Monte Carlo

Applications

Applications

Introduction

- Monte-Carlo methods and integration can be applied in several fields:
 - Deep Learning
 - Imaging
 - Computer Graphics
 - Finance
 - Chemistry
 - Physics

A 2D Problem: Image Filtering

Introduction

- The bilateral filter is a non-linear filter for images and videos.
- It works in spatial domain and intensity/range domain of an image/video.

- Basically, it is an adaptive linear filter:
 - It behaves as a linear filter in flat regions;
 - At strong edges (step-edge), filtering is "limited".

Introduction

Spatial Function

Range Function

$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

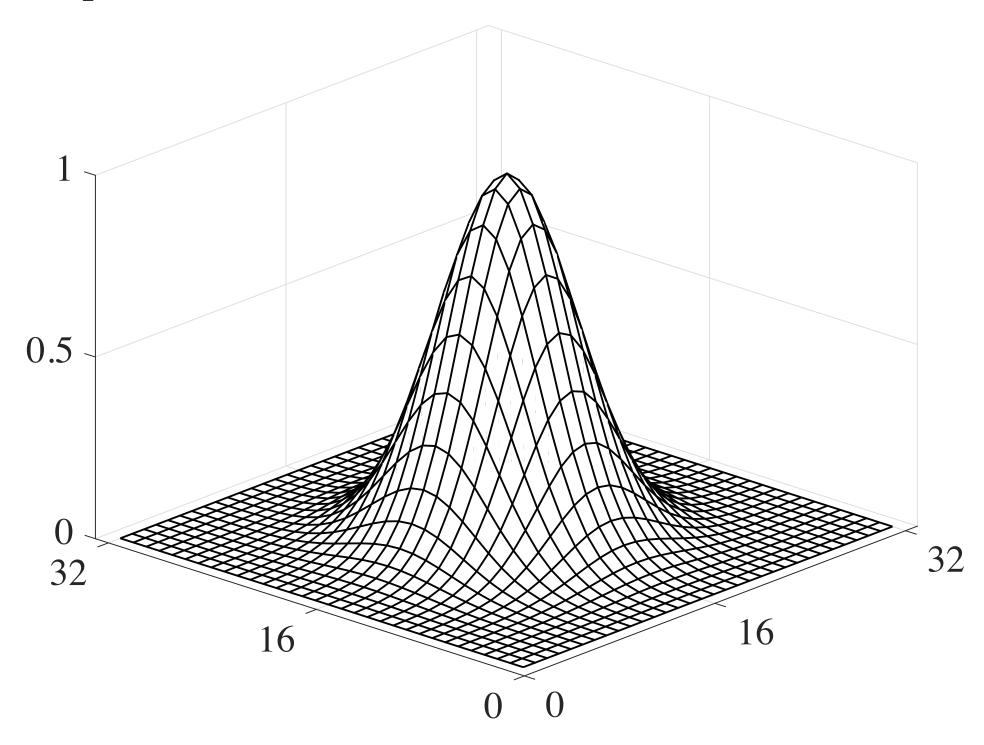
$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

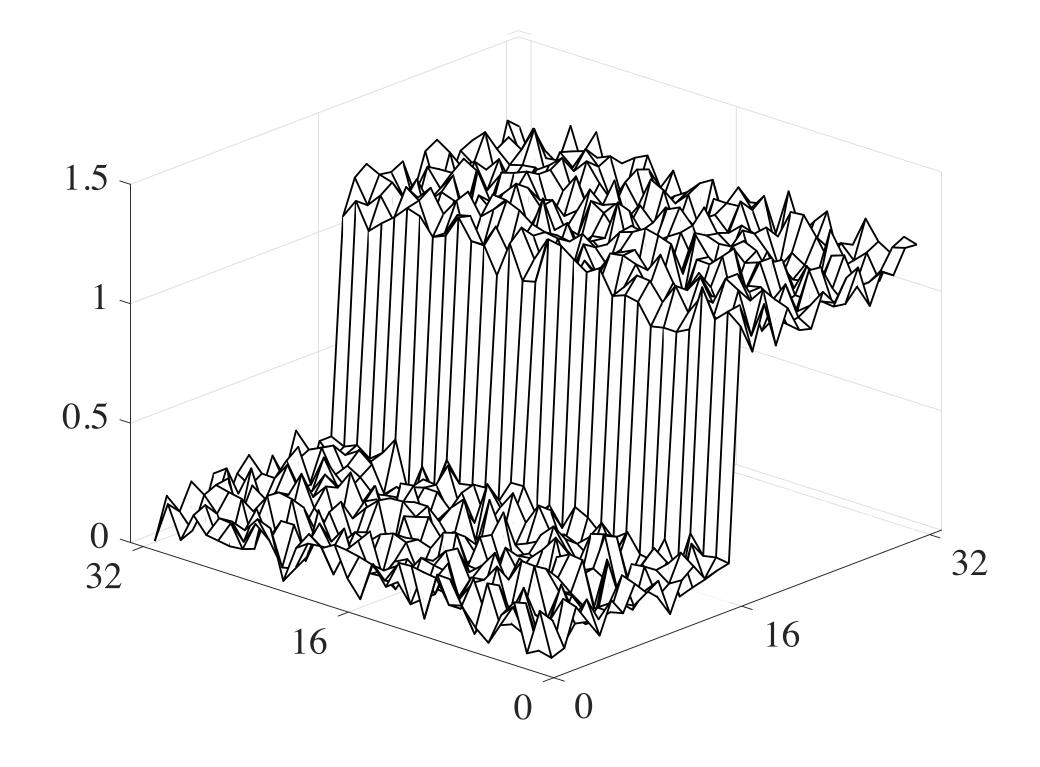
Introduction

- f_s (Spatial function): a Gaussian function
- g_r (Range function): a Gaussian function
- How large is the kernel?
 - If the spatial function is a Gaussian:

$$N=M=\frac{5}{2}\sigma_{s}.$$

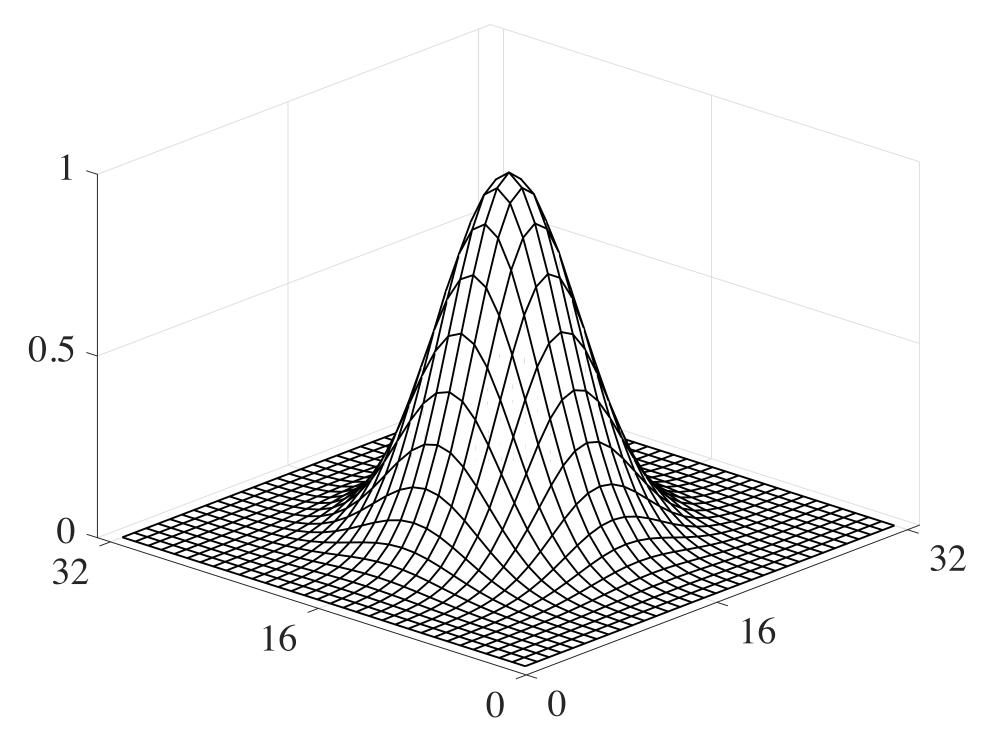
Example

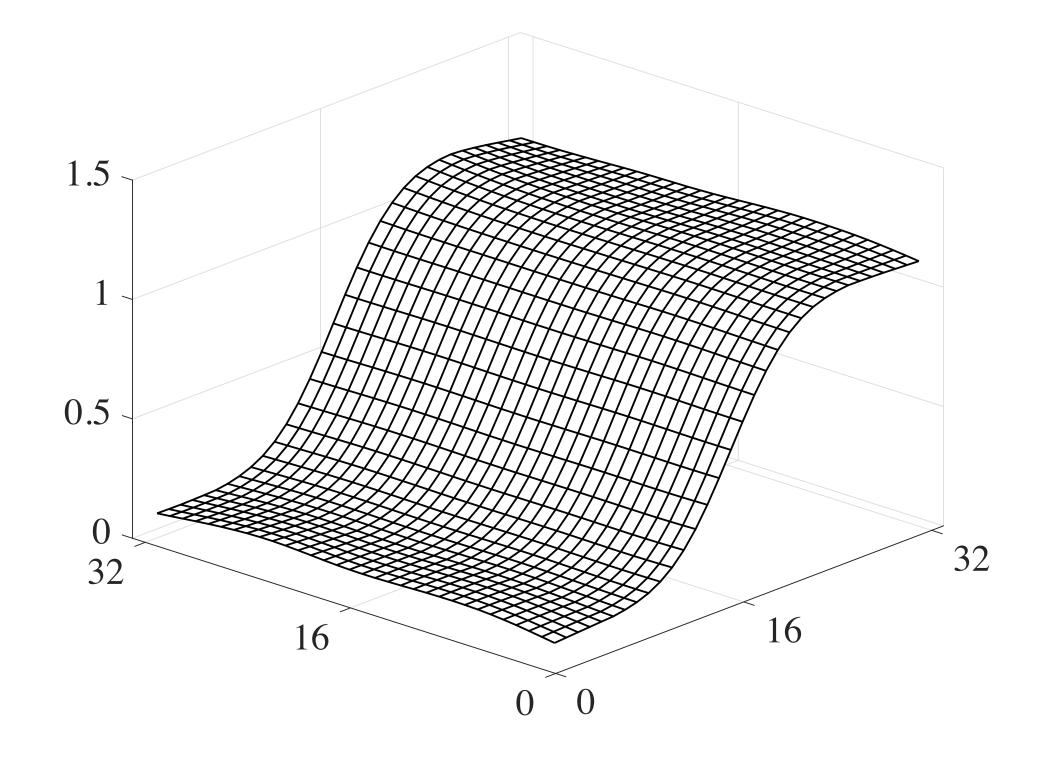




Kernel Image

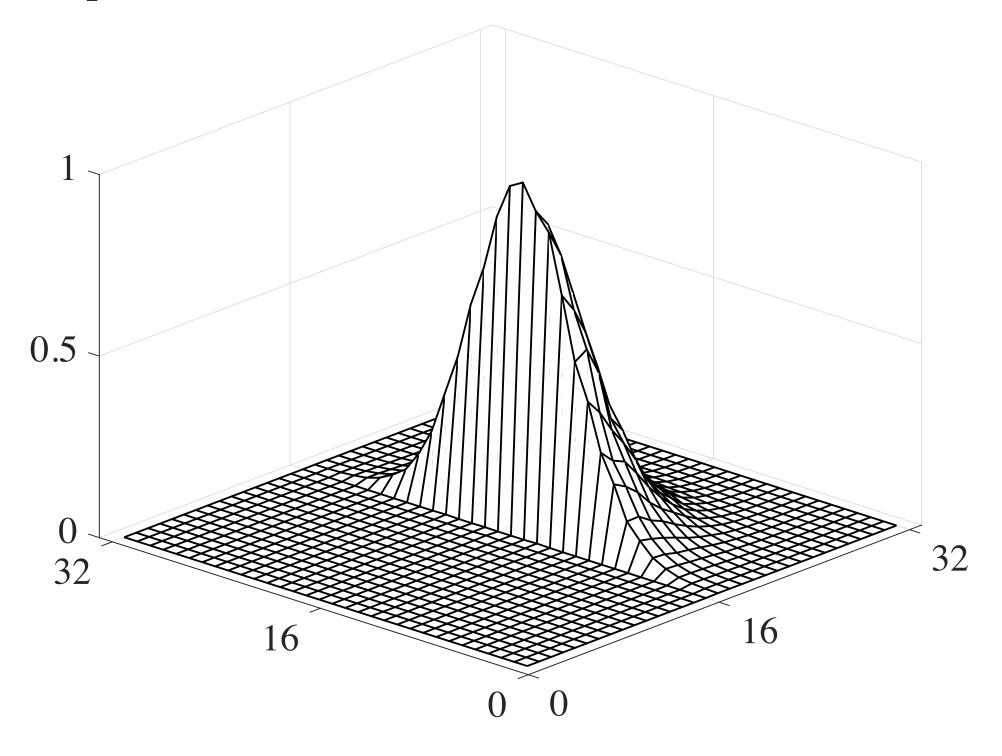
Example

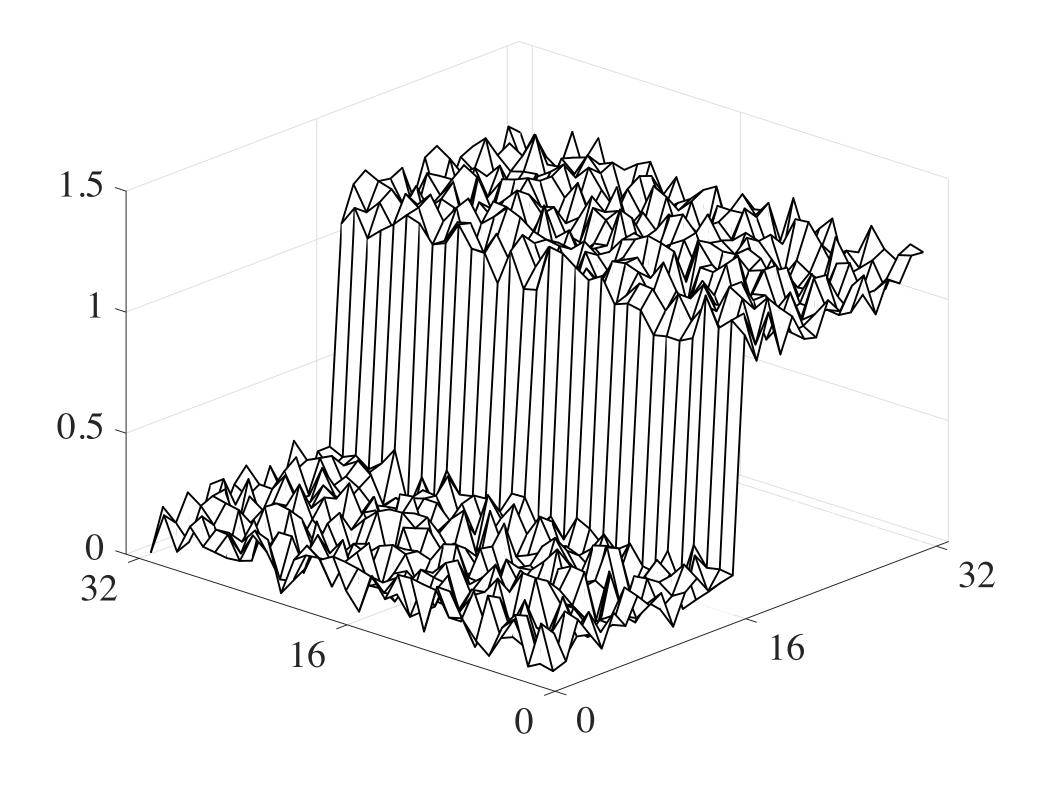




Kernel

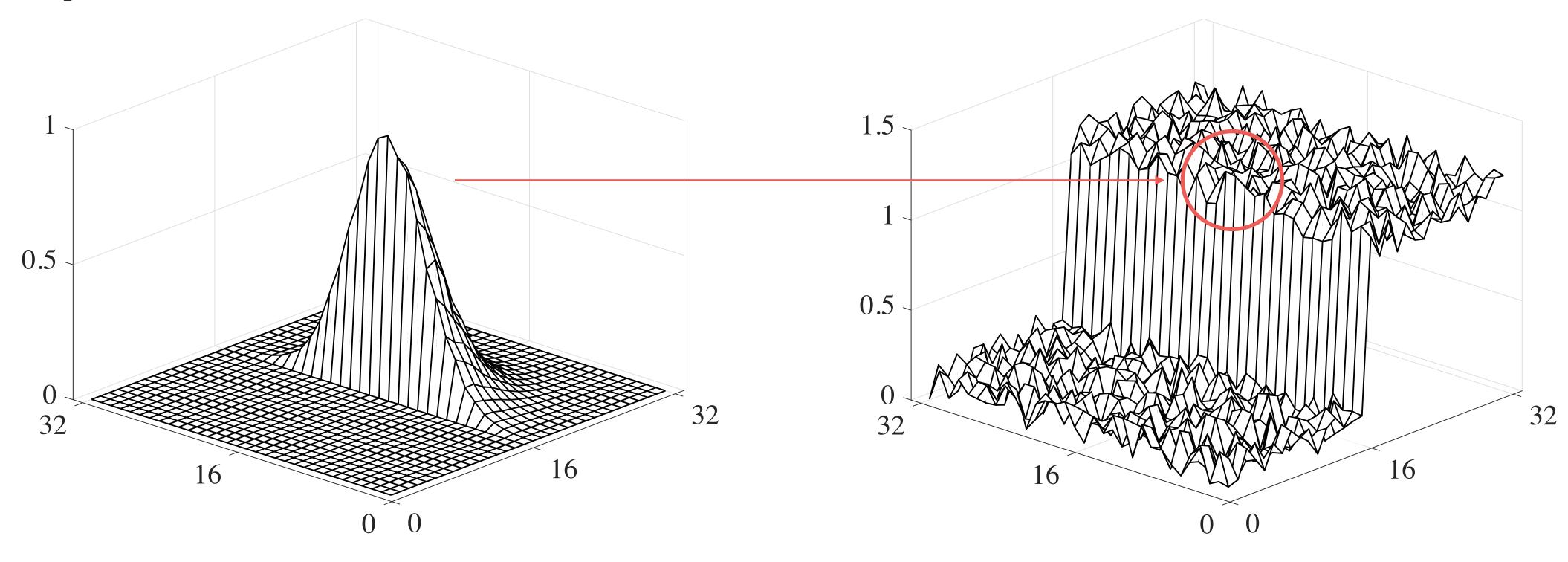
Example





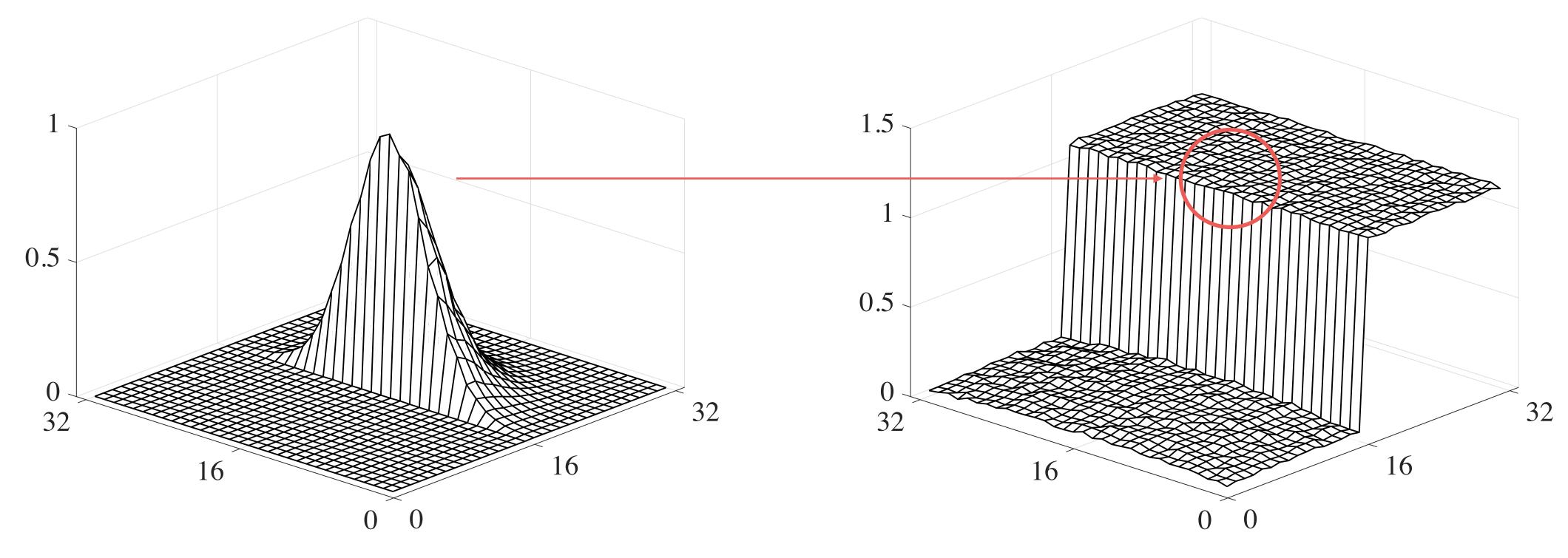
Kernel (change for each pixel!!)

