi+1 � 2vi + vi�1

dv(t)

dt
⇡ vi+1 � vi

Snakes: External Energy
• This energy determines how well the snake matches

with the image locally!

• How can we achieve this?

• Gradients magnitude

• It is defined per point as

• The total energy is defined as

Snakes: External Energy

Eexternal(v(t)) = �krI(v(t))k2

Eexternal =

Z 1

0
Eexternal(v(t))dt

Snakes: Constraint Energy
• This energy is meant for interactive systems.

• The user interactively monitors the minimization, and
she/he can push/pull vertices using the mouse cursor’s
position:

• Repulsion forces or “vulcano”:

• Spring forces:

1
r2

−k∥x1 − x2∥2

Snakes: Constraint Energy

Snakes: Constraint Energy

x1

x2

Snakes: Constraint Energy

Snakes: Constraint Energy

Snakes: Constraint Energy

How do we solve ? E
E = Einternal + Eexternal + Econstraint

Gradient Descent
• It is a first-order iterative optimization method:

• We need to start with a g

• It will find a local minimum!

• f has to be differentiable.

• x0 is a “good” guess.

xi+1
j = xi

j − α
∂

∂xj
f(xi)

x0

Gradient Descent
• It is a first-order iterative optimization method:

• We need to start with a g

• It will find a local minimum!

• f has to be differentiable.

• x0 is a “good” guess.

xi+1
j = xi

j − α
∂

∂xj
f(xi)

x0

Gradient Descent
• It is a first-order iterative optimization method:

• We need to start with a g

• It will find a local minimum!

• f has to be differentiable.

• x0 is a “good” guess.

xi+1
j = xi

j − α
∂

∂xj
f(xi)

x0

Gradient Descent
• It is a first-order iterative optimization method:

• We need to start with a g

• It will find a local minimum!

• f has to be differentiable.

• x0 is a “good” guess.

xi+1
j = xi

j − α
∂

∂xj
f(xi)

x0

Gradient Descent
• It is a first-order iterative optimization method:

• We need to start with a g

• It will find a local minimum!

• f has to be differentiable.

• x0 is a “good” guess.

xi+1
j = xi

j − α
∂

∂xj
f(xi)

x0

Gradient Descent

Gradient Descent

x0

Gradient Descent

x0

Gradient Descent

x0

Gradient Descent

x0

Gradient Descent

x0x0

Gradient Descent

x0x0

Gradient Descent

x0x0

Gradient Descent

x0x0

Snakes: Gradient Descent

• What is our x0 in the snake minimization?

• We need to click a few points in the image around
our object of interest!

Snakes An Example

Snakes

• Extension to the 3D case:

• Instead of a curve we have a parametric surface; e.g., we
can start using a sphere.

• Disadvantages:

• We may have an over-smooth boundaries when using splines

• How many n control points?

• Not trivial to avoid self-intersection!

Stroke-Based

Stroke-Based

• Stroke-based algorithms are based on the idea to
define with a stroke what is foreground (i.e., our
object of interest) and what is background.

• These strokes are roughly painted.

• However, they have to be placed in areas where
we are 100% sure how to classify the image.

Stroke-Based

+1

-1

Stroke-Based

+1

-1

Stroke-Based

C s

Stroke-Based: Grow-Cut

• Grow-cut is a stroke-based method.

• The idea is to propagate the label of the current
pixels if its neighbors are “similar”.

