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Applications

Introduction

 Monte-Carlo methods and integration can be applied in several fields:

Deep Learning
Imaging

Computer Graphics
Finance

Chemistry

Physics



A 2D Problem: Image Filtering




The Bilateral Filter

Introduction

* The bilateral filter is a non-linear filter for images and videos.

* |t works in spatial domain and intensity/range domain of an image/video.

» Basically, it is an adaptive linear filter:
* |t behaves as a linear filter in flat regions;

* At strong edges (step-edge), filtering is “limited”.
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Introduction
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The Bilateral Filter

Introduction

» f. (Spatial function): a Gaussian function

« 2 (Range function): a Gaussian function

 How large is the kernel?

 |f the spatial function is a Gaussian:
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The Bilateral Filter

Example
DA
1.5 - 'ﬁ““ﬁ'&&(“\‘)}*\&“y\'f& Y
A I »A\,\;@j)\;MIA‘A\gA\t\/ J
AR ON I5R7
. Vi /Vvﬁ{l}@\,\;?)\!%(
A
0.5 4 A
ARPWSIAL AN
AR "\W‘?’""»’!‘ AN
SV R
0 LY \%}«&ﬁ,ﬁ%@‘@*

Kernel Image



The Bilateral Filter

Example

Kernel Image
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Kernel
(change for each pixelll)
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The Bilateral Filter

Computational Complexity

 The main problem of the filter is its high computational complexity for real-time
applications:

O(nk?),
where n is the number of pixels of an image/video, and k is the size.
» Compared to a Gaussian filter:

* Not separable;

e No Fourier domain.



The Bilateral Filter

Monte-Carlo

* |In this case, we can solve with Monte-Carlo!
 Basic idea:
 We draw sample according the spatial Gaussian:

e Box-Muller method.

« We limit the number of samples to k or ck; with ¢ < k a constant.



Sampling Strategies

The Bilateral Filter

Pattern 1
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Monte-Carlo patterns (MCS)

Poisson-disk patterns (PDS)

Pattern 3 n

Stratified (jittering) patterns (SMS)




The Bilateral Filter

Sampling Strategies

Stratified
Monte-Carlo

Original Poisson-Disk Regular Grid Monte-Carlo



The Bilateral Filter

Sampling Strategies

Image Samples Weights Result



A Recursive Problem: Rendering



Path-Tracing

Introduction

* A classic problem in Computer Graphics is given:
e Camera;
3D Geometry;
e Light sources’ description;
 Materials’ description.

* Jo compute the color of each pixel in the image plane of our plane by
simulating the light transport in a physically based manner.



Path-Tracing

The Rendering Equation
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Path-Tracing

The Rendering Equation
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Path-Tracing

The Rendering Equation
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Path-Tracing

The Rendering Equation
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Path-Tracing

The Rendering Equation
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Path-Tracing
The Rendering Equation: BRDF
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Path-Tracing

The Rendering Equation: Light Sources




Path-Tracing

Introduction
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Path-Tracing

Introduction

* |n a deterministic way, we should shoot 7 rays at each bounce for each location:
2
k
and this highly impractical.

e Qur estimator is the classic estimator seen so far:



So We Generate Different Paths
and We Sum Them Up
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Path-Tracing

Monte-Carlo Techniques

 [echniques used:
* Russian roulette —> to limit the length of paths.
o Stratification.
* |Importance sampling:
* 1D/2D distribution of light sources;
 BRDF.

 Metropolis.



Path-Tracing
Sampling the BRDF

. To sample the BRDF, we generate @ ; directions randomly chosen according
to its PDF:

p(ﬁl) OCﬁ.(X, E)ia 5)0)

¢ S0, we compute our estimate as:



Path-Tracing
Sampling the BRDF
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Path-Tracing
Sampling the BRDF

Image by Eric Veach



Path-Tracing
Sampling the Light Source

» o sample the light source, we generate random points, X;, on the light source
according to its PDF:

p(x)).
¢ S0, we compute our estimate as:

— .fr(Xa E)l,a 5)0)Li(xa 5)1/) —
L(x, o) —" 2> """  Gl=—
p(x;) 1x; — x|

X; — X



Path-Tracing
Sampling the BRDF



Path-Tracing
Sampling the Light Source

Image by Eric Veach



Path-Tracing
Multiple Importance Sampling (MIS)

* The naive solution would be to average the two estimations:
e However, variance is additive, so we do not decrease it!
 The main idea of Multiple Importance Sampling (MIS) is to:
 Draw samples from different distributions;
 Mix all these samples using weights:

* These weights should remove large peaks of variance when we have
differences between our estimation and the distribution.



Path-Tracing
MIS

« In general, we may have K distributions, q;; and we generate n; samples X;

f i ~ g; for each distribution.

e In this case, our estimation is:

K1 JX; Dp(x; )
I[:t\ — Z ; a)j(Xl-,]-) / / .

i=1 "7 i=1 qi(Xi. )
» The weighting function, w(x) > 0, is normalized:
K
D w(x) =
j=1
» Balance heuristic w(X) x n,g(X):
n,q;(X)
w(X) = —



Path-Tracing
MIS

« What’s about its variance?
Var(fizy) = Var(fi) + (

e Other heuristics? Yes

- p
« Power Heuristic: a)j(X) X (njqj(x))

1

min. 7.

p

J

> 1.




Path-Tracing
MIS Example

Image by Eric Veach



Path-Tracing

Complex Light Sources

» [ypically, to have convincing light sources, they have to be spatially varying
possibly using scene-referred photographs (i.e., calibrated):




Path-Tracing

Complex Light Sources
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Complex Light Sources

2




Path-Tracing

Complex Light Sources
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Complex Light Sources
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Path-Tracing

Complex Light Sources




Path-Tracing

Complex Light Sources

p(y|x)



Path-Tracing

Complex Light Sources: Example
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Metropolis Sampling




Path-Tracing

Metropolis Sampling
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Path-Tracing

Metropolis Sampling: Lens Perturbation
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Metropolis Sampling: Lens Perturbation
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Path-Tracing

Metropolis Sampling: Lens Perturbation



Path-Tracing

Metropolis Sampling: Light Perturbation
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Path-Tracing

Metropolis Sampling

Image by Eric Veach



Path-Tracing

Metropolis Sampling: Multi-Chains
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Path-Tracing

Metropolis Sampling: Multi-Chains

Image by Eric Veach
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Metropolis Sampling: Multi-Chains
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Path-Tracing

Metropolis Sampling: Multi-Chains

Image by Eric Veach



Path-Tracing

Metropolis Sampling: Multi-Chains

Image by Eric Veach
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Thank you for your attention!