Example



Kernel (change for each pixel!!)

Example



Kernel (change for each pixel!!)

Computational Complexity

 The main problem of the filter is its high computational complexity for real-time applications:

$$\mathcal{O}(nk^2)$$
,

where n is the number of pixels of an image/video, and k is the size.

- Compared to a Gaussian filter:
 - Not separable;
 - No Fourier domain.

Monte-Carlo

- In this case, we can solve with Monte-Carlo!
- Basic idea:
 - We draw sample according the spatial Gaussian:
 - Box-Muller method.
 - We limit the number of samples to k or ck; with c < k a constant.

Sampling Strategies

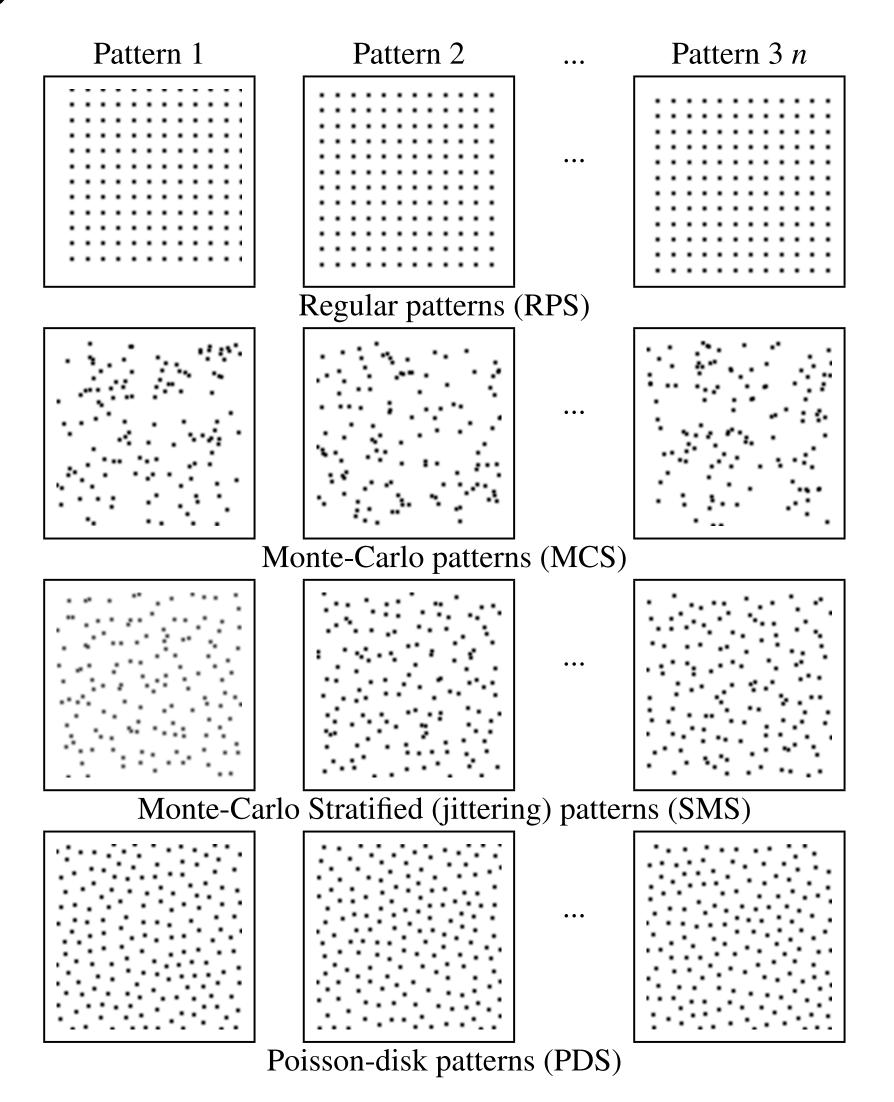
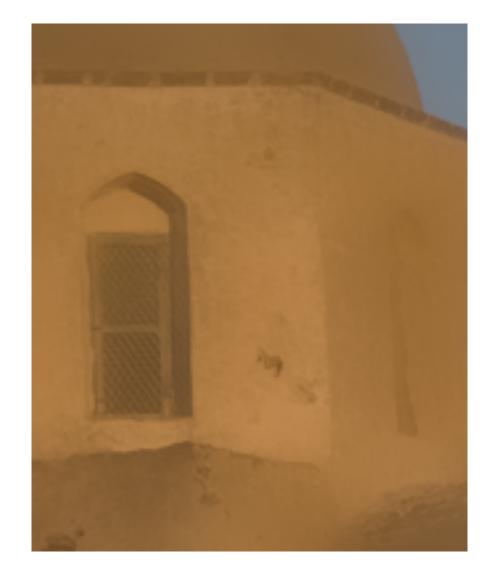


Image Samples
The Bilateral Filter

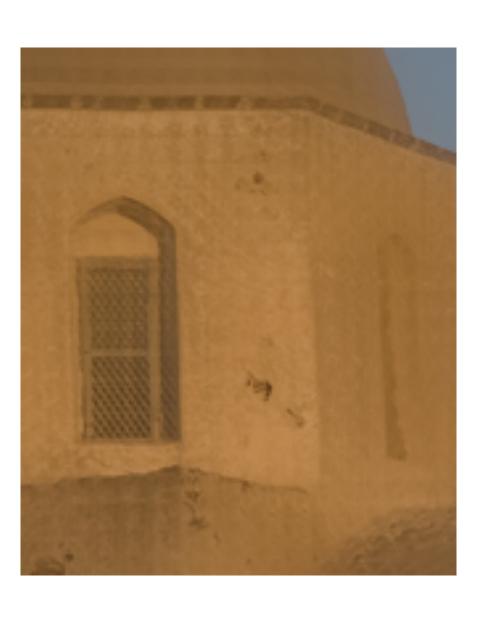
Weights

Result

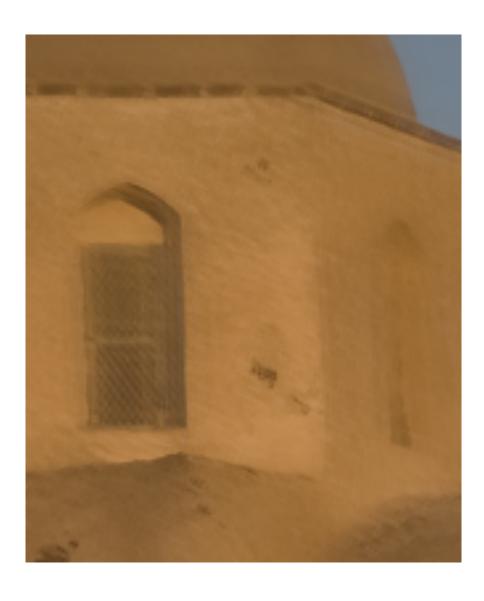
Sampling Strategies



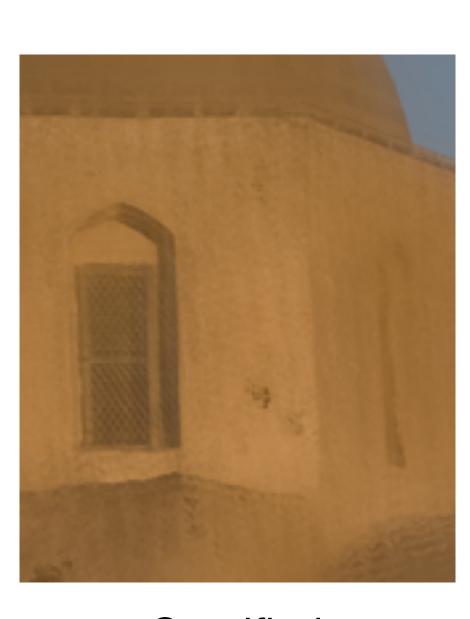
Poisson-Disk



Regular Grid

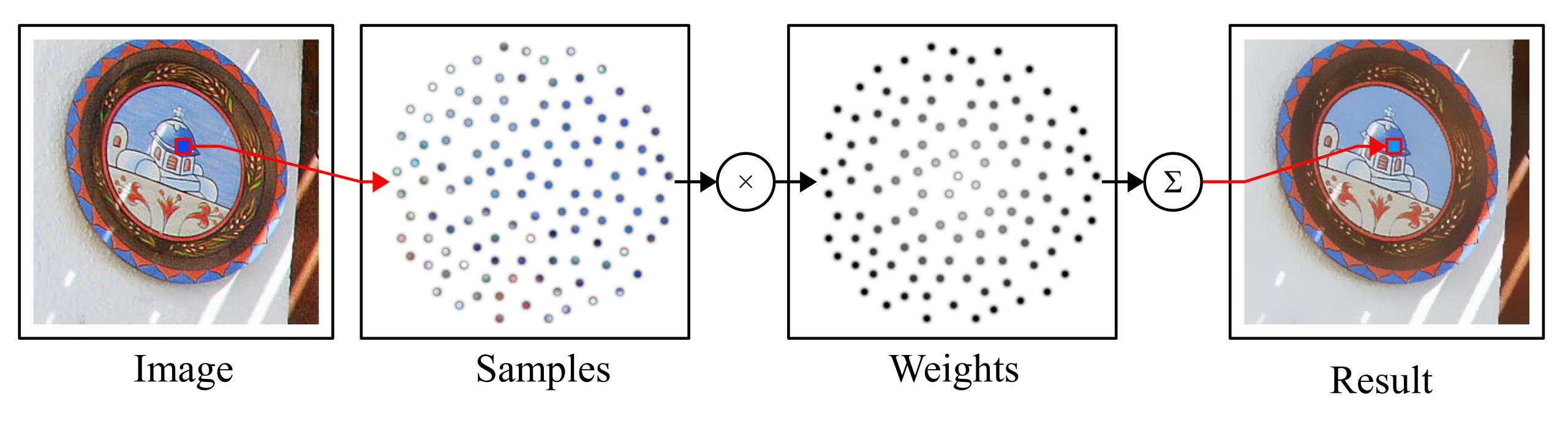


Monte-Carlo



Stratified Monte-Carlo

Sampling Strategies



A Recursive Problem: Rendering

Introduction

- A classic problem in Computer Graphics is given:
 - Camera;
 - 3D Geometry;
 - Light sources' description;
 - Materials' description.
- To compute the color of each pixel in the image plane of our plane by simulating the light transport in a physically based manner.

$$L_{o}(\mathbf{x}, \overrightarrow{\omega}_{o}, \lambda) = L_{e}(\mathbf{x}, \overrightarrow{\omega}_{o}, \lambda) + \int_{\Omega} f_{r}(\mathbf{x}, \overrightarrow{\omega}_{i}, \overrightarrow{\omega}_{o}, \lambda) L_{i}(\mathbf{x}, \overrightarrow{\omega}_{i}, \lambda) | \overrightarrow{n} \cdot \overrightarrow{\omega}_{i} | d\omega_{i}$$

$$\overrightarrow{\omega}_{i}$$

$$L_{o}(\mathbf{x}, \overrightarrow{\omega}_{o}, \lambda) = I_{e}(\mathbf{x}, \overrightarrow{\omega}_{o}, \lambda) - \int_{\Omega} f_{r}(\mathbf{x}, \overrightarrow{\omega}_{i}, \overrightarrow{\omega}_{o}, \lambda) L_{i}(\mathbf{x}, \overrightarrow{\omega}_{i}, \lambda) | \overrightarrow{n} \cdot \overrightarrow{\omega}_{i} | d\omega_{i}$$

$$\overrightarrow{m}_{i}$$

$$L_{o}(\mathbf{x}, \overrightarrow{\omega}_{o}, \lambda) = L_{e}(\mathbf{x}, \overrightarrow{\omega}_{o}, \lambda) - \int_{\Omega} \int_{\Omega} (\mathbf{x}, \overrightarrow{\omega}_{i}, \overrightarrow{\omega}_{o}, \lambda) L_{i}(\mathbf{x}, \overrightarrow{\omega}_{i}, \lambda) | \overrightarrow{n} \cdot \overrightarrow{\omega}_{i} | d\omega_{i}$$

$$\overrightarrow{\omega}_{i}$$

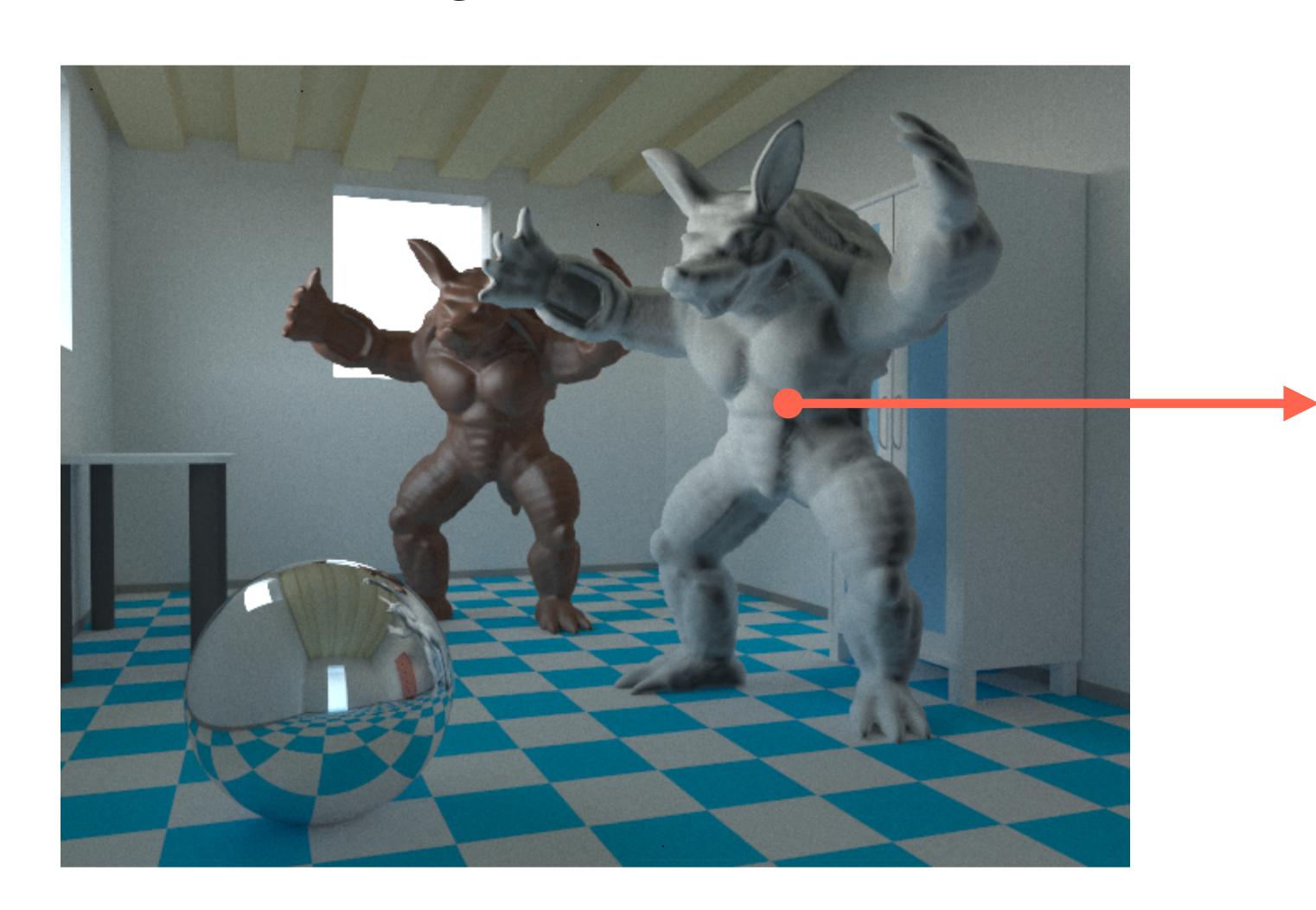
$$L_{o}(\mathbf{x}, \overrightarrow{\omega}_{o}, \lambda) = L_{e}(\mathbf{x}, \overrightarrow{\omega}_{o}, \lambda) - \int_{\Omega} f(\mathbf{x}, \overrightarrow{\omega}_{i}, \overrightarrow{\omega}_{o}, \lambda) L_{i}(\mathbf{x}, \overrightarrow{\omega}_{i}, \lambda) |\overrightarrow{n} \cdot \overrightarrow{\omega}_{i}| d\omega_{i}$$

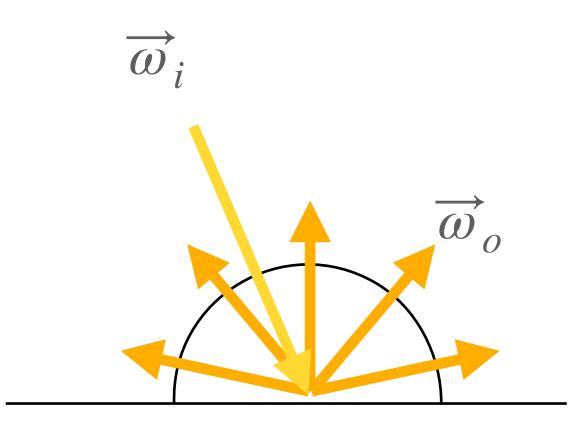
$$\overrightarrow{\omega}_{i}$$

$$L_{o}(\mathbf{x}, \overrightarrow{\omega}_{o}, \lambda) = L_{e}(\mathbf{x}, \overrightarrow{\omega}_{o}, \lambda) - \int_{\Omega} f(\mathbf{x}, \overrightarrow{\omega}_{i}, \overrightarrow{\omega}_{o}, \lambda) L_{i}(\mathbf{x}, \overrightarrow{\omega}_{i}, \lambda) |\overrightarrow{n} \cdot \overrightarrow{\omega}_{i}| d\omega_{i}$$

$$\overrightarrow{\omega}_{i}$$

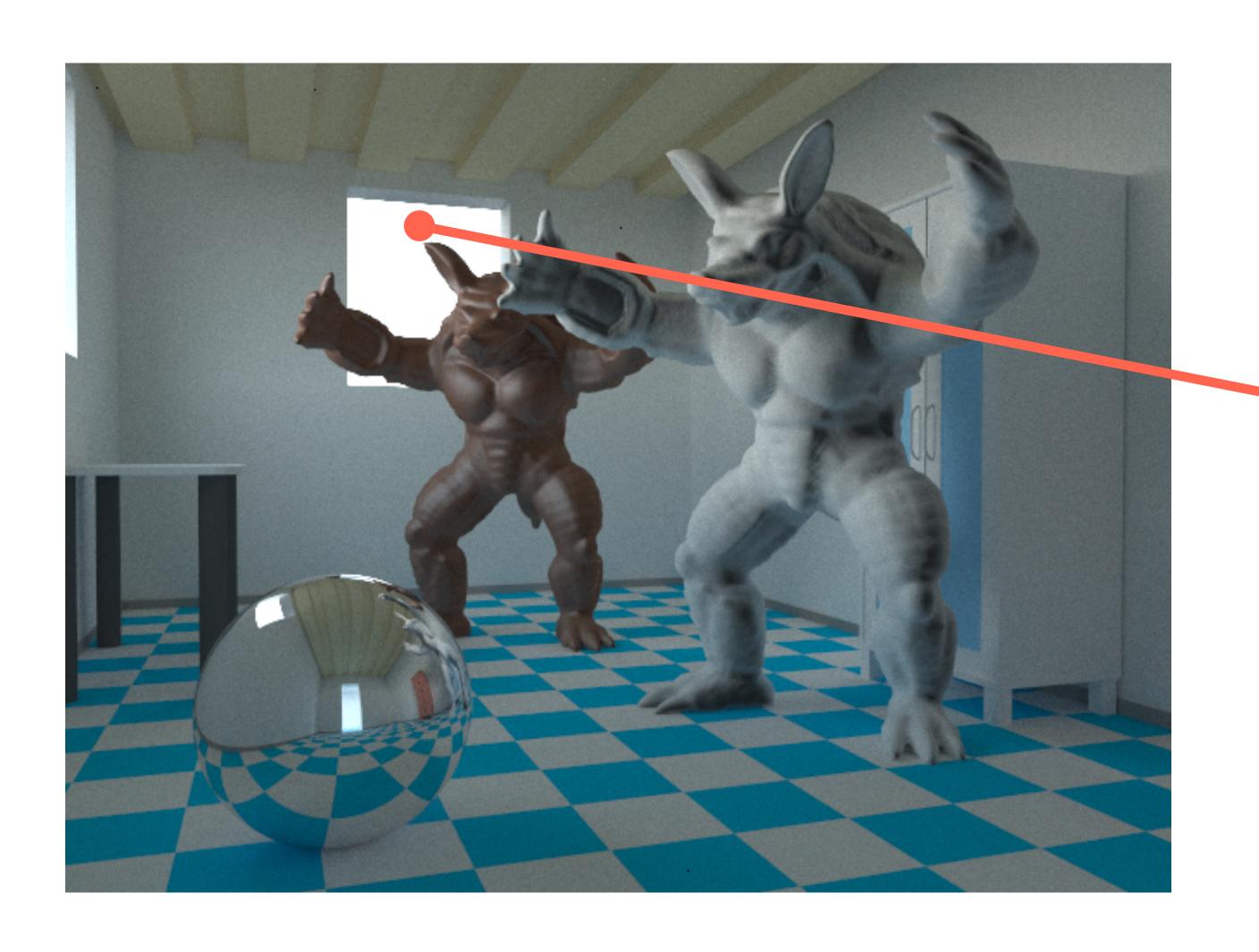
The Rendering Equation: BRDF

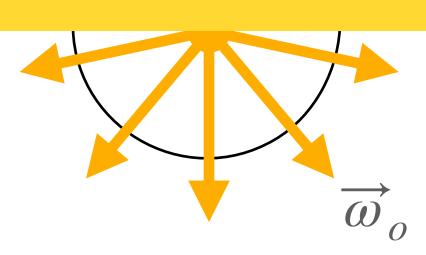




$$f_r(\mathbf{x}), \overrightarrow{\omega}_i, \overrightarrow{\omega}_o, \lambda) = \frac{\rho_{\lambda}}{\pi}$$

