Optical Active 3D Scanning

Gianpaolo Palma

3D Scanning Taxonomy

Recap

Computational Tomography and Magnetic Resonance

Advantages

- A complete model is returned in a single shot, registration and merging not required
- Output: volume data, much more than just an exterior surface

Disadvantages

- Limitation in the size of the scanned object
- Cost of the device
- Output: no data on surface attributes (e.g. color)

Recap

Multi-View Stereo Reconstruction

Advantages

- Cheap (no scanning device needed), fast tech evolution
- Good flexibility (both small and huge model can be acquired)
- Cameras are more easy to use than a scanner (lighter, no tripod, no power, multiple lenses ...)
- Non-expert users can create 3D models

Disadvantages

- Accuracy (not so accurate, problems with regions with insufficient detail)
- Slower than active techniques (many images to process and merge)
- Not all the objects can be acquired

Active Optical Tecnology

Advantages

- Using active lighting is much faster
- Safe Scanning of soft or fragile objects which would be threatened by probing
- Set of different technologies that scale with the object size and the required accuracy

Disadvantages

- Can only acquire visible portions of the surface
- Sensitivity to surface properties (transparency, shininess, darkness, subsurface scatter)
- Confused by interreflections

Active Optical Tecnology

- Active optical vs CT scanner
 - Cheaper, faster, scale well with object size
 - But no volume information and more processing
- Active optical vs Multi-view stereo
 - Faster and more accurate
 - But more expensive and more user expertise

Active Optical Tecnology

- Depth from Focus
 - Confocal microscopy
- Interferometry
- Triangulation
 - Laser triangulation and structured light
- Time-of-Flight
 - Pulse-based and Phase-based

Why different active optical tecnology?

Confocal Microscopy

Confocal Microscopy

- Increase the optical resolution and contrast of microscope by placing a pinhole at the confocal plane of the lens to eliminate out-of-focus light
- Controlled and highly limited depth of focus.
- 3D reconstruction with images captured at different focal plane

Confocal Microscopy

- Scanning mirrors that can move the laser beam very precisely and quickly (one mirrors tilts the beam in the X direction, the other in the Y direction)
- Z-control focus on any focal plane within your sample allowing movement in the axial direction with high precision (>10 nm).

Interferometry

Inteferometry

 General Idea - Superimposing waves causing the phenomenon of interference. To extract information from the resulting waves.

Michelson Interferometer

- Single source split into two beams that travel different path, then combined again to produce interference
- Information about the difference in the path by analyzing the interference fringes

White Light Interferometry

- Accurate movement of objective in the z axial direction to change length of beam path
- Find the maximum modulation of the interference signal for each pixel

White Light Interferometry

Birefringent crystal

- The refractive index depends on the polarization and propagation direction of light. The refractive index in one crystal axis (optical axis) is different from the other.
- Splitting of the incident ray in two ray with different path according polarization
 - Ordinary ray (a constant refractive index)
 - Extraordinary ray (the refractive index depends on the ray direction)

 Analyzing the interference pattern of ordinary and extraordinary waves of the beam reflect by the measured same

Laser Triangulation

Triangulation based system

 Location of a point by triangulation knowing the distance between the sensors (camera and light emitter) and the angles between the rays and the base distance

Triangulation based system

- An inherent limitation of the triangulation approach: non-visible regions
- Some surface regions can be visible to the emitter and not-visible to the receiver, and vice-versa
- In all these regions we miss sampled points
- Need integration of multiple scans

Conoscopic Holography vs Triangulation

Mathematics of triangulation

Parametric representation of lines and rays

Parametric and implicit representation of a plane

Mathematics of triangulation [Douglas et al., SIGGRAPH 2009]

Ray-plane intersection

Mathematics of triangulation

Ray-ray intersection

object being

[Douglas et al., SIGGRAPH 2009]

Spot Laser Triangulation

 Spot position location (find the most intensity pixel and compute the centroid using the neighbors)

$$p = i_M + \frac{\sum_{i=-N}^{N} I(i_M + i)i}{\sum_{i=-N}^{N} I(i_M + i)}.$$

Triangulation using trigonometry

$$Z = \frac{H}{\tan \alpha + \tan \beta}$$

 $X = Z \tan \alpha$

Laser Line Triangulation

- Laser projector and camera modelled as a pinhole camera
- Detection of the pixel in the laser line with computer vision algorithm (peak detection)
- Ray-plane triangulation

Laser Line Triangulation

 Rotate or translate the scanner or rotate the object using a turntable

[Drouin et al., 2012]

Errors in Triangulation system

Errors in Triangulation system

Solution: space-time analysis

[Curless et al., ICCV 1995]

Errors in Triangulation system

Solution: space-time analysis

[Curless et al., ICCV 1995]

Structured Light

Structured light scanner

 Projection of light pattern using a digital projector and acquisition of its deformation with one o two cameras

[Drouin et al., 2012]

Structured light scanner

- Simple design, no sweeping/translating devices needed
- Fast acquisition (a single image for each multi-stripe pattern)
- Ambiguity problem with a single pattern to identify which stripe light each pixel