• For each pixel, we have:

• Initialization for pixels not covered by a stroke ():

• Initialization for pixels covered by a stroke ():

s

< li = 0; θi = 0; Ci = I(xi, yi) > ∀is(xi, yi) = 0

s

< li = s(xi, yi); θi = 1; Ci = I(xi, yi) > ∀is(xi, yi) ≠ 0

Stroke-Based: Grow-Cut

< li; ✓i;Ci >

• For each pixel, we have:

• Initialization for pixels not covered by a stroke ():

• Initialization for pixels covered by a stroke ():

s

< li = 0; θi = 0; Ci = I(xi, yi) > ∀is(xi, yi) = 0

s

< li = s(xi, yi); θi = 1; Ci = I(xi, yi) > ∀is(xi, yi) ≠ 0

Stroke-Based: Grow-Cut

< li; ✓i;Ci >Label
Strength

Intensity

Stroke-Based:
A Single Grow-Cut Pass

• For each pixel I in the image:

• We copy the previous status:

• For each neighbor j of i:

• if then

< lt+1
i , θt+1

i , It+1
i > = < lt

i , θt
i , It

i >

g(∥Ct
i − Ct

j∥2)θt
j > θt

i

lt+1
i = ltj

✓t+1
i = g(kCt

i � Ct
jk2) · ✓tj

Stroke-Based:
A Single Grow-Cut Pass

• Note that is a decreasing function. For example:

• This means that if the two pixels, which we compare, are close in
intensity/color values they should have the same label l.

• They should also share the same label the neighbors have a higher
strength!

g

g(x) = {1 − x if x ≤ 1
0 otherwise

1.0

1.0

j

g(∥Ct
i − Ct

j∥2)θt
j > θt

i

Stroke-Based:
Example 1 - Switching Labels

1.0

1.0

j

g(∥1.0 − 1.0∥2)θt
j > θt

i

Stroke-Based:
Example 1 - Switching Labels

1.0

j

g(∥0.0∥2)θt
j > θt

i

1.0

Stroke-Based:
Example 1 - Switching Labels

1.0

j

(1.0 ⋅ θt
j) > θt

i

1.0

Stroke-Based:
Example 1 - Switching Labels

1.0

j

θt
j > θt

i

1.0

Stroke-Based:
Example 1 - Switching Labels

1.0

j

θt
j > θt

i

1.0

Stroke-Based:
Example 1 - Switching Labels

If is greater than
, we definitely

switch label.

θt
j

θt
j

Stroke-Based:
Example 2- Keeping Labels

0.25

1.0

j

g(∥Ct
i − Ct

j∥2)θt
j > θt

i

0.25

1.0

j

g(∥1.0 − 0.25∥2)θt
j > θt

i

Stroke-Based:
Example 2- Keeping Labels

0.25

1.0

j

g(∥0.75∥2)θt
j > θt

i

Stroke-Based:
Example 2- Keeping Labels

0.25

1.0

j

(0.25 ⋅ θt
j) > θt

i

Stroke-Based:
Example 2- Keeping Labels

0.25

1.0

j

(0.25 ⋅ θt
j) > θt

i

Stroke-Based:
Example 2- Keeping Labels

If intensity is greatly
reduced here; we may
not switch label. Note
we still need to check
the inequality!!

θt
j

Stroke-Based: Grow-Cut
• Stopping criteria:

• This process is iterated until either convergence;
i.e., no changes in the labels!

• Labels have been propagated for enough
iterations; e.g., the number of pixels of the
diagonal. This trick is helpful for reducing the
total computational time.

Stroke-Based: Grow-Cut

Stroke-Based: Grow-Cut
Example

Iteration = 0

Stroke-Based: Grow-Cut
Example

Iteration = 10

Stroke-Based: Grow-Cut
Example

Iteration = 20

Stroke-Based: Grow-Cut
Example

Iteration = 30

Stroke-Based: Grow-Cut
Example

Iteration = 40

Stroke-Based: Grow-Cut
Example

Iteration = 50

Stroke-Based: Grow-Cut
Example

Iteration = 100

Stroke-Based: Grow-Cut
Example

Iteration = 200

Stroke-Based: Grow-Cut
Example

Iteration = 318

Stroke-Based: Grow-Cut

• This algorithm can be extended to 3D in a
straightforward way, and it can be parallelized on
the GPU.

• Disadvantages:

• It is computationally slow!

that’s all folks!