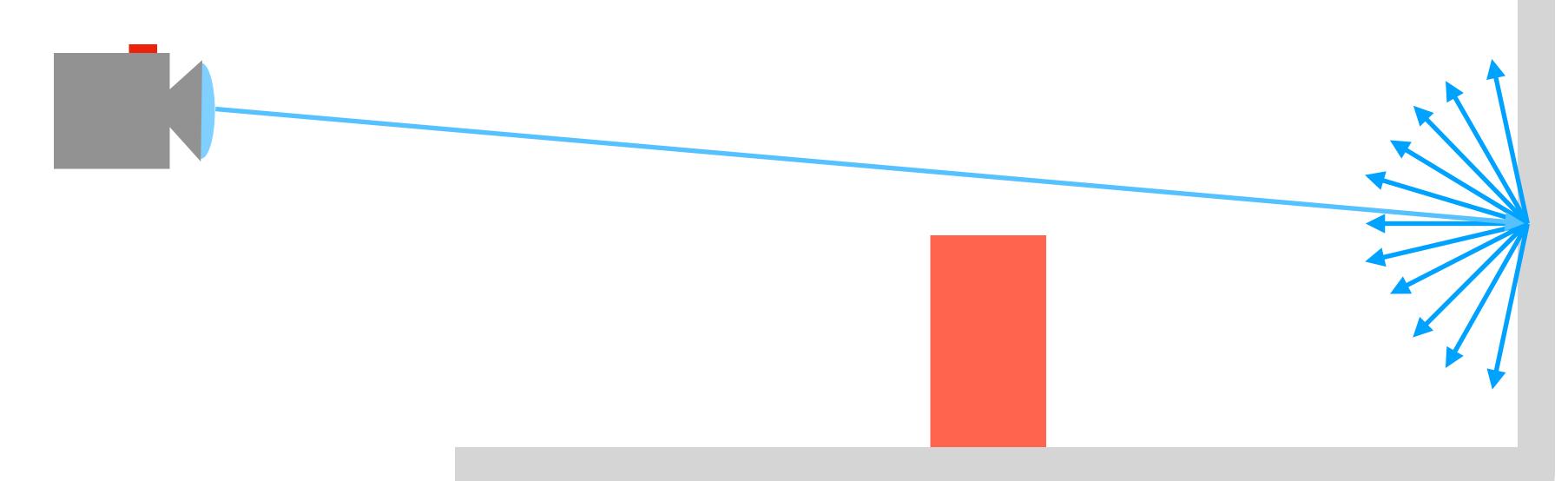
The Rendering Equation: Light Sources





$$I_e(\mathbf{x}, \overrightarrow{\omega}_o) = \frac{\Phi_{\lambda}}{\pi A}$$

Introduction



$$L_o(\mathbf{x}, \overrightarrow{\omega}_o, \lambda) = L_e(\mathbf{x}, \overrightarrow{\omega}_o, \lambda) + \int_{\Omega} f_r(\mathbf{x}, \overrightarrow{\omega}_i, \overrightarrow{\omega}_o) L_i(\mathbf{x}, \overrightarrow{\omega}_i, \lambda) | \overrightarrow{n} \cdot \overrightarrow{\omega}_i | d\omega_i$$

Introduction

• In a deterministic way, we should shoot *n* rays at each bounce for each location:

$$\sum_{k} n^{k}$$

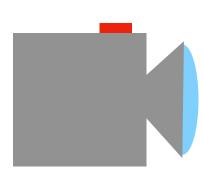
and this highly impractical.

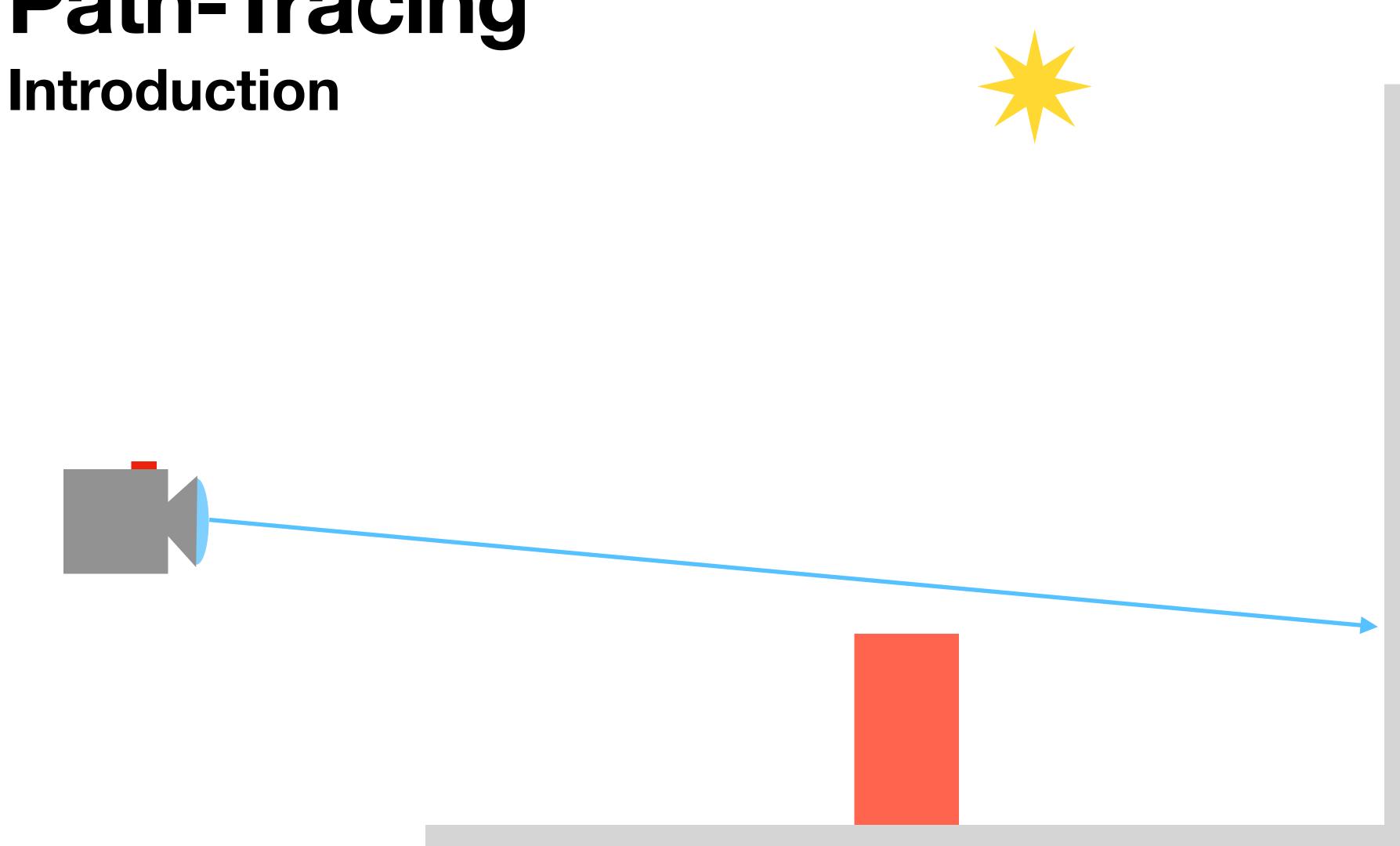
Our estimator is the classic estimator seen so far:

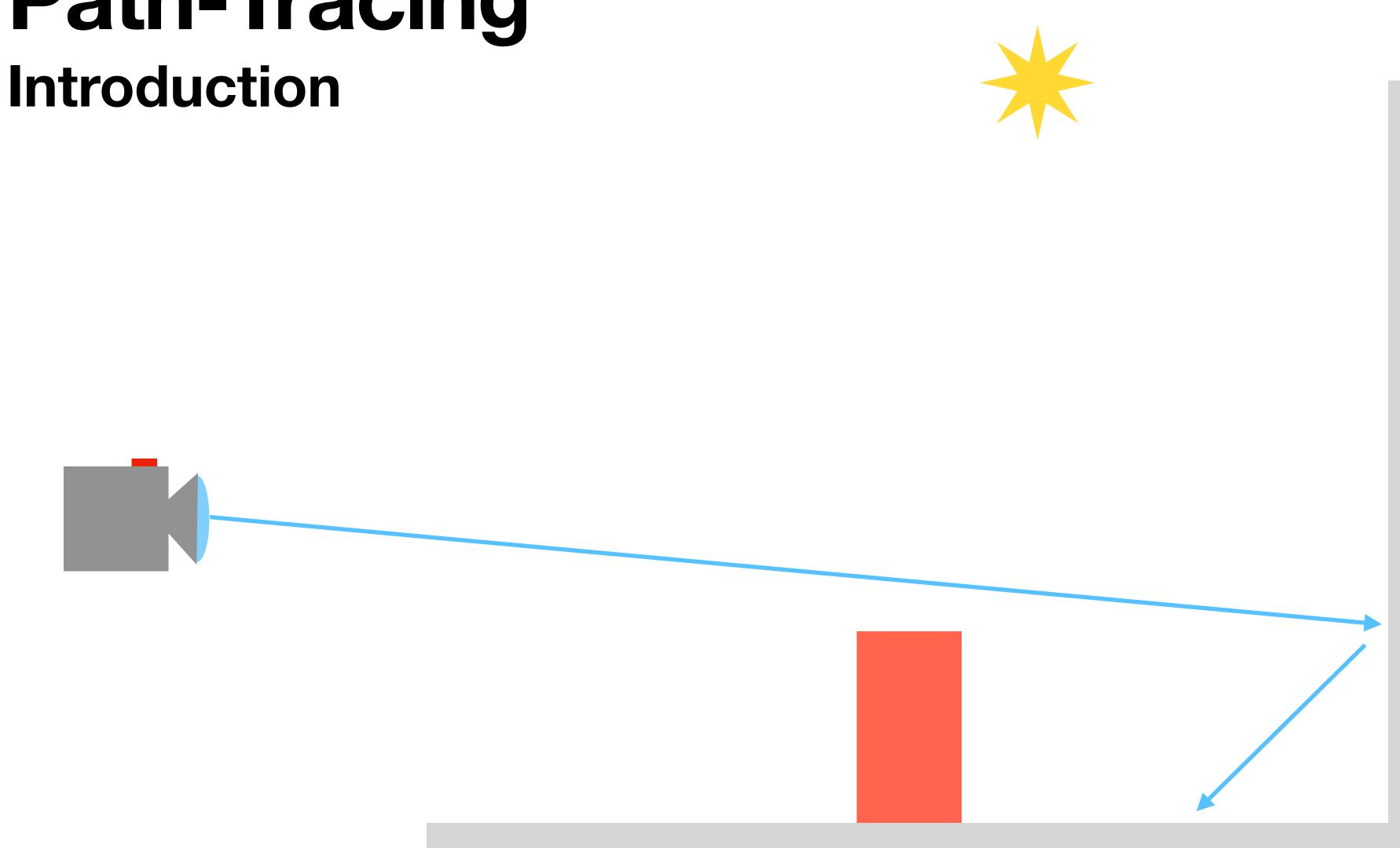
$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{n} Y_i$$

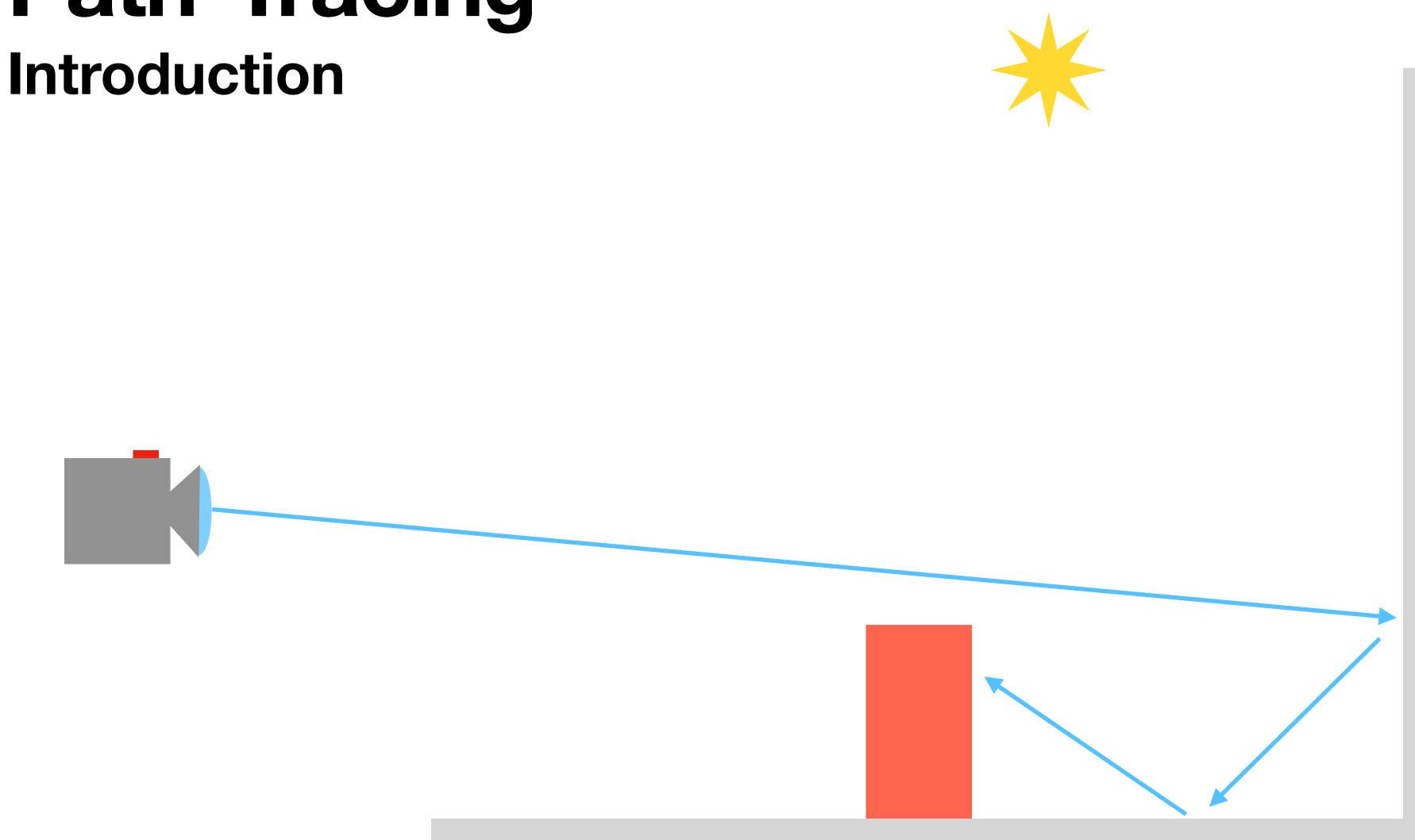
So We Generate Different Paths and We Sum Them Up