Structured light scanner

- How to solve the ambiguity?
- Many coding strategies that can be used to recover which camera pixel views the light from a given plane
 - Temporal coding Multiple patterns in the time, matching using the time sequence of the image intensity, slower but more accurate
 - Spatial coding A single pattern, the local neighborhood is used to perform the matching, more suitable for dynamic scene
 - Direct coding A different code for every pixel

Binary Code

- Two illumination levels: 0 and 1
- Every point is identified by the sequence of intensities that it receives
- The resolution is limited to half the size of the finest pattern

Binary codes: A = 1 1 1 C = 1 0 0B = 1 1 0 D = 0 1 1

Binary Code

Gray Code — Neighboring columns differ by one bit then more robust to decoding error

- Location of the stripes
 - Simple thresholding Per-pixel threshold as average of two images acquired with all-white and all-black patterns
 - Pixel accuracy

- Location of the stripes
 - Projection of Gray code and reserve Gray code and intersection of the relative intensity profile- Sub-pixel accuracy

 N-ary code – Reduce the number of patterns by increasing the number of intensity levels used to encode the stripes.

- Phase Shift
 - Projection of a set of sinusoidal pattern shifted of a constant angle
 - High resolution than Gray code
 - Ambiguity problem due the periodic nature of the pattern

$$I(x) = A + B\cos\left(\frac{2\pi}{\omega}(x \mod \omega) - \theta\right)$$

- Gray Code + Phase Shift [Gühring , 2000]
 - Corse correspondence projector-camera with Gray code to remove ambiguity
 - Refinement with phase shift
 - Problem with non-constant albedo surface

- Gray Code + Line Shift [Gühring , 2000]
 - Substitution the sinusoidal pattern with a pattern of equally spaced vertical line

Spatial Coding

- The label of a point of the pattern is obtained from a neighborhood around it.
- The decoding stage more difficult since the spatial neighborhood cannot always be recovered (fringe not visible from the camera due to occlusion)

[Zhang et al., 3DPVT 2002]

Direct Coding

- Every encoded pixel is identified by its own intensity/color
- The spectrum of intensities/colors used is very large
- Sensible to the reflective properties of the object, low accuracy, need accurate calibration

Time of Flight

Pulse-based Time of Flight Scanning

- Measure the time a light impulse needs to travel from emitter to target
 - Source: emits a light pulse and starts a nanosecond watch (1m = 6.67ns
 - Sensor: detects the reflected light, stops the watch (roundtrip time)

Pulse-based Time of Flight Scanning

- Scanning
 - Single spot measure
 - Range map obtained by rotating mirrors or motorized 2 DOF head

- Advantages
 - No triangulation, source and detector on the same axis (no shadow effect)

Phase-based Time of Flight Scanning

 A laser beam with sinusoidal modulated optical power is sent to a target. The phase of the reflected light is compared with that of the sent light

Phase-based Time of Flight Scanning

[Foix et al., 2011]

• Ambiguity of the phase shift. When $\Delta \phi = 2\pi$, the unambiguous distance measurement is limited to c/(2f) (e.g. with frequency 16.66 MHz a maximum distance of 9m)

Time of Flight Scanning

In principle is an easy approach, but:

- maximum distance range limited by the amount of light received by the detector (power of the emitter, environment illumination)
- accuracy depends on : optical noise, thermal noise, ratio between reflected signal intensity and ambient light intensity
- Accurate and fast systems are still expensive (70K-100K Euro)
- Cost depends on mechanical components (high-quality rotation unit, to span the spherical space around the scanner)

References

- de Groot, Peter J. "31 Interference Microscopy for Surface Structure Analysis." (2015).
- Gava, Didier, and Francoise J. Preteux. "3D conoscopic vision." *Optical Science, Engineering and Instrumentation*'97. International Society for Optics and Photonics, 1997.
- Blais, François. "Review of 20 years of range sensor development." *Journal of Electronic Imaging* 13.1 (2004): 231-243.
- Salvi, Joaquim, Jordi Pages, and Joan Batlle. "Pattern codification strategies in structured light systems." Pattern recognition 37.4 (2004): 827-849.
- Lanman, Douglas, and Gabriel Taubin. "Build your own 3D scanner: 3D photography for beginners." ACM SIGGRAPH 2009 Courses. ACM, 2009.
- Curless, Brian, and Marc Levoy. "Better optical triangulation through spacetime analysis." Computer Vision, 1995. Proceedings., Fifth International Conference on. IEEE, 1995.
- Drouin, Marc-Antoine, and Jean-Angelo Beraldin. "Active 3D Imaging Systems." 3D Imaging, Analysis and Applications. Springer London, 2012. 95-138.
- Foix, Sergi, Guillem Alenya, and Carme Torras. "Lock-in time-of-flight (ToF) cameras: A survey." *IEEE Sensors Journal* 11.9 (2011): 1917-1926.
- Gühring, Jens. "Dense 3D surface acquisition by structured light using off-the-shelf components." Photonics West 2001-Electronic Imaging. International, 2000.
- Zhang, Li, Brian Curless, and Steven M. Seitz. "Rapid shape acquisition using color structured light and multi-pass dynamic programming." 3D Data Processing Visualization and Transmission, 2002.