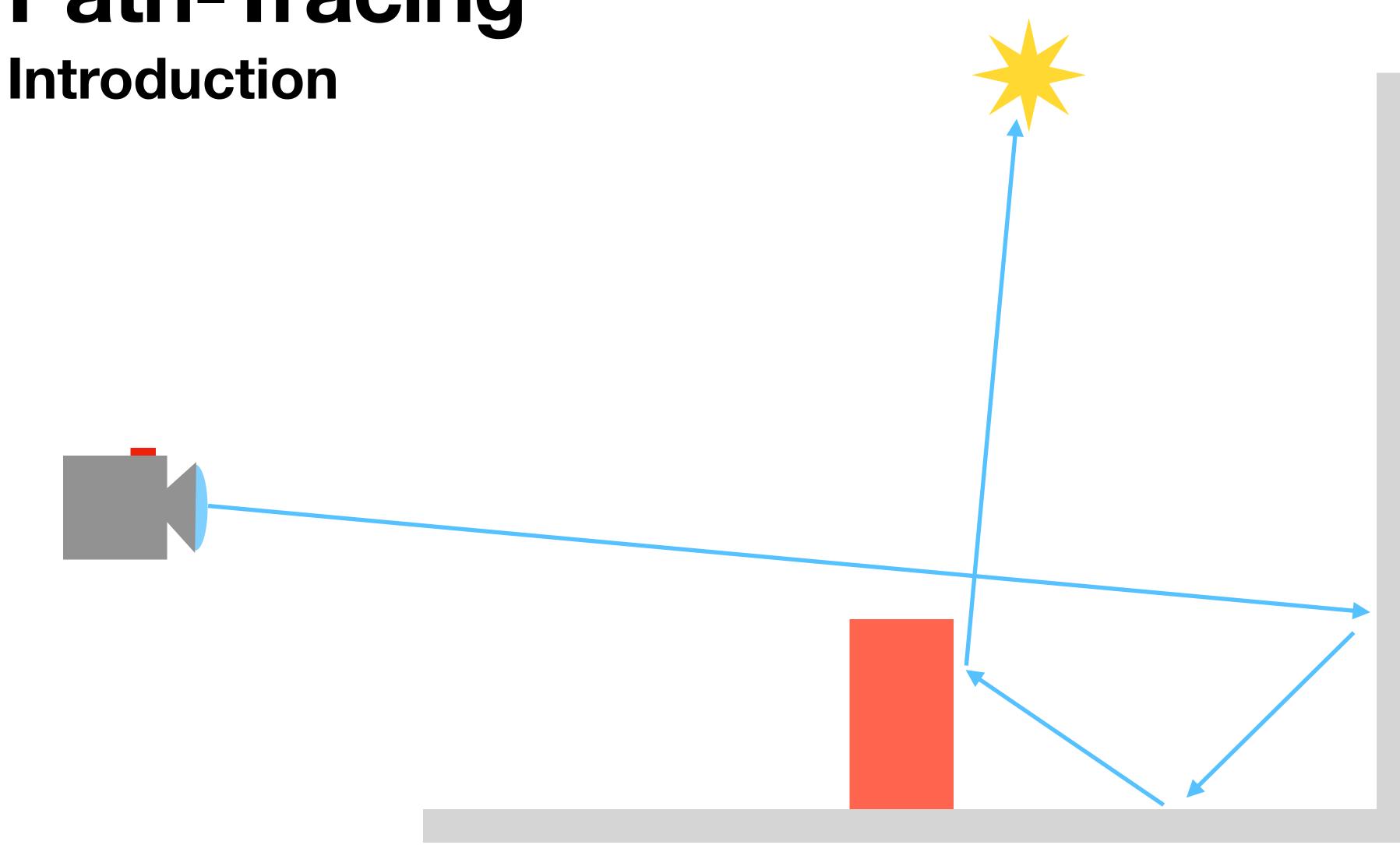
Introduction

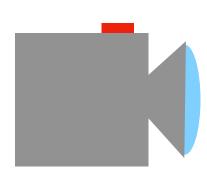


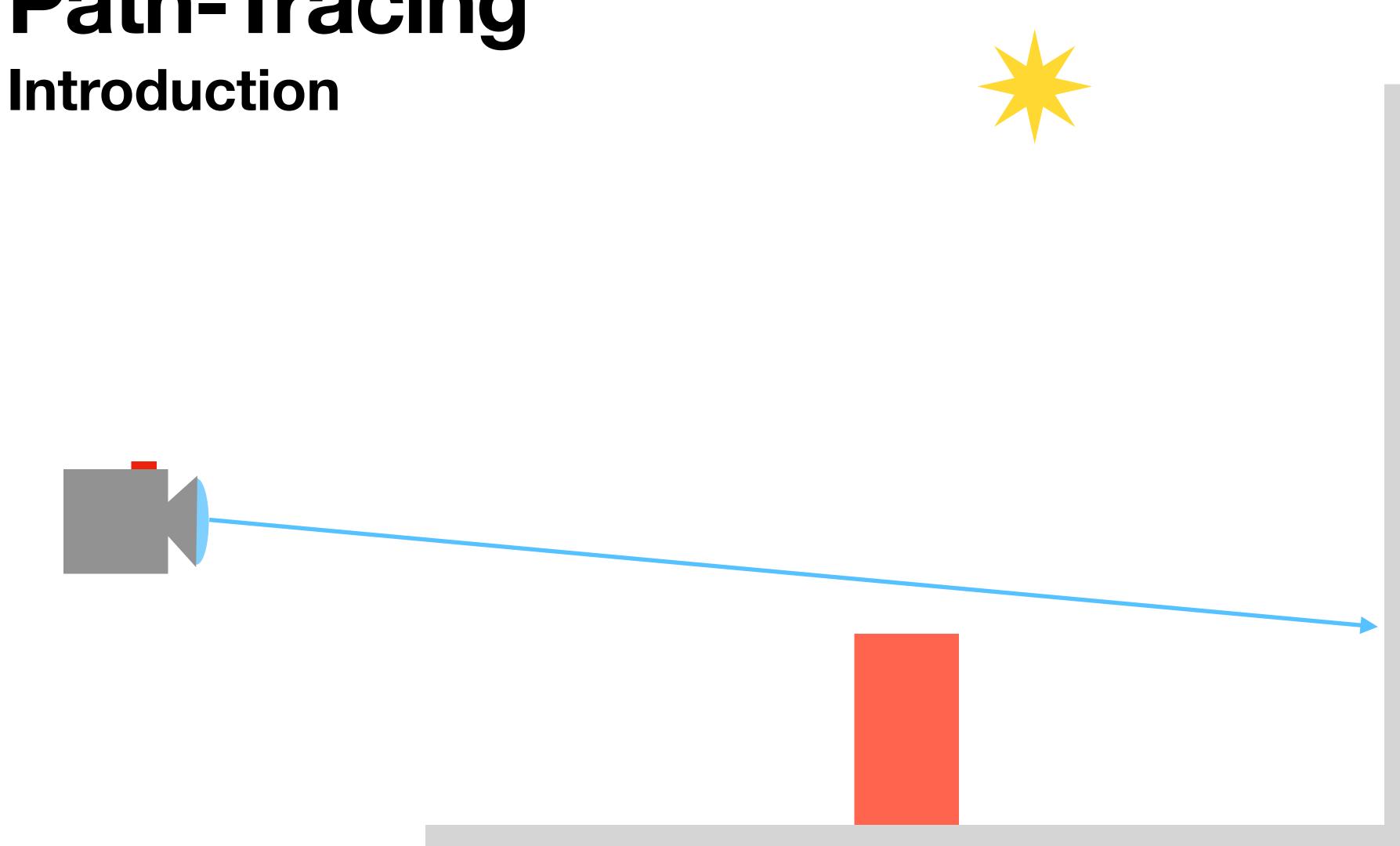


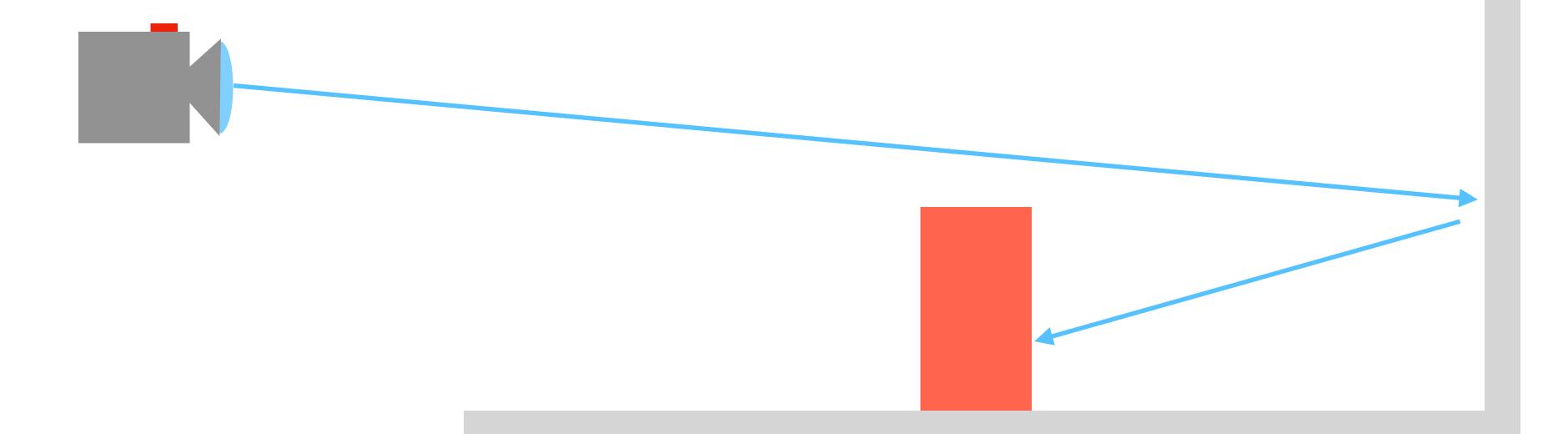


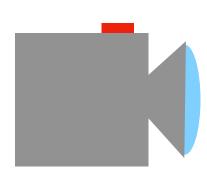


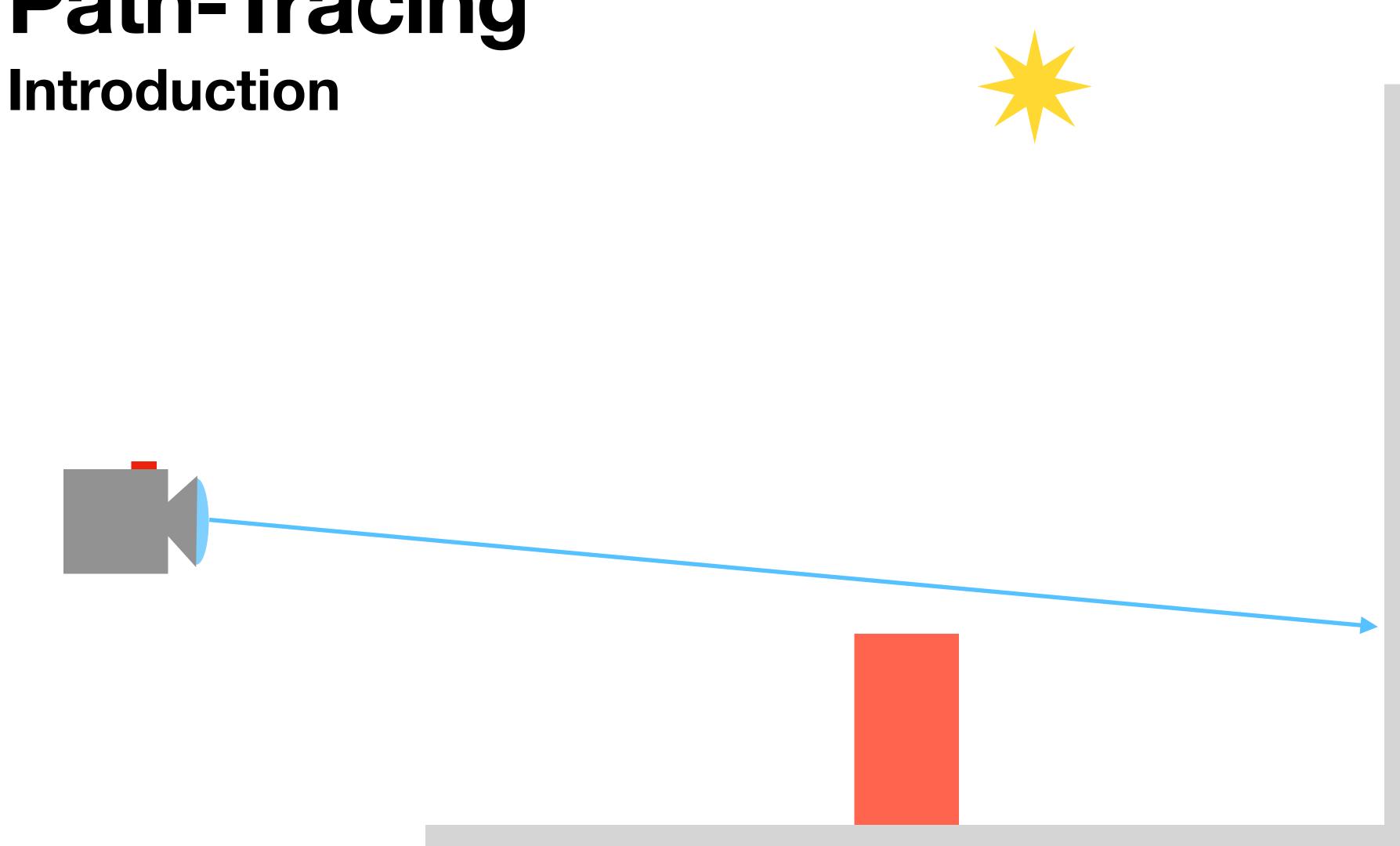


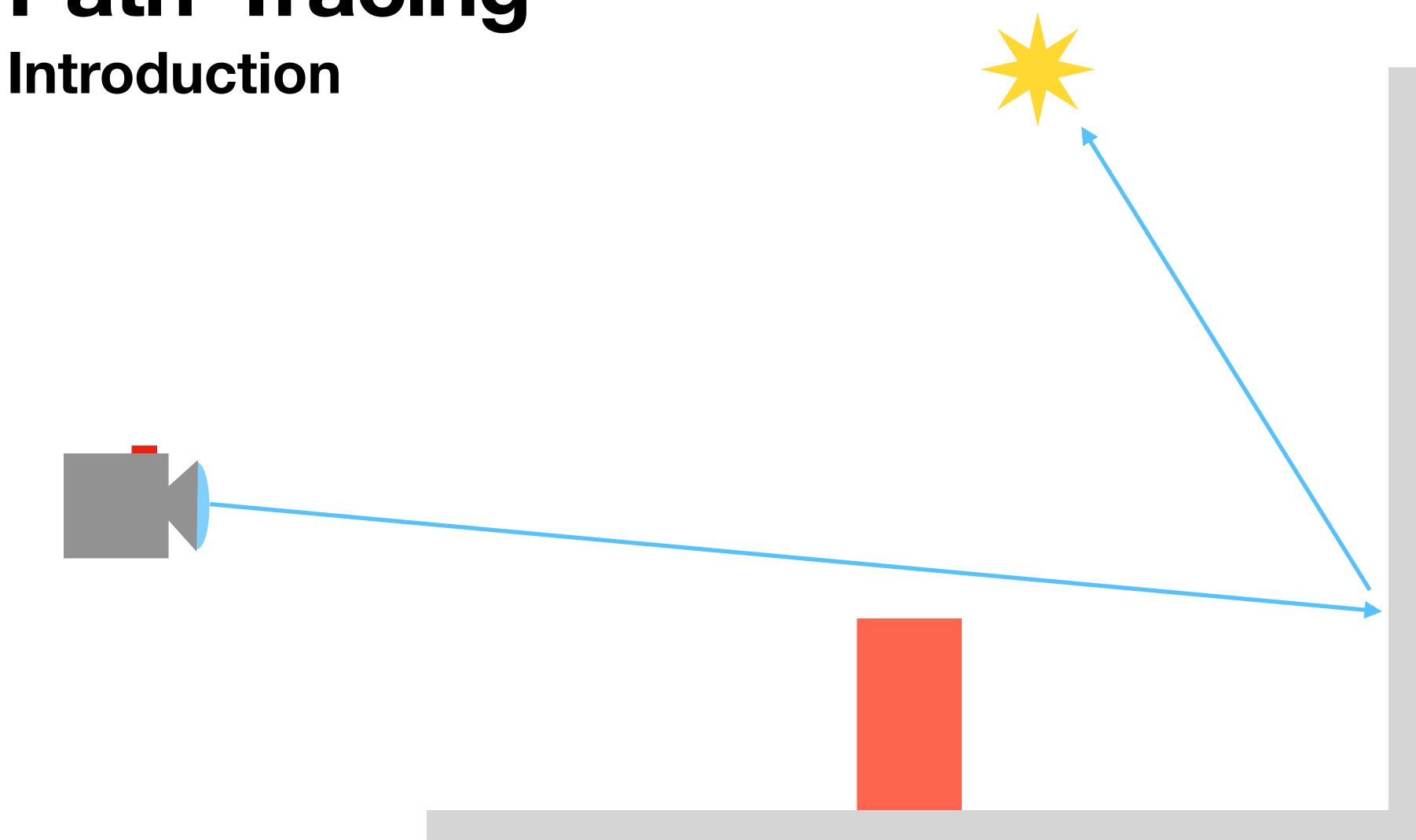


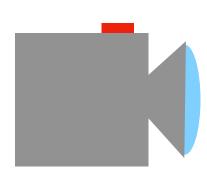


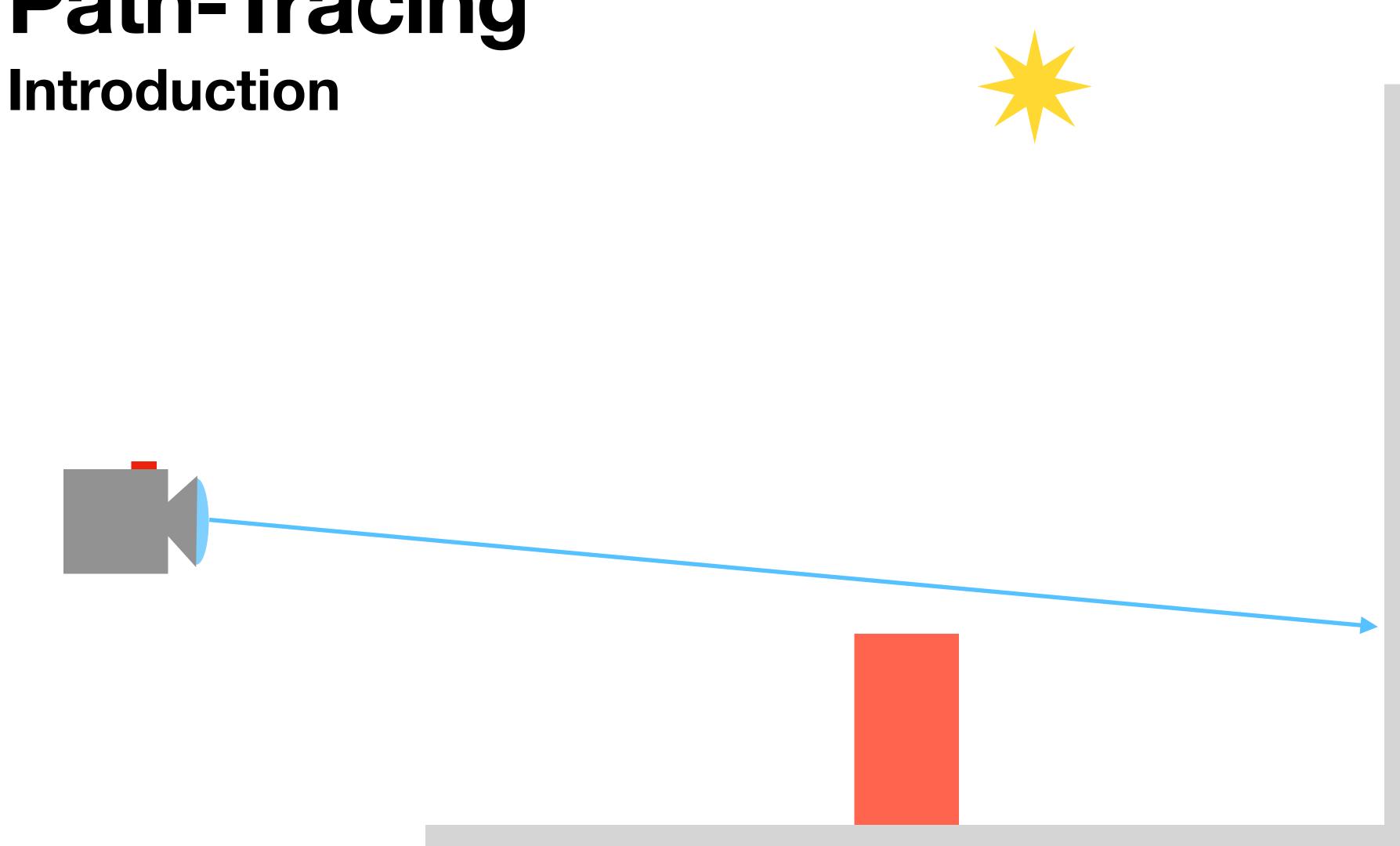


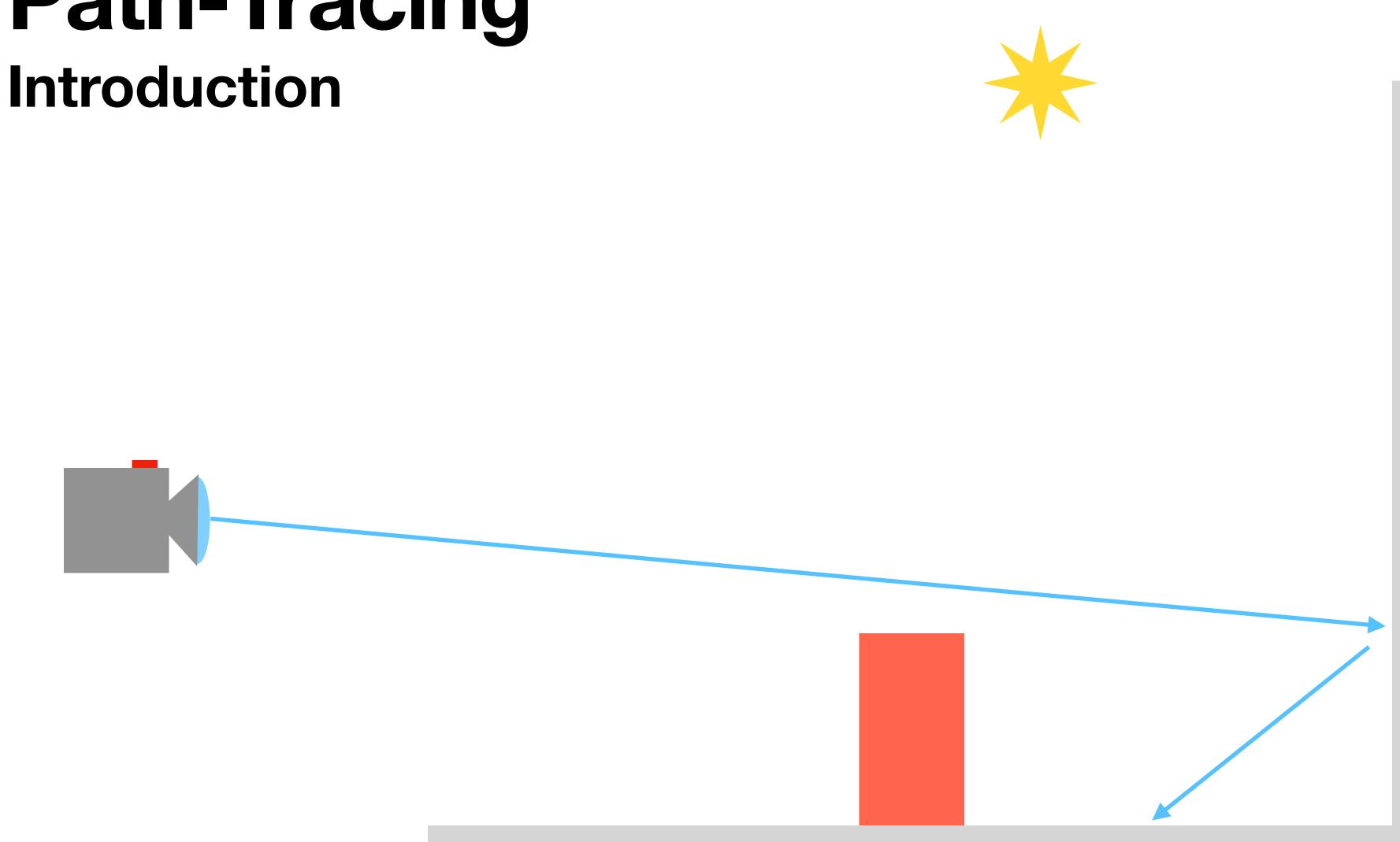


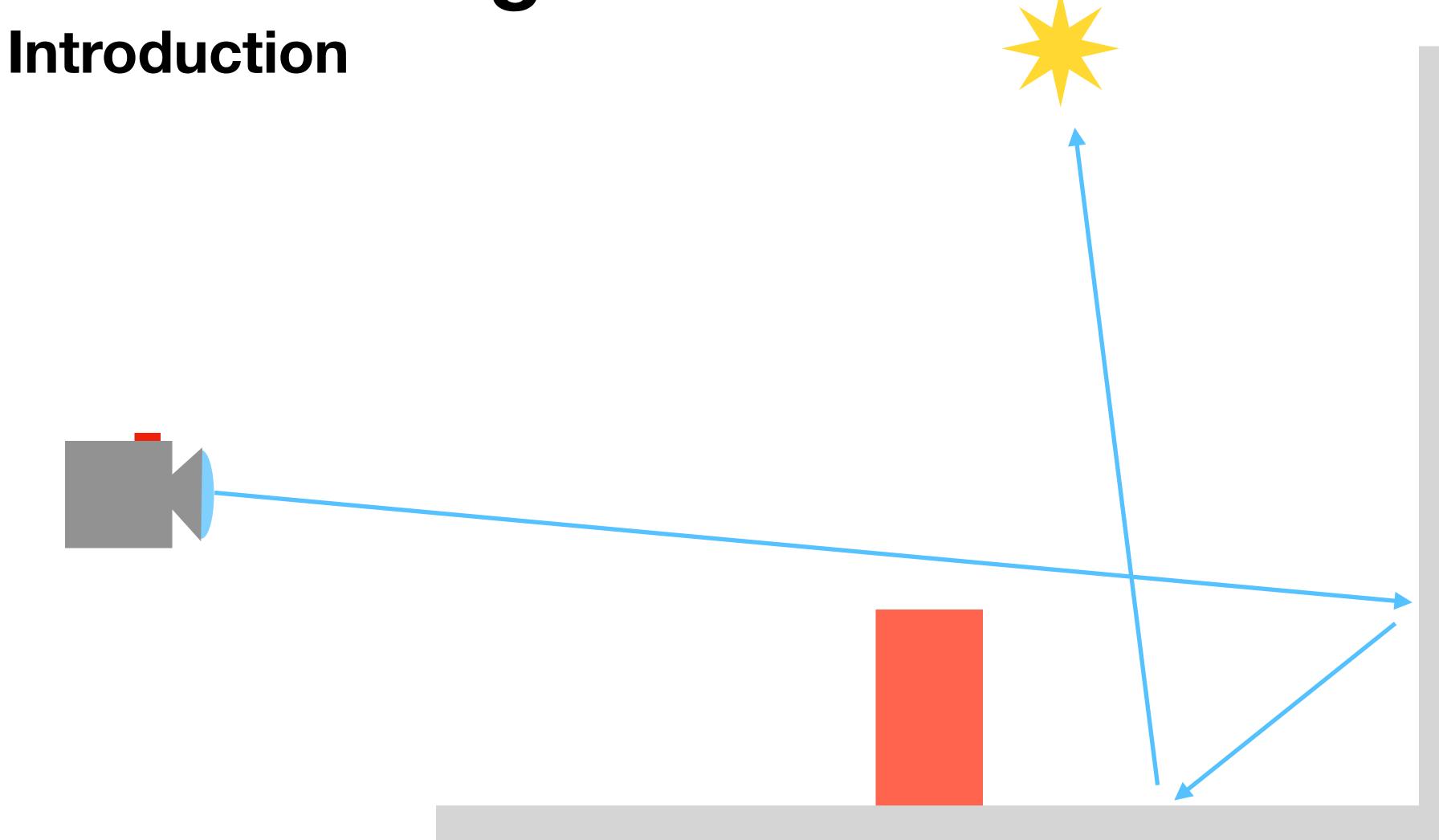












Monte-Carlo Techniques

- Techniques used:
 - Russian roulette —> to limit the length of paths.
 - Stratification.
 - Importance sampling:
 - 1D/2D distribution of light sources;
 - BRDF
 - Metropolis.

Path-Tracing Sampling the BRDF

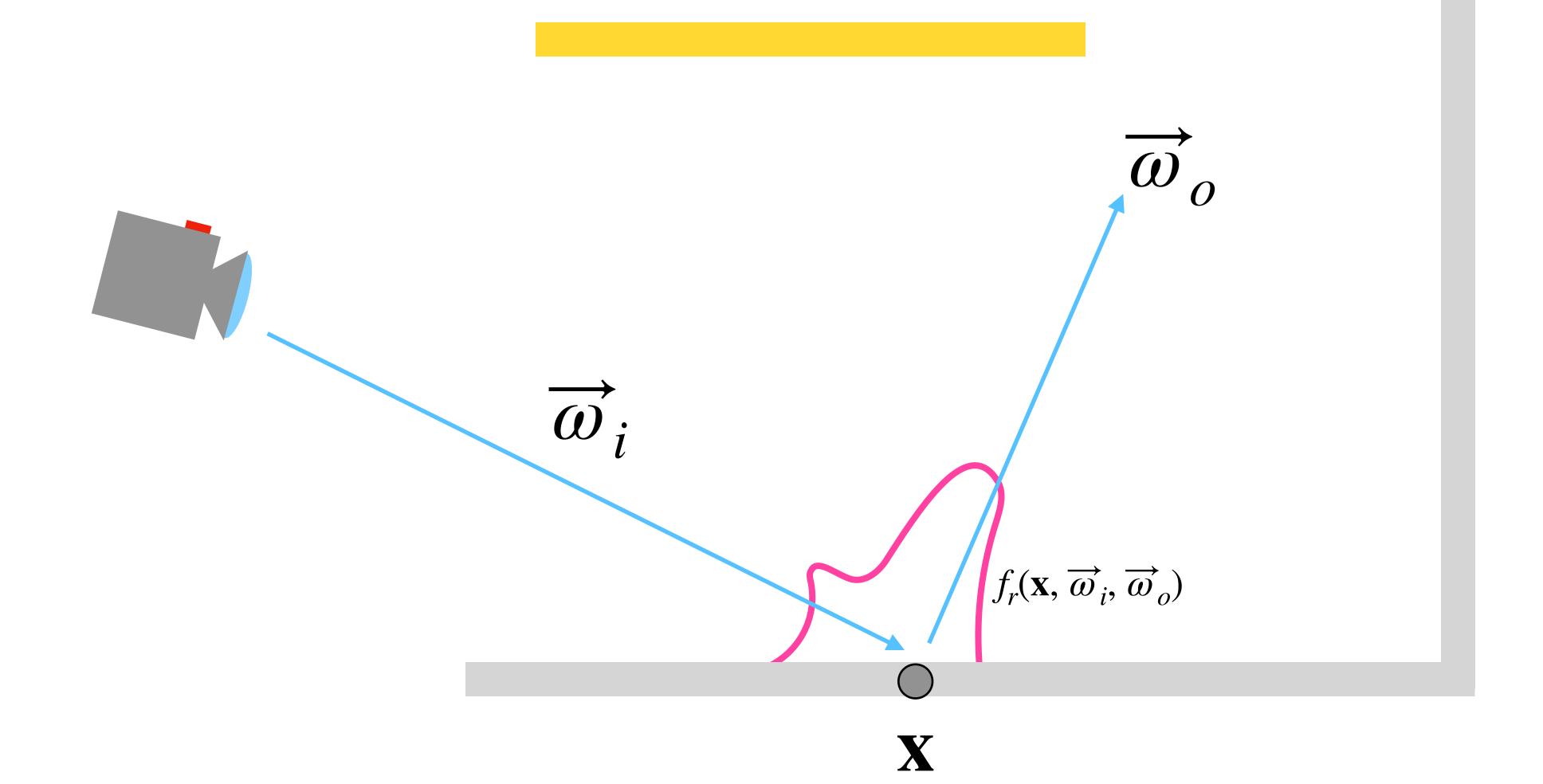
• To sample the BRDF, we generate $\overrightarrow{\omega}_i$ directions randomly chosen according to its PDF:

$$p(\overrightarrow{\omega}_i) \propto f_r(\mathbf{x}, \overrightarrow{\omega}_i, \overrightarrow{\omega}_o).$$

• So, we compute our estimate as:

$$L_o(\mathbf{x}, \overrightarrow{\omega}_o) \approx \frac{f_r(\mathbf{x}, \overrightarrow{\omega}_i, \overrightarrow{\omega}_o) L_i(\mathbf{x}, \overrightarrow{\omega}_i)}{p(\overrightarrow{\omega}_i)}.$$

Sampling the BRDF



Path-Tracing Sampling the BRDF

Sampling the Light Source

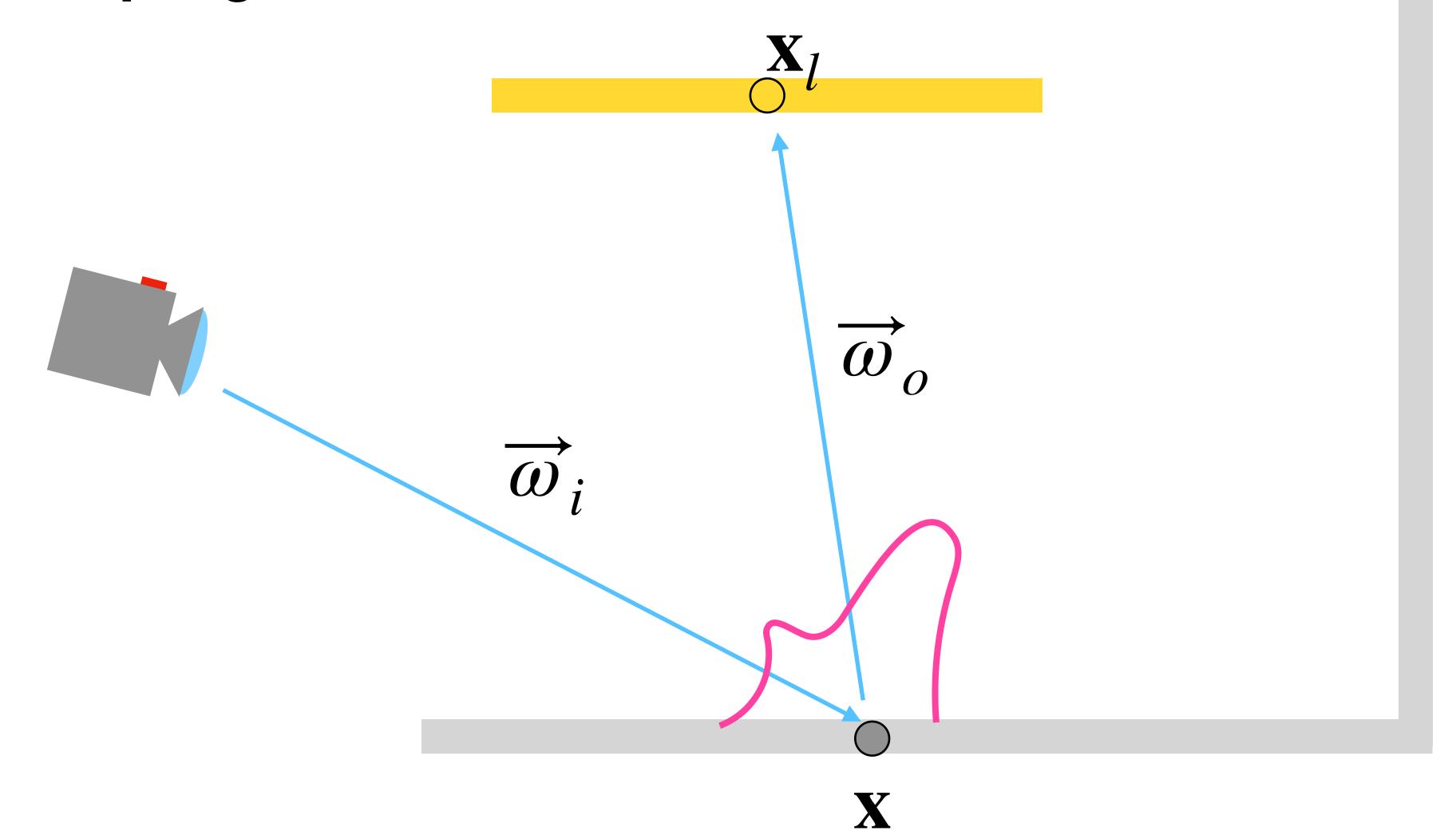
• To sample the light source, we generate random points, \mathbf{x}_l , on the light source according to its PDF:

$$p(\mathbf{x}_l)$$
.

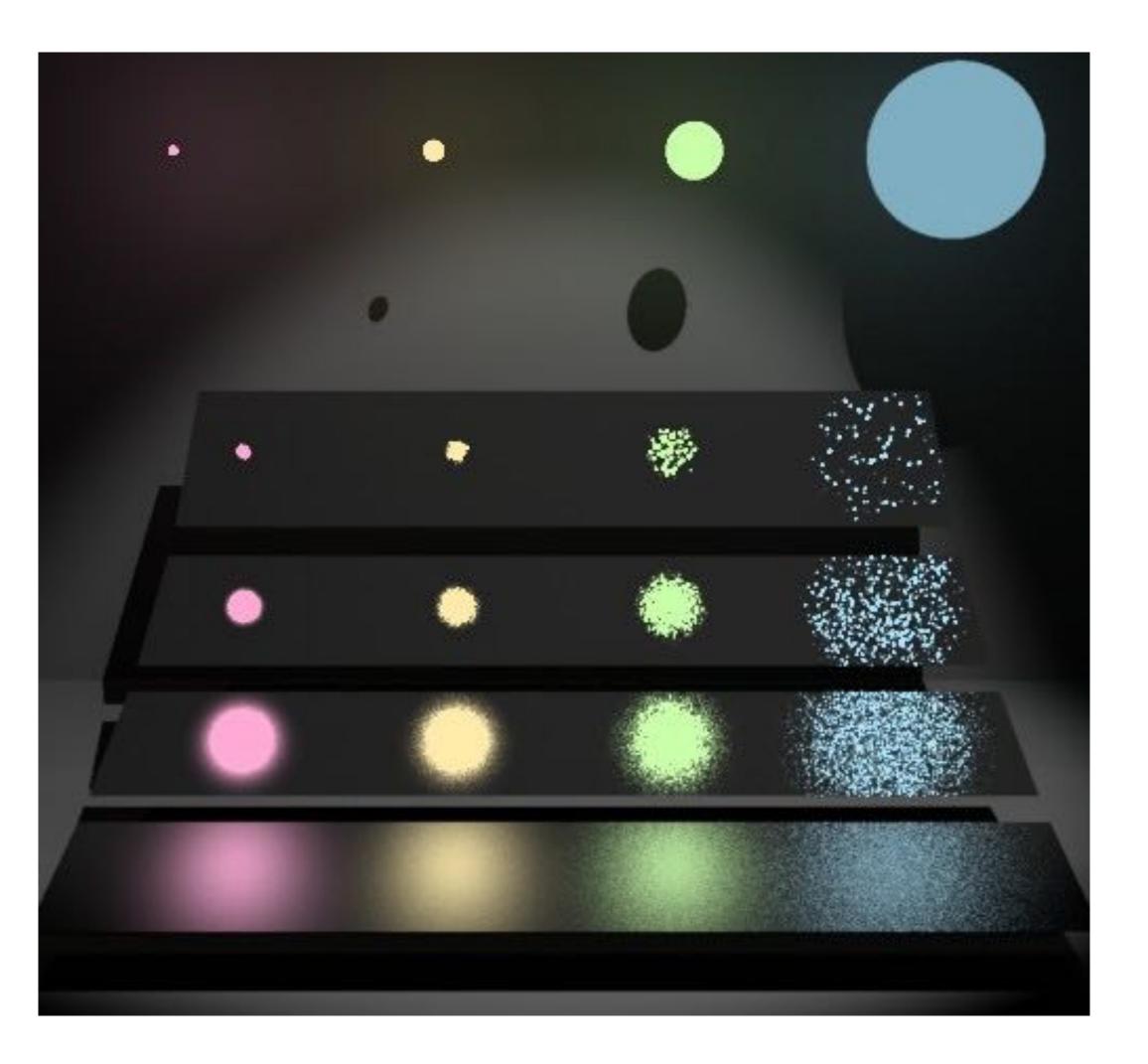
So, we compute our estimate as:

$$L_o(\mathbf{x}, \overrightarrow{\omega}_o) \approx \frac{f_r(\mathbf{x}, \overrightarrow{\omega}_i', \overrightarrow{\omega}_o) L_i(\mathbf{x}, \overrightarrow{\omega}_i')}{p(\mathbf{x}_l)} \qquad \overrightarrow{\omega}_i' = \frac{\mathbf{x}_l - \mathbf{x}}{\|\mathbf{x}_l - \mathbf{x}\|}.$$

Sampling the BRDF



Path-Tracing Sampling the Light Source



Multiple Importance Sampling (MIS)

- The naive solution would be to average the two estimations:
 - However, variance is additive, so we do not decrease it!
- The main idea of Multiple Importance Sampling (MIS) is to:
 - Draw samples from different distributions;
 - Mix all these samples using weights:
 - These weights should remove large peaks of variance when we have differences between our estimation and the distribution.

Path-Tracing MIS

- In general, we may have K distributions, q_i , and we generate n_j samples $\mathbf{x}_{i,j} \sim q_j$ for each distribution.
- In this case, our estimation is:

$$\hat{\mu} = \sum_{j=1}^{K} \frac{1}{n_j} \sum_{i=1}^{n_j} \omega_j(\mathbf{x}_{i,j}) \frac{f(\mathbf{x}_{i,j})p(\mathbf{x}_{i,j})}{q_j(\mathbf{x}_{i,j})}.$$

• The weighting function, $\omega(\mathbf{x}) \ge 0$, is normalized:

$$\sum_{j=1}^{K} \omega(\mathbf{x}) = 1.$$

• Balance heuristic $\omega_j(\mathbf{x}) \propto n_j q_j(\mathbf{x})$:

$$\omega_j(\mathbf{x}) = \frac{n_j q_j(\mathbf{x})}{\sum_{i=1}^K n_i q_i(\mathbf{x})}.$$

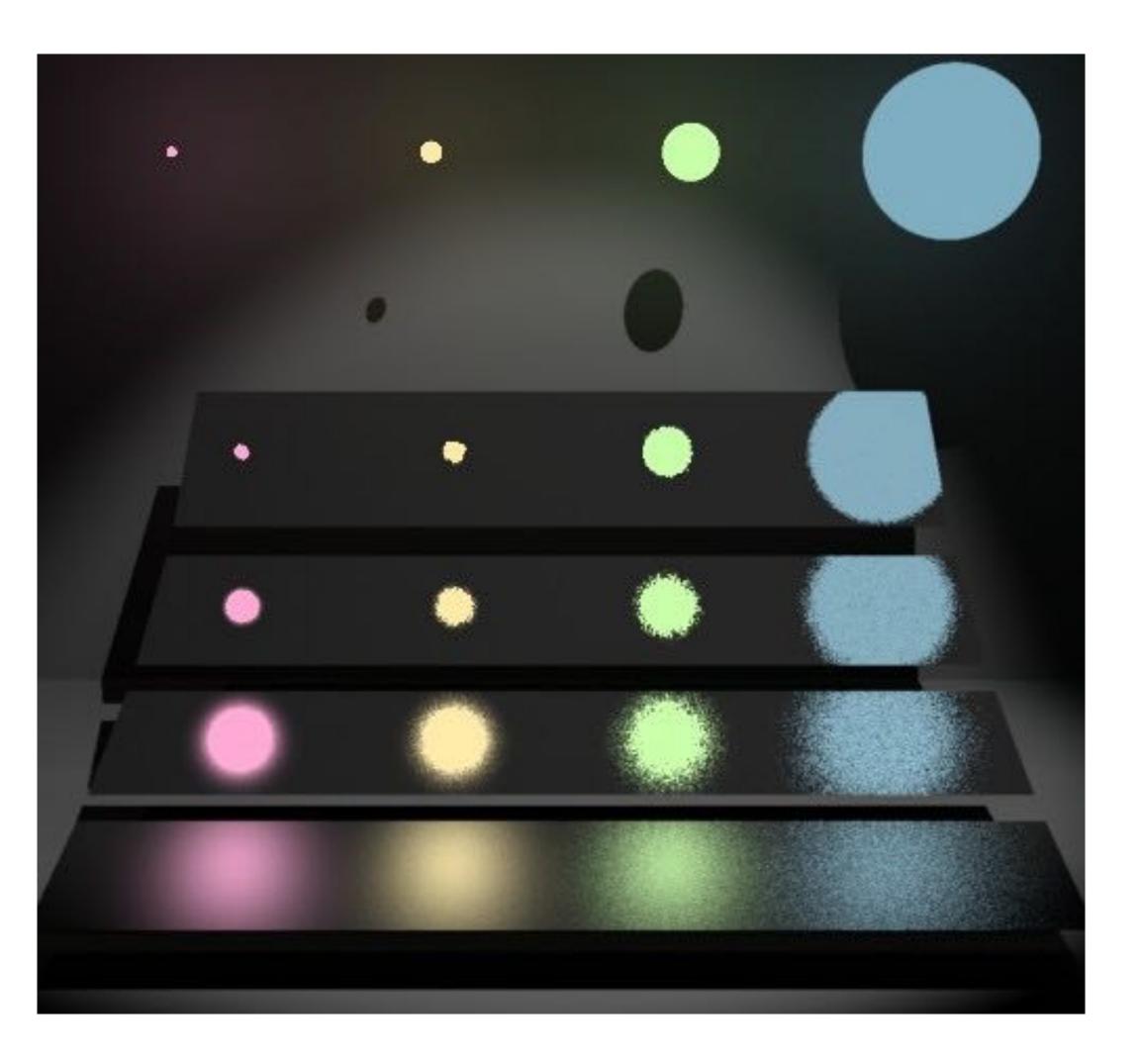
Path-Tracing MIS

What's about its variance?

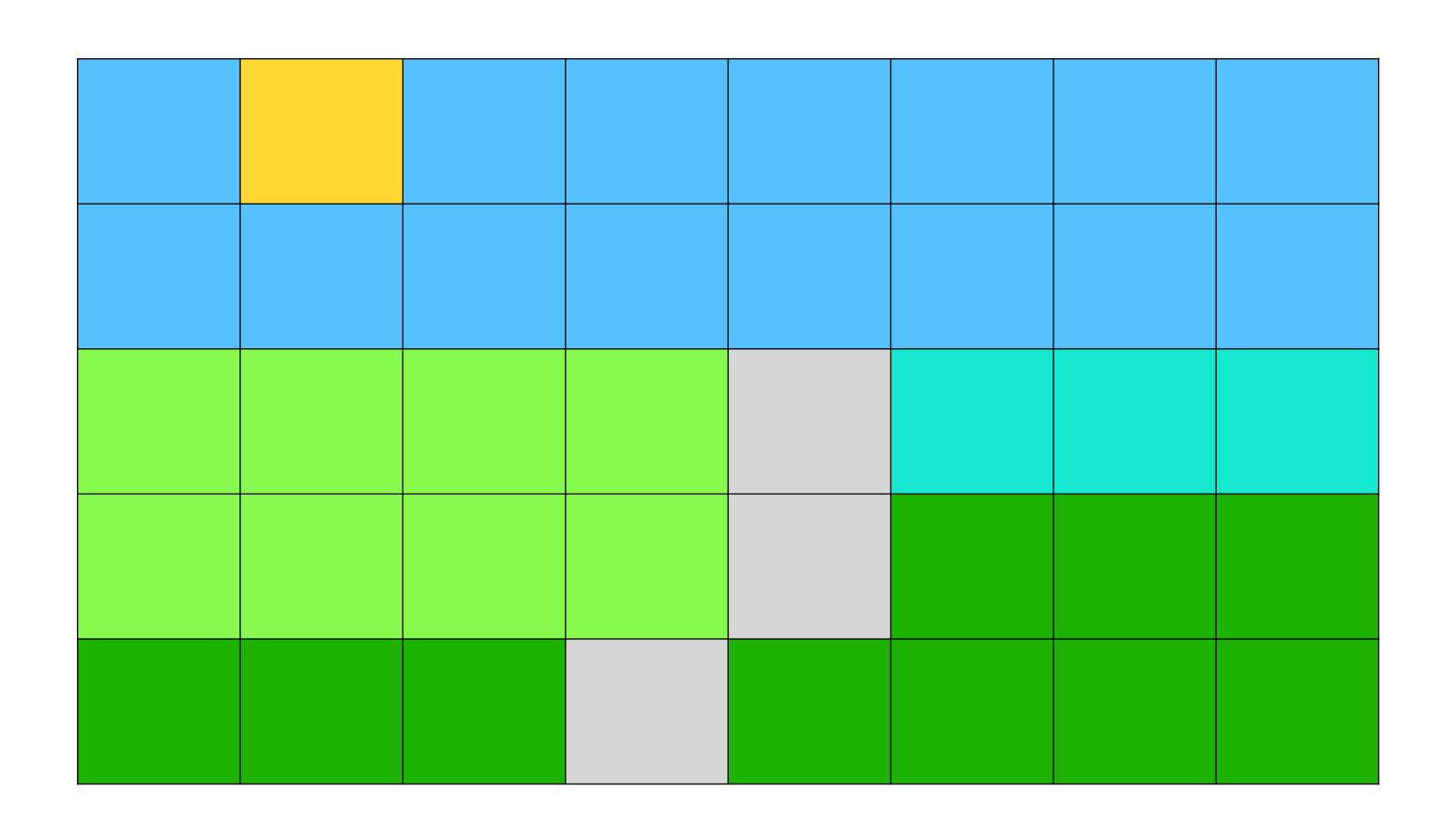
$$\operatorname{Var}(\hat{\mu}_{BH}) = \operatorname{Var}(\hat{\mu}) + \left(\frac{1}{\min_{j} n_{j}} - \frac{1}{\sum_{j} n_{j}}\right) \mu^{2}.$$

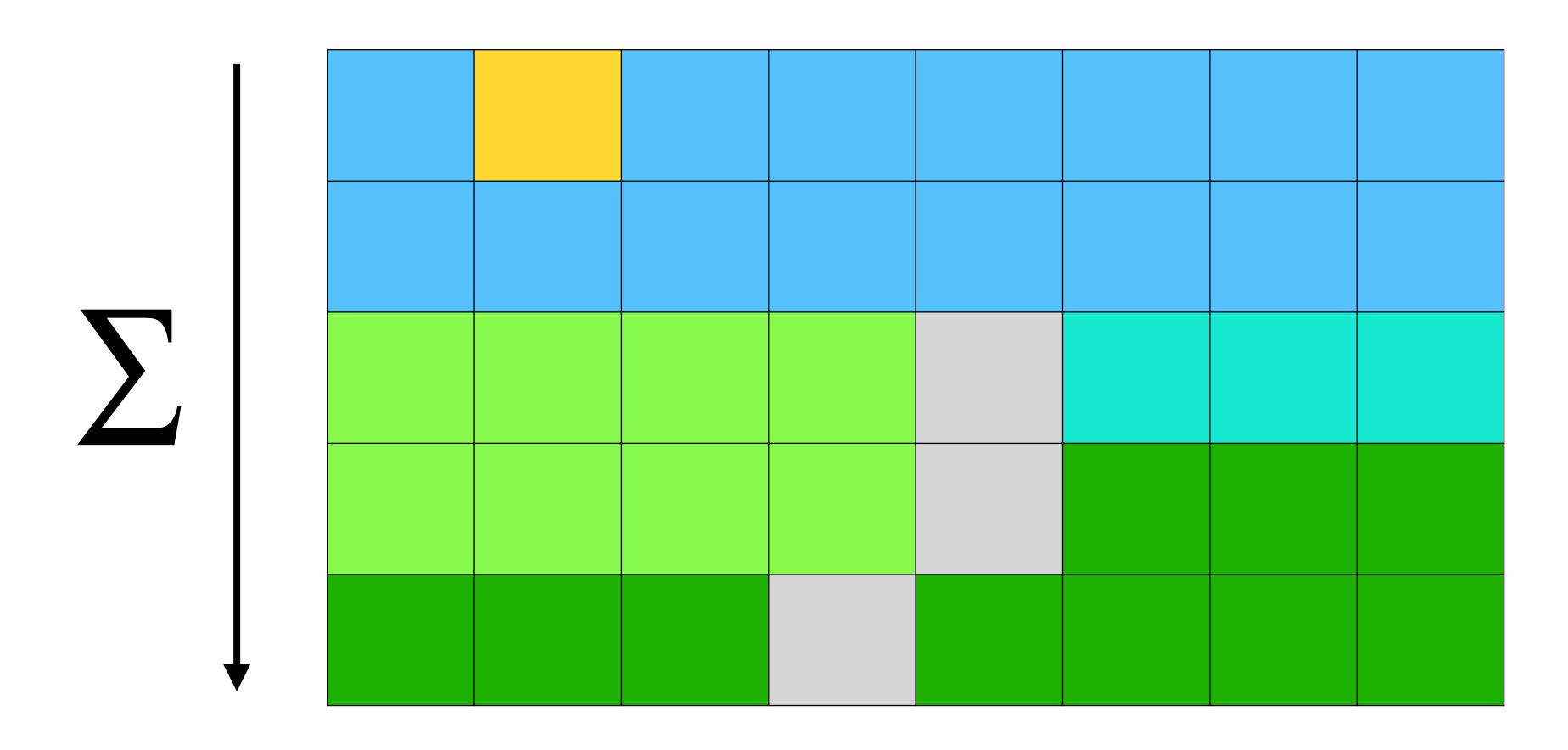
- Other heuristics? Yes
 - Power Heuristic: $\omega_j(\mathbf{x}) \propto \left(n_j q_j(\mathbf{x})\right)^{\beta} \quad \beta \geq 1$.

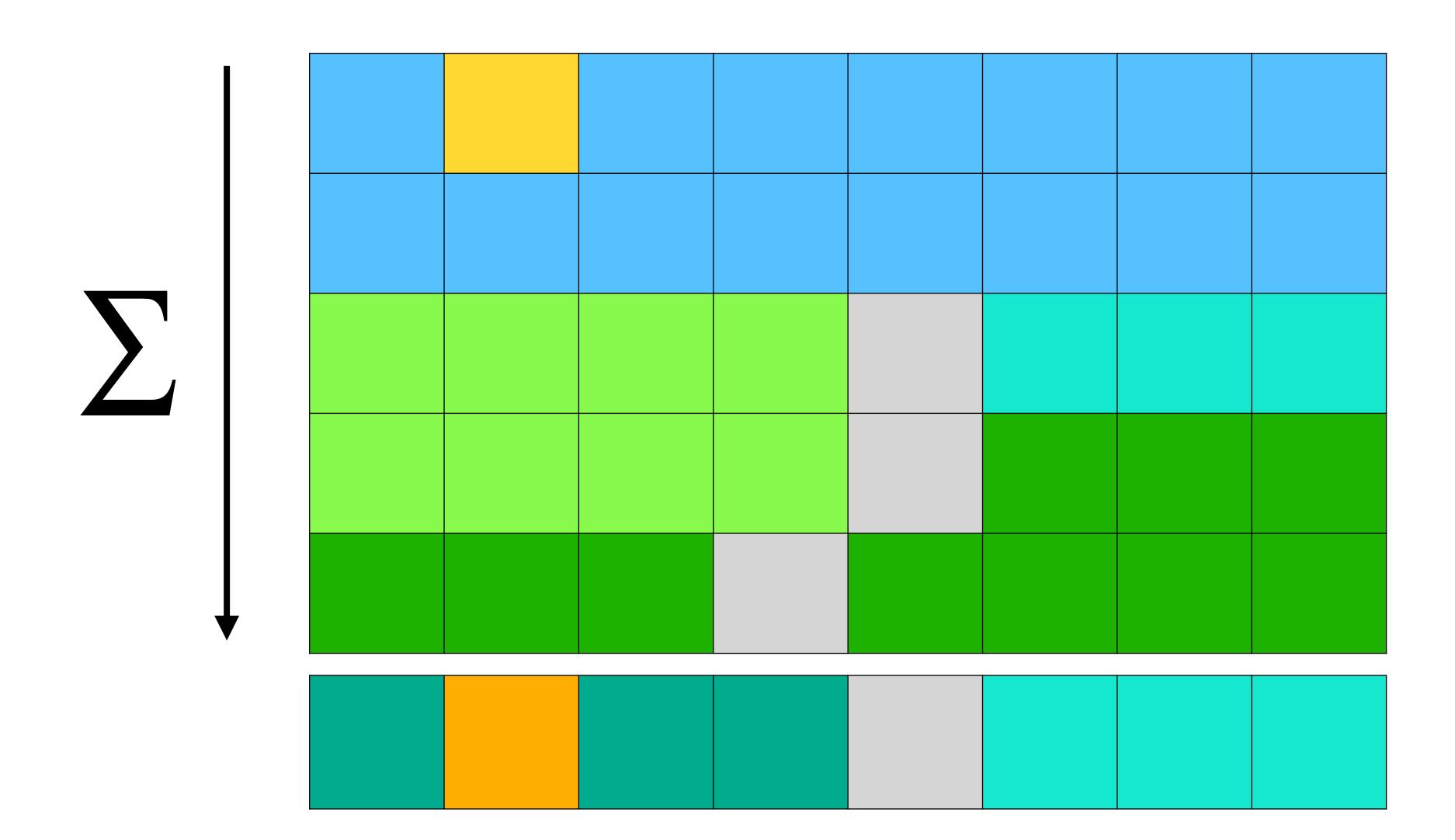
Path-Tracing MIS Example



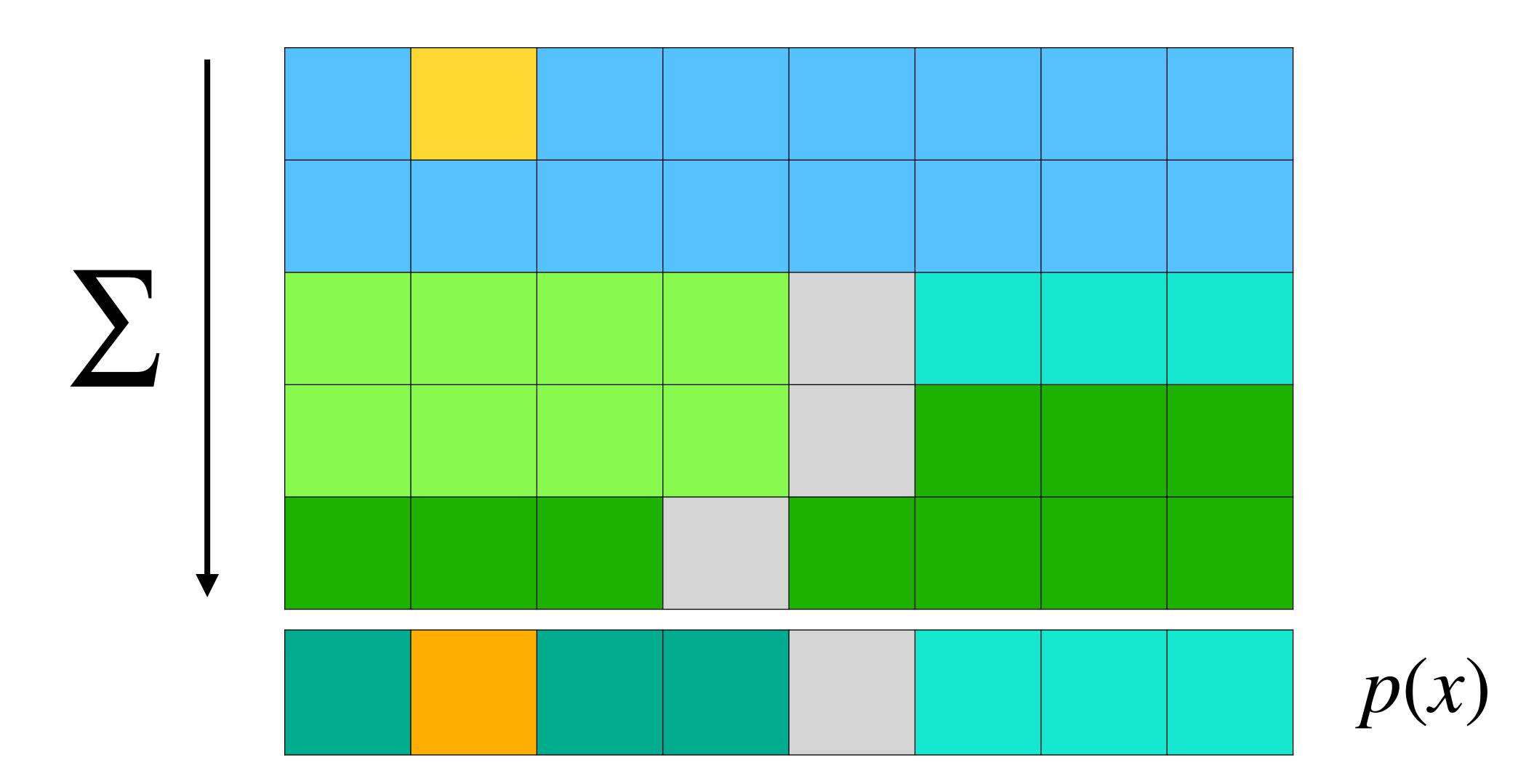
 Typically, to have convincing light sources, they have to be spatially varying possibly using scene-referred photographs (i.e., calibrated):



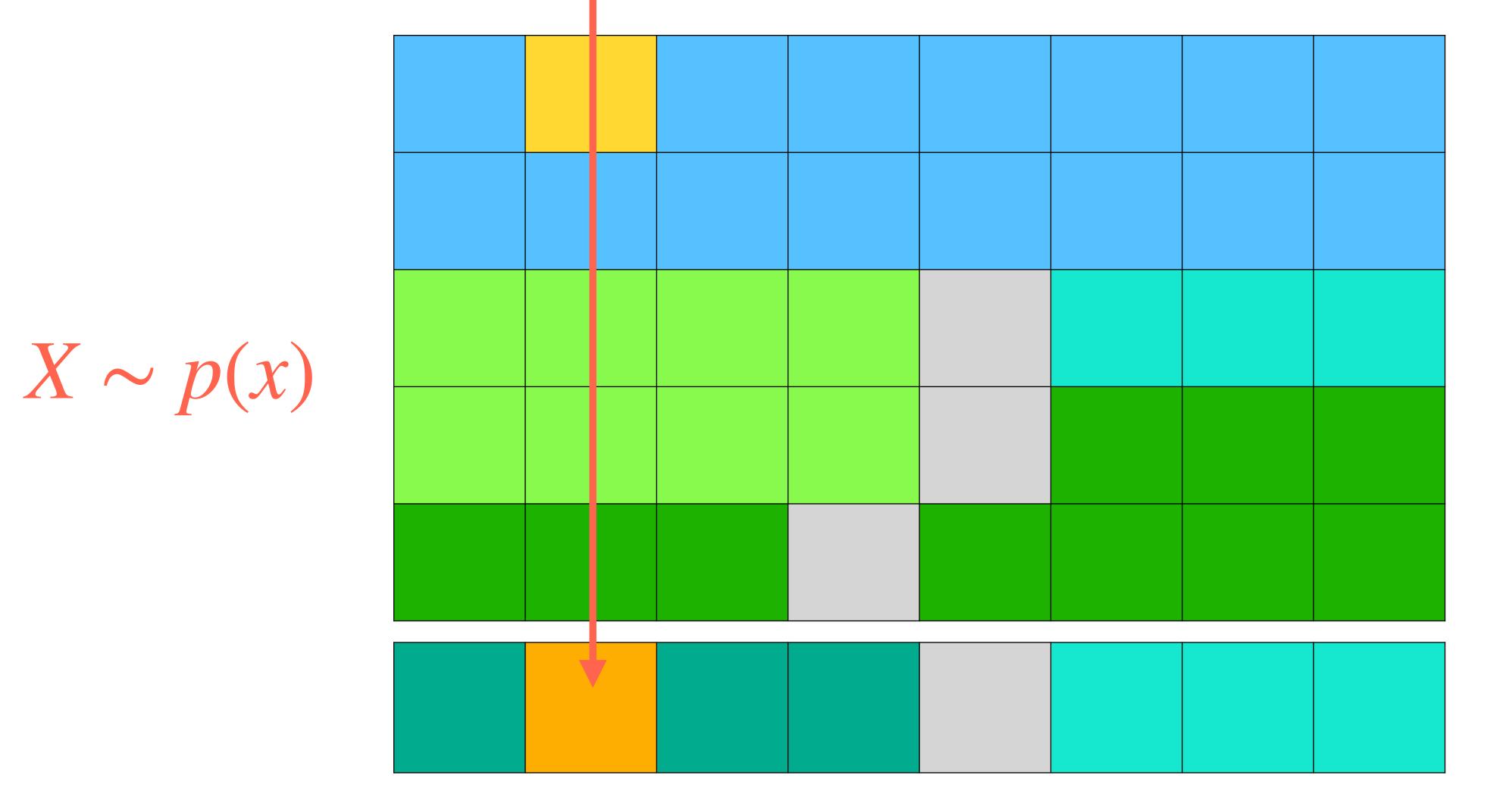


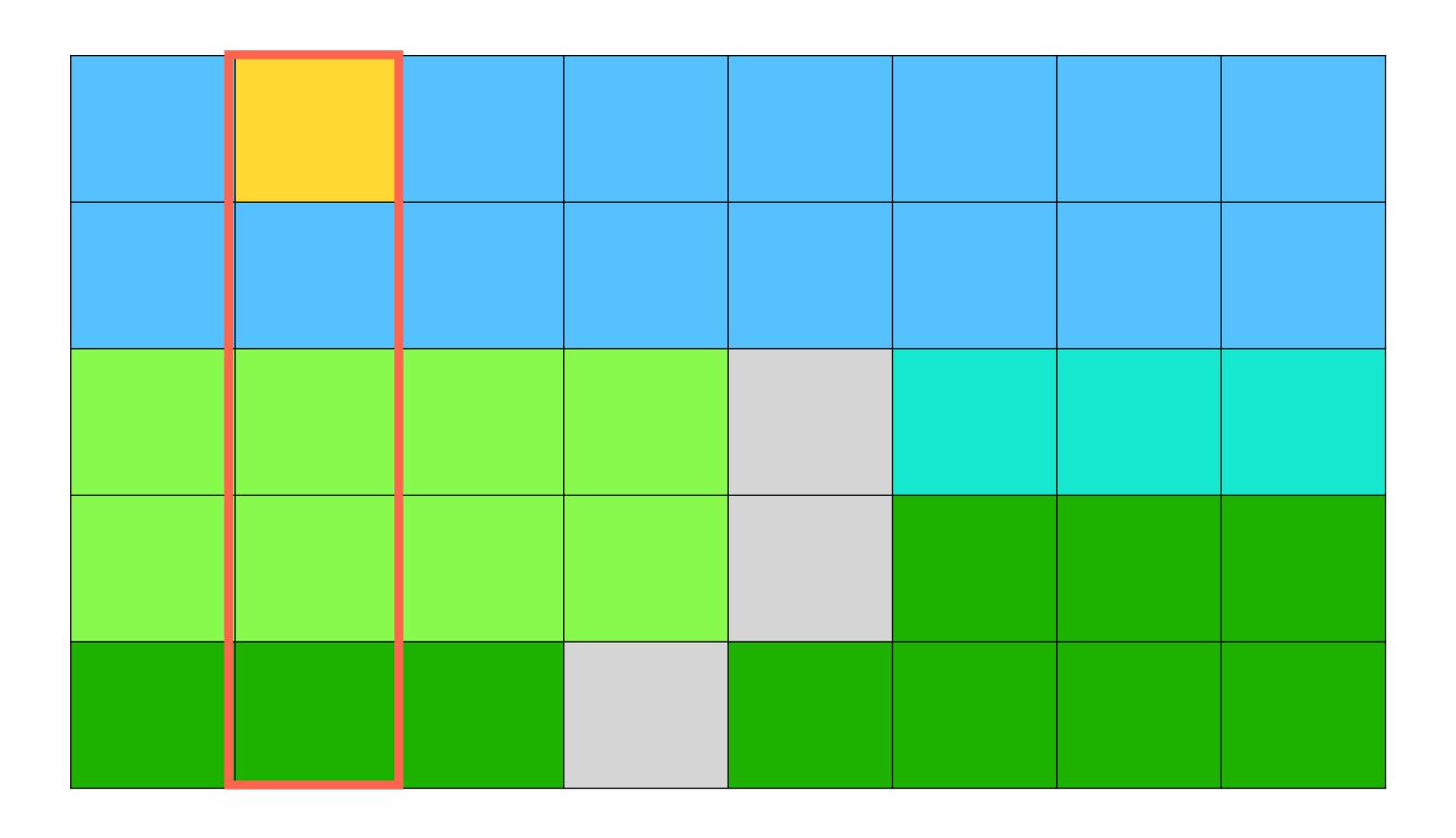


Complex Light Sources



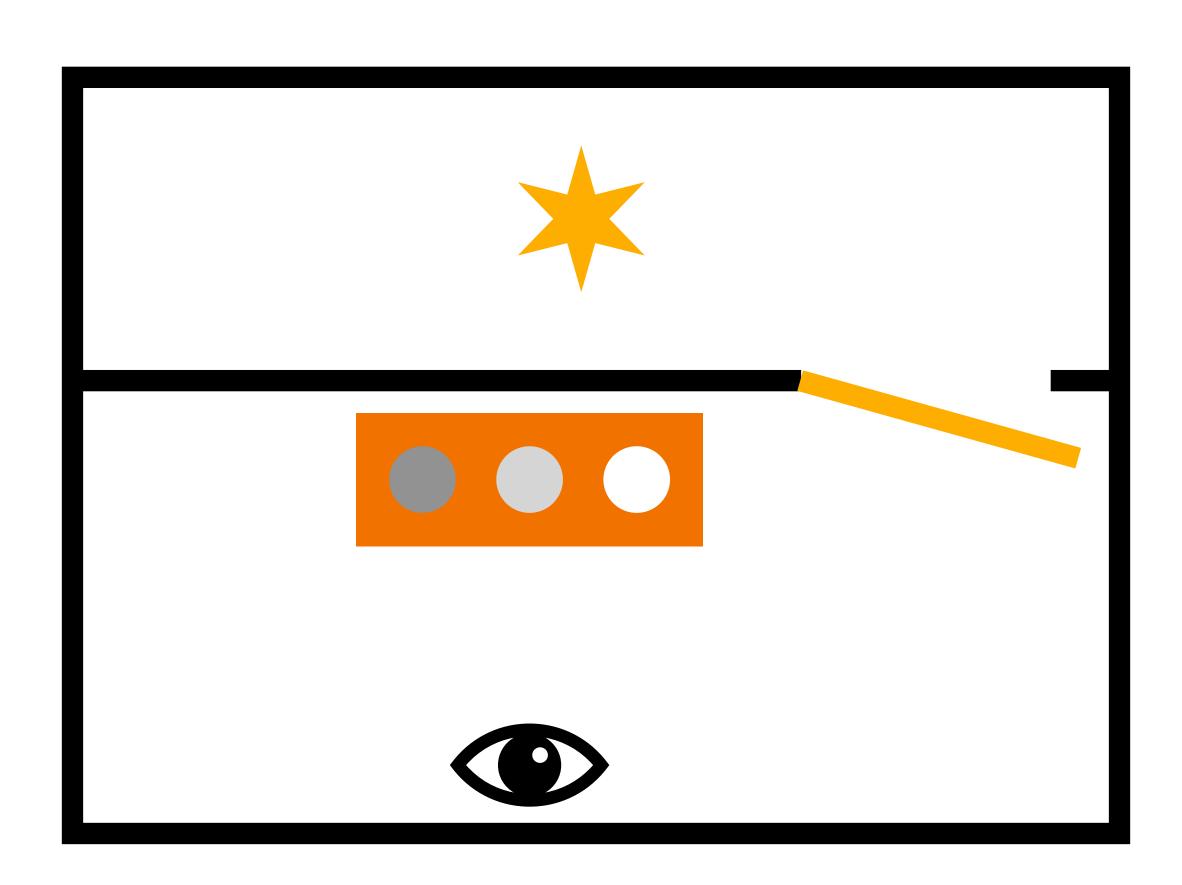
Complex Light Sources





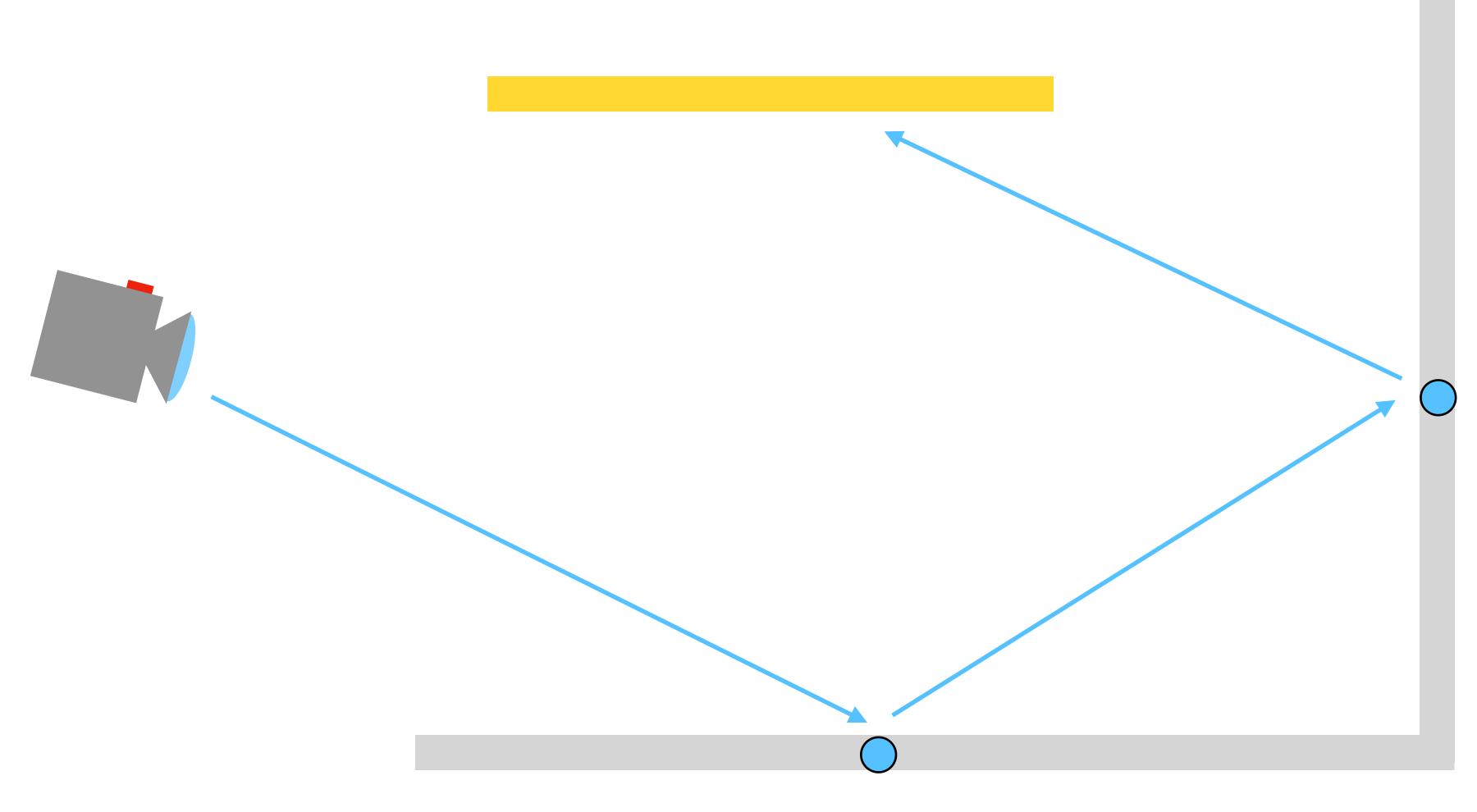
p(y | x)

Complex Light Sources: Example

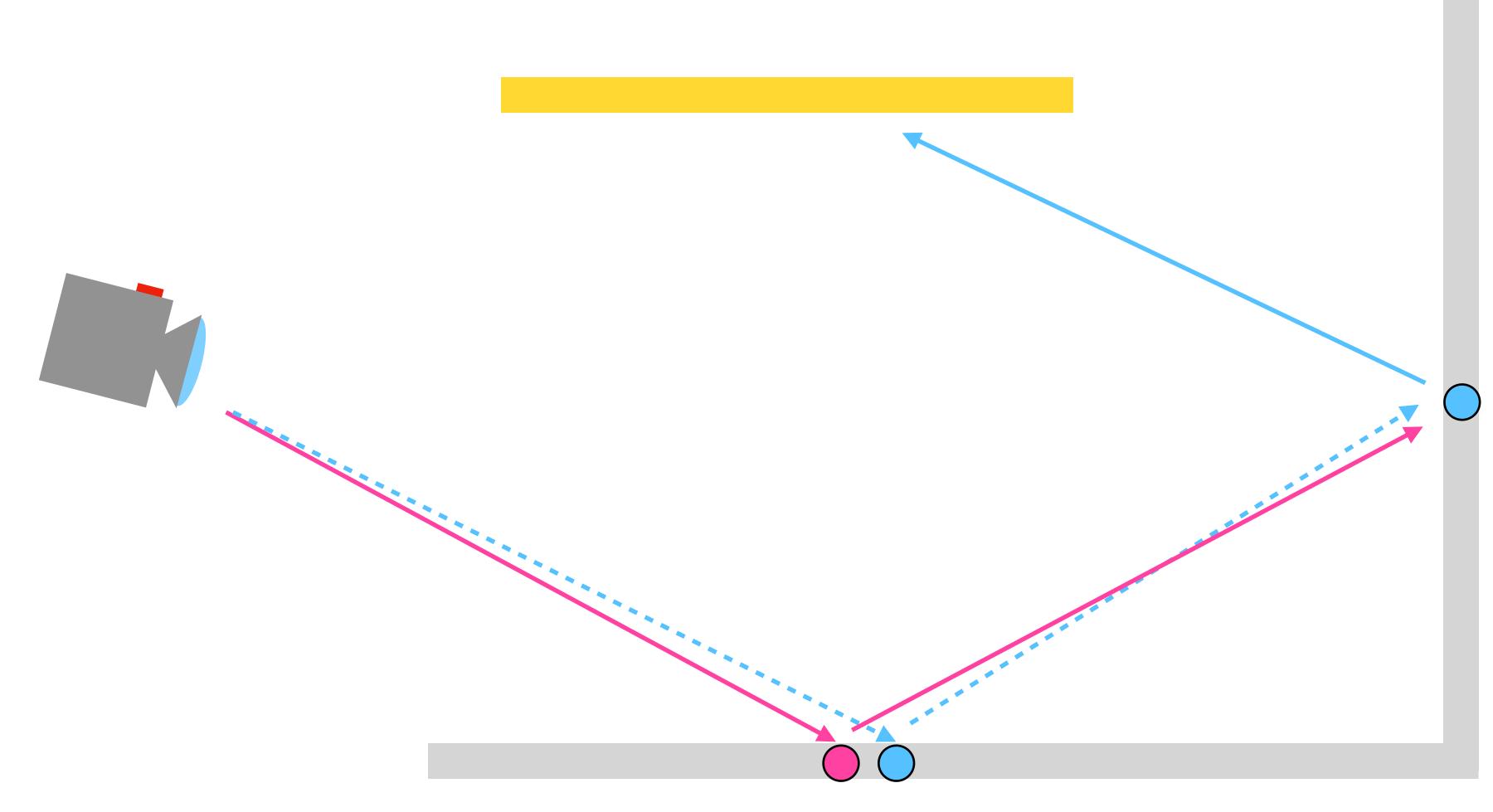




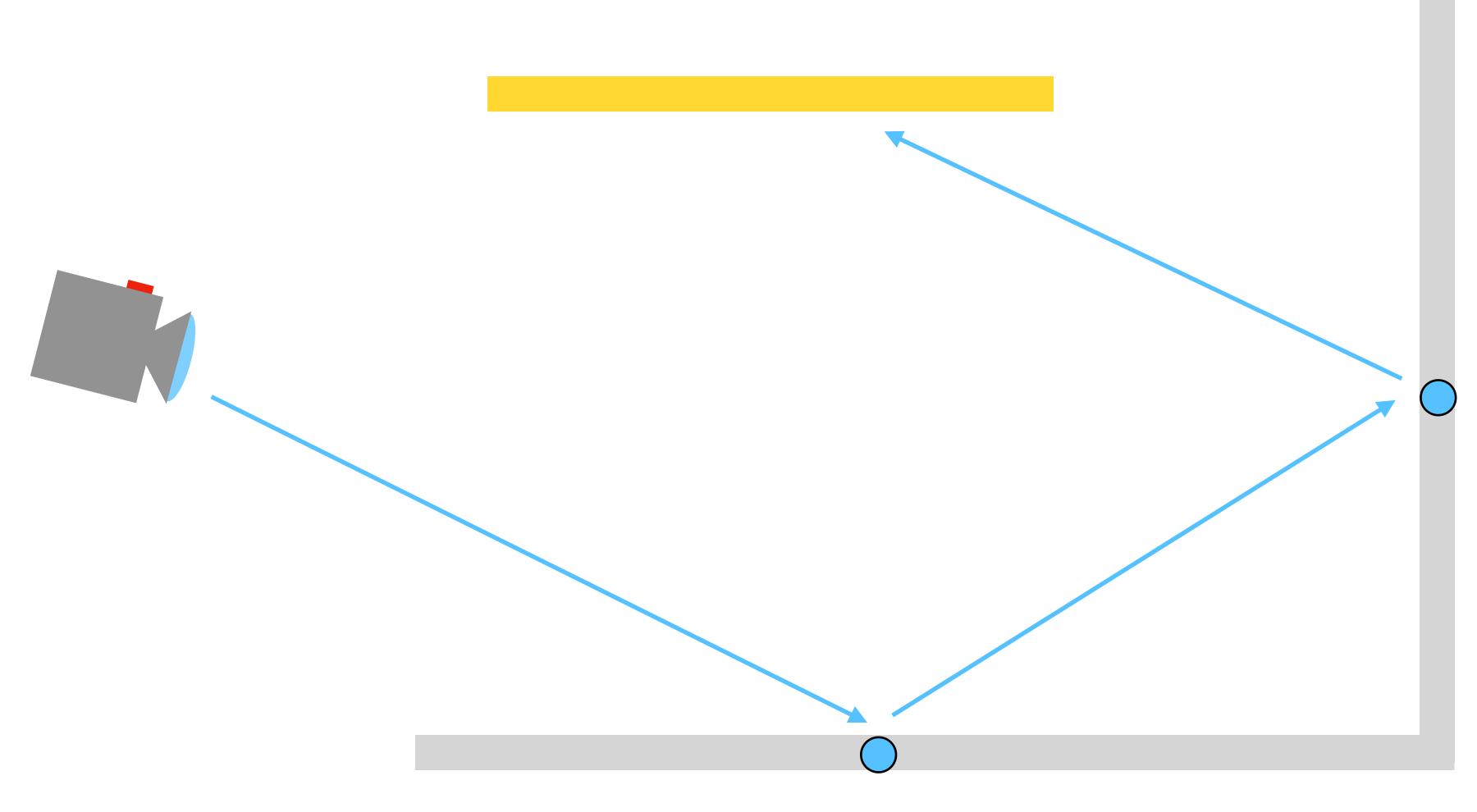
Metropolis Sampling: Lens Perturbation



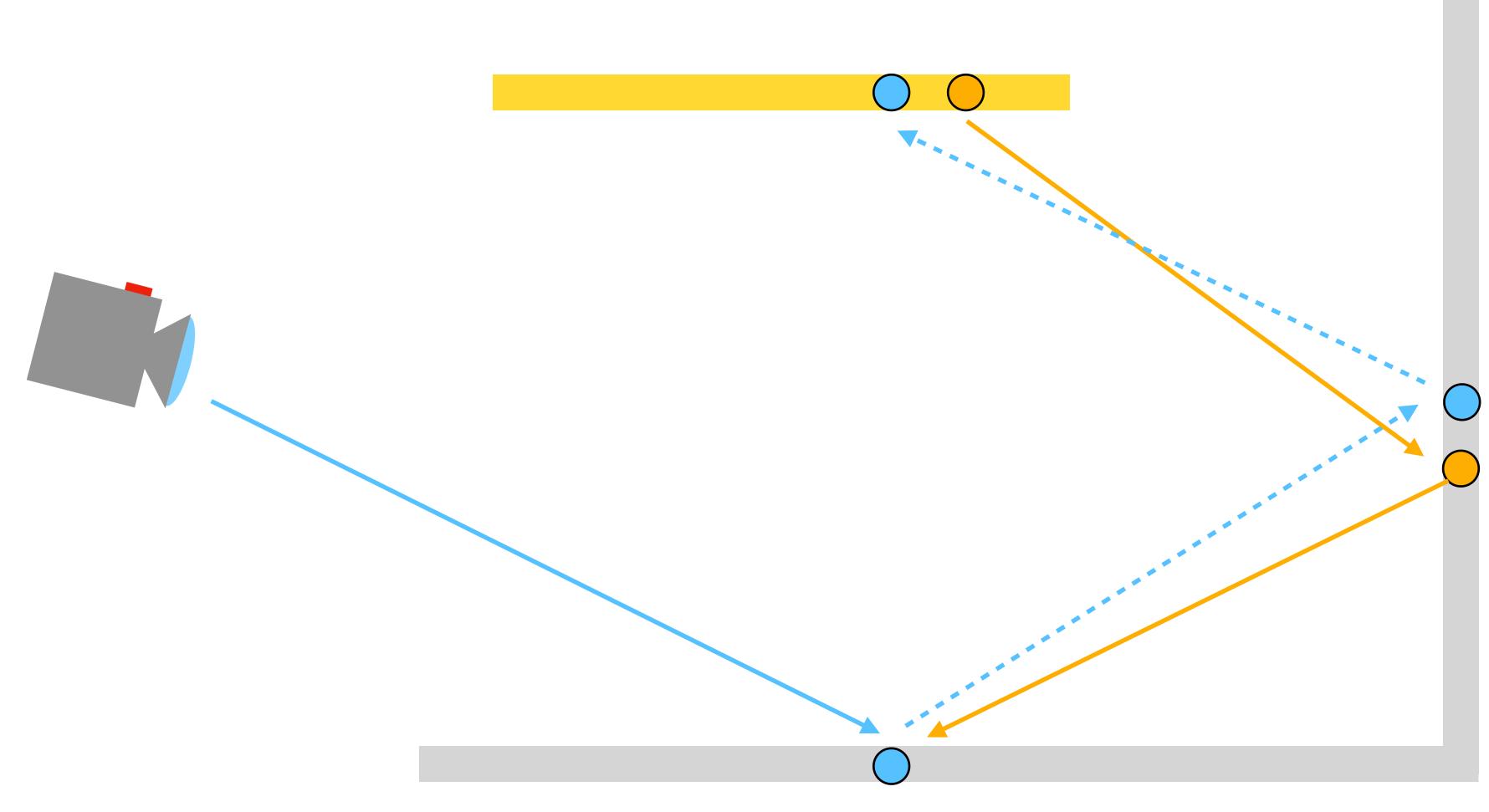
Metropolis Sampling: Lens Perturbation

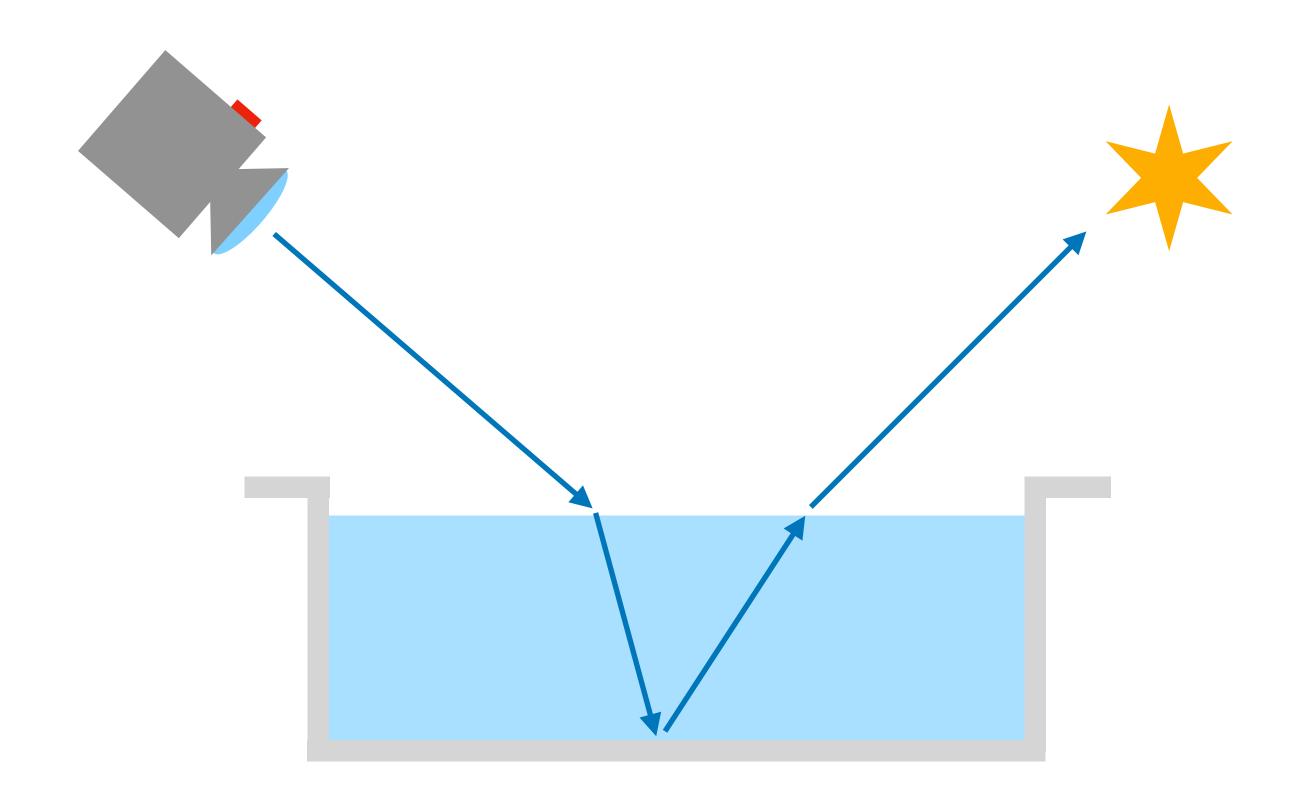


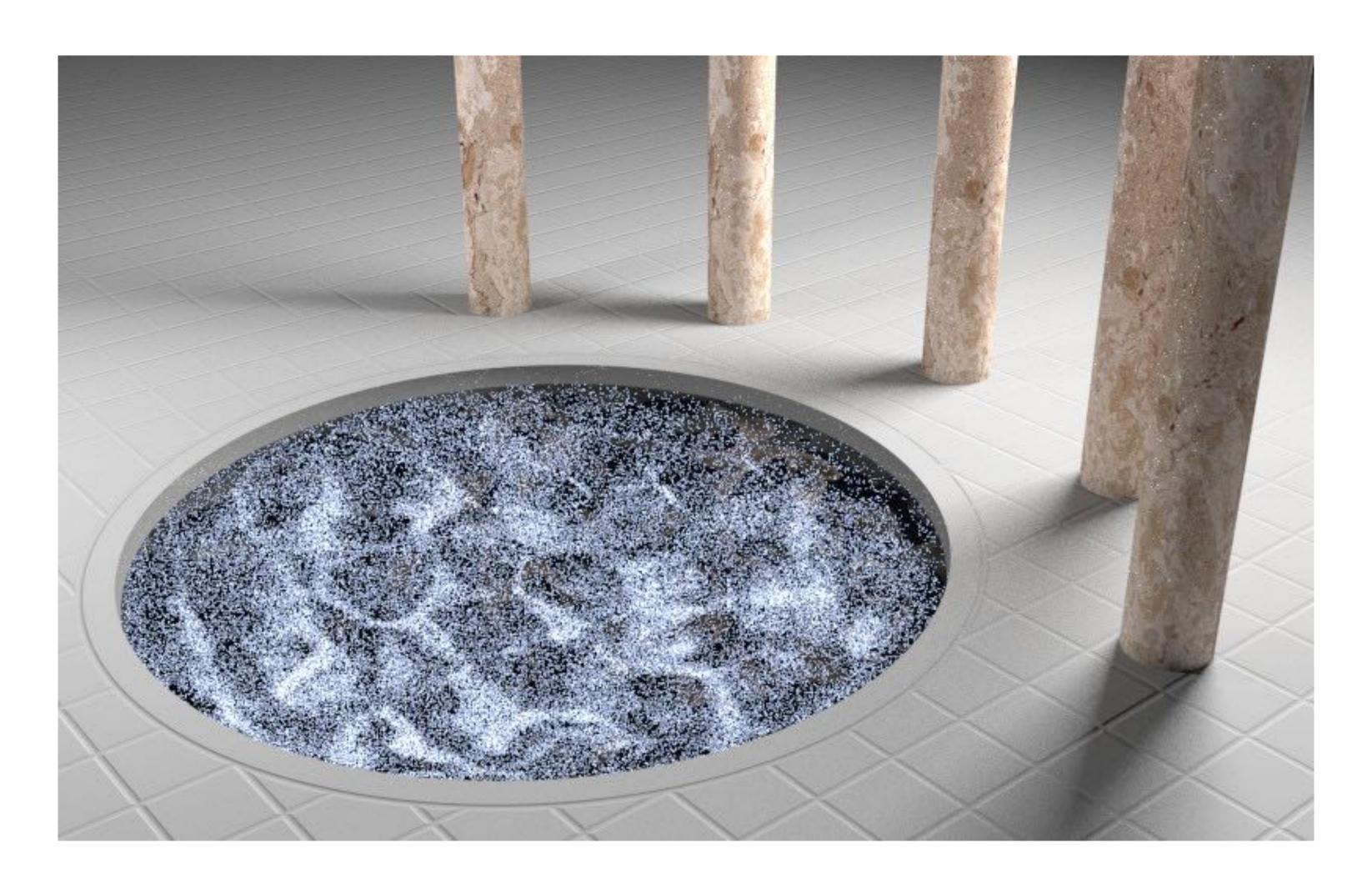
Metropolis Sampling: Lens Perturbation

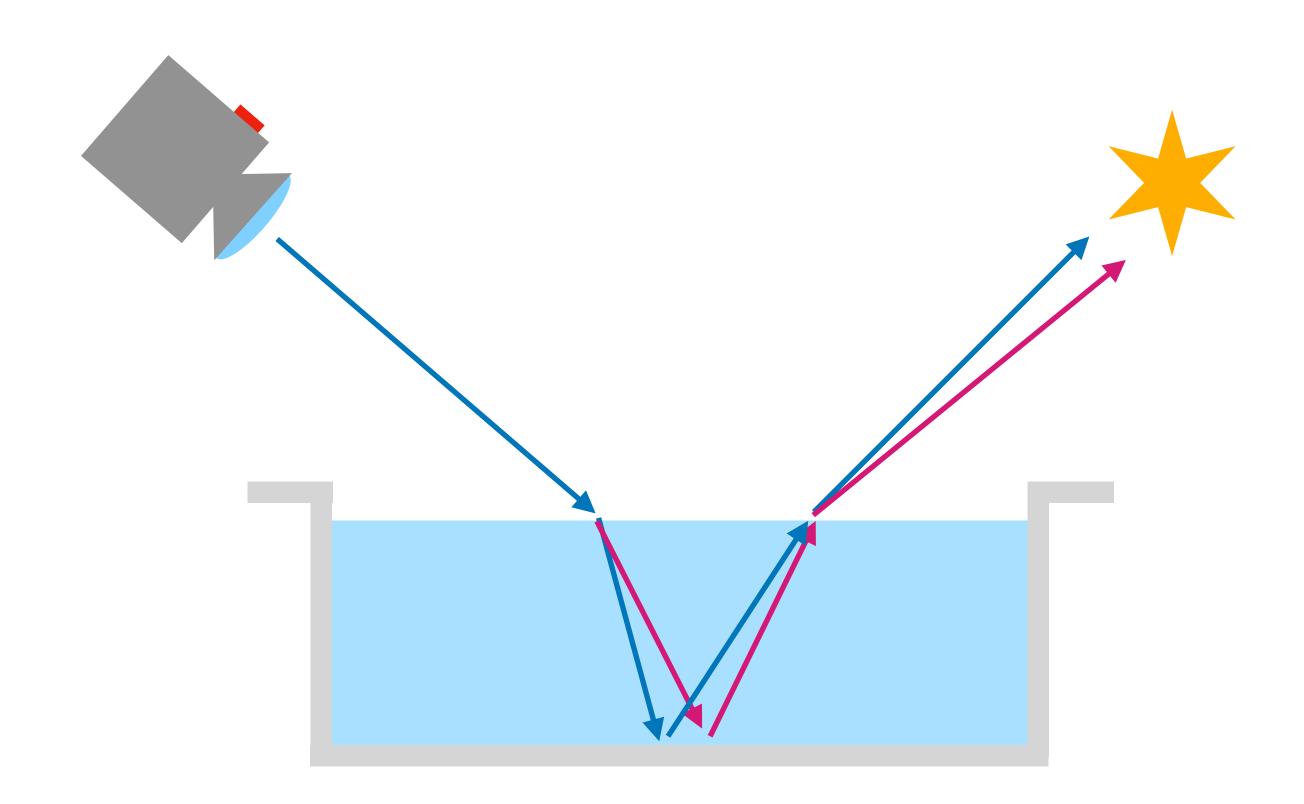


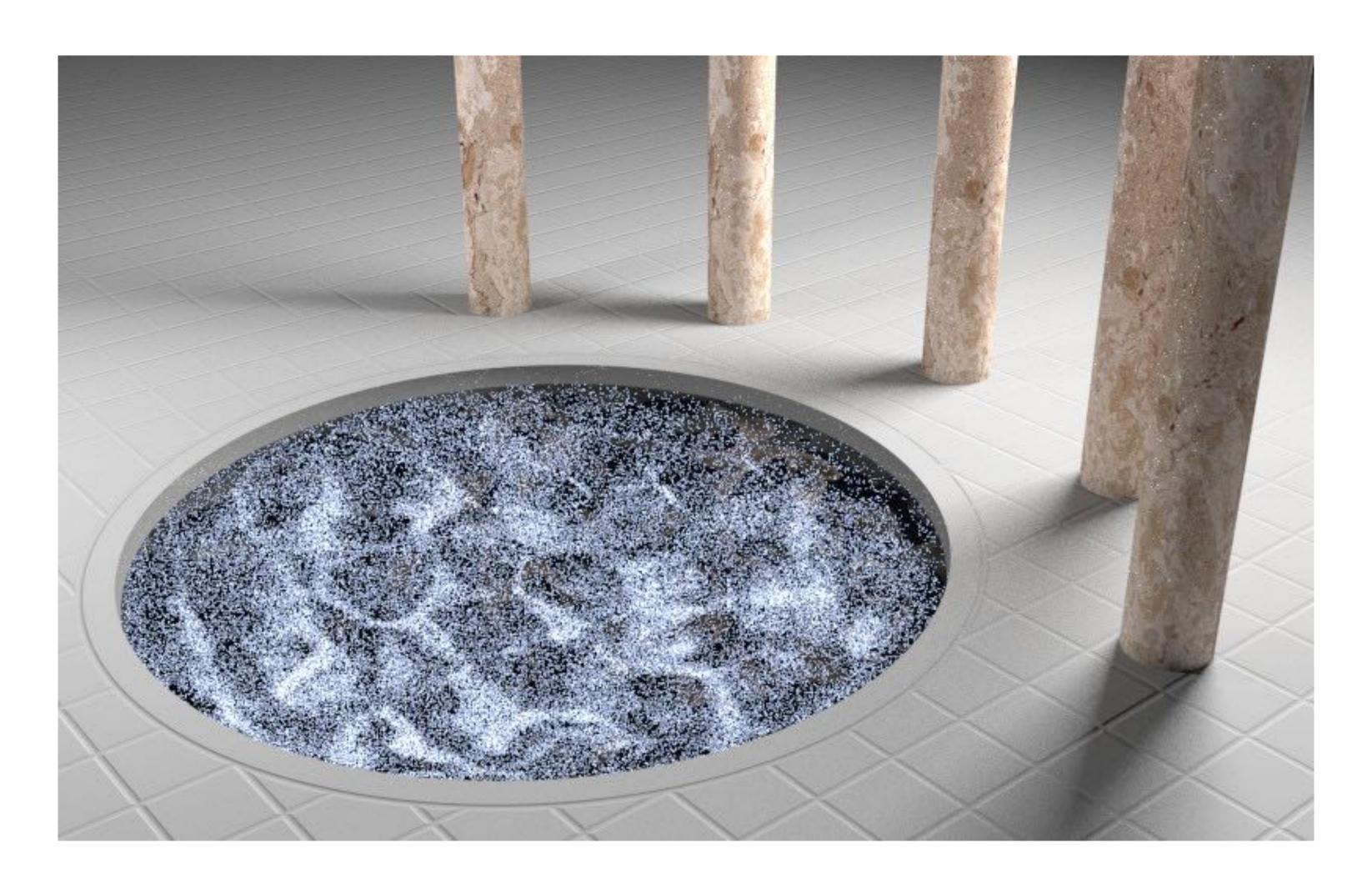
Metropolis Sampling: Light Perturbation

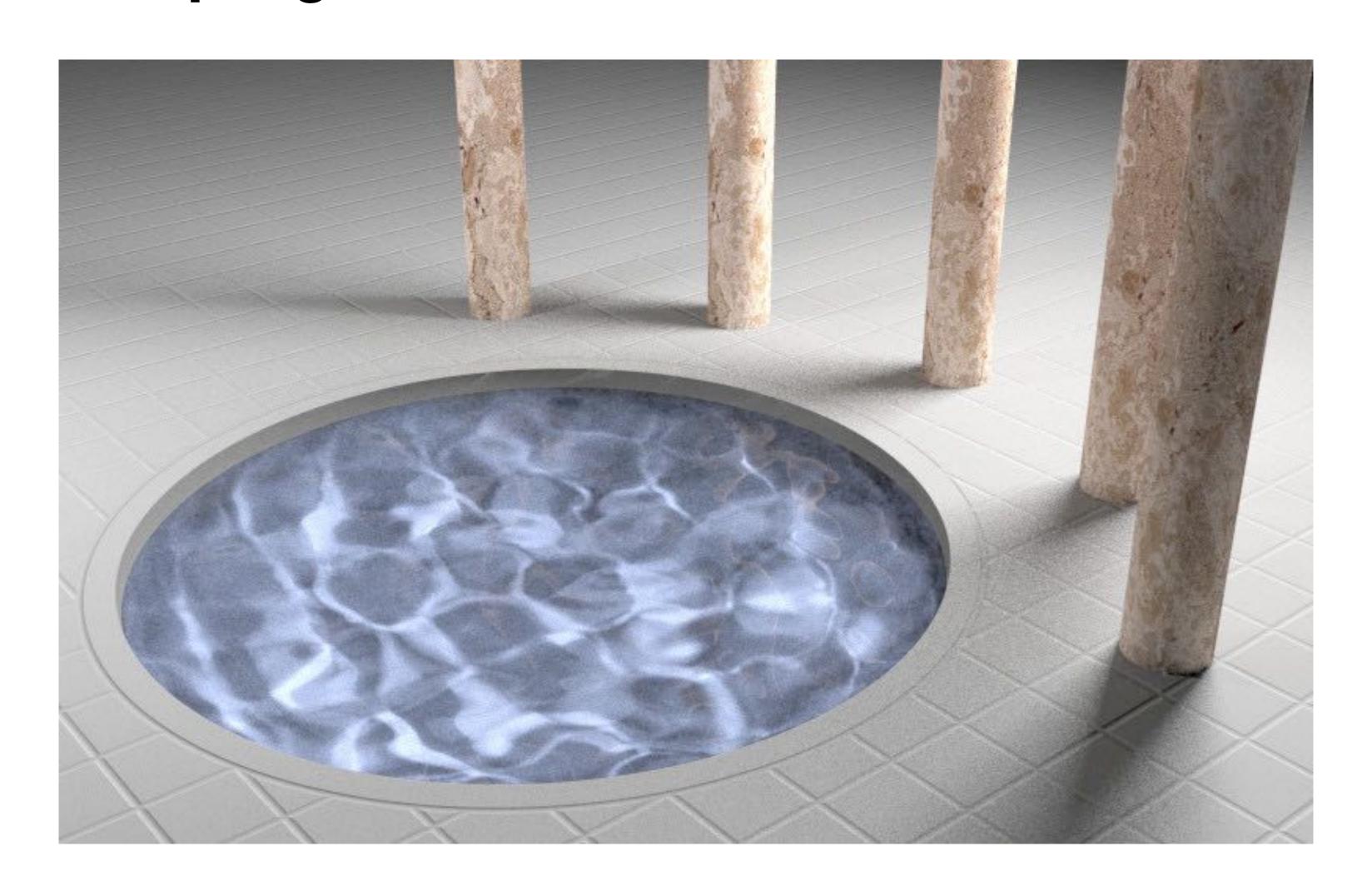












Bibliography

- Peter Shirley. "Ray Tracing: The Rest of Your Life". 2018-2020.
 raytracing.github.io
- Matt Pharr, Wenzel Jakob, and Greg Humphreys. Chapter 13: "Monte Carlo Integration" from the book "Physically Based Rendering: From Theory To Implementation". Morgan Kaufmann. 2016.
- Eric Veach and Leonidas Guibas. "Metropolis Light Transport". ACM SIGGRAPH 1997.
- Francesco Banterle, Massimiliano Corsini, Paolo Cignoni, Roberto Scopigno.
 "A Low-Memory, Straightforward and Fast Bilateral Filter Through Subsampling in Spatial Domain". In Computer Graphics Forum 31(1). 2012.

Thank you for your attention!