
Francesco Banterle, Ph.D. - July 2021

Monte Carlo
Quasi Monte-carlo (QMC)

Quasi Monte-Carlo
Introduction

• In Monte-Carlo, we have seen that we use randomness to estimate averages,
quantiles, and ratios.

• The justification why this works is thanks to the Law of Large Numbers.

• In Quasi Monte-Carlo or QMC, our goal is to “bend” this law using
deterministic samples.

• We may get better results than the ones of classic Monte-Carlo!

Quasi Monte-Carlo
Motivation

Quasi Monte-Carlo
Motivation

Gaps

Quasi Monte-Carlo
Motivation

Cluster

Gaps

Quasi Monte-Carlo
Introduction

• We still estimate:

.

• Now, our samples, , are deterministic points that fill in an even way:

• We are half-way between regular grids and Monte-Carlo.

• In QMC, how to measure the uniformity of our samples is important, and
measures are typically called discrepancies.

̂μn =
1
n

n

∑
i=1

f(xi)p(xi)

xi [0,1]d

Quasi Monte-Carlo
The Start Discrepancy

• Let’s define an interval in dimension as:

.

• The local discrepancy of samples is defined as:

.

d
d

∏
i=1

[ai, bi) = {x ∈ ℝd ∀j∈[1,d] xj ∈ [ai, bi)} a, b ∈ ℝd ∧ ∀iai ≤ bi

n xi

δ(a) =
1
n

n

∑
i=1

1xi∈[0,a) −
d

∏
i=1

aj

Quasi Monte-Carlo
The Start Discrepancy

• Let’s define an interval in dimension as:

.

• The local discrepancy of samples is defined as:

.

d
d

∏
i=1

[ai, bi) = {x ∈ ℝd ∀j∈[1,d] xj ∈ [ai, bi)} a, b ∈ ℝd ∧ ∀iai ≤ bi

n xi

δ(a) =
1
n

n

∑
i=1

1xi∈[0,a) −
d

∏
i=1

aj

The number of points in [0, a)

Quasi Monte-Carlo
The Start Discrepancy

• Let’s define an interval in dimension as:

.

• The local discrepancy of samples is defined as:

.

d
d

∏
i=1

[ai, bi) = {x ∈ ℝd ∀j∈[1,d] xj ∈ [ai, bi)} a, b ∈ ℝd ∧ ∀iai ≤ bi

n xi

δ(a) =
1
n

n

∑
i=1

1xi∈[0,a) −
d

∏
i=1

aj

The number of points in [0, a)

Volume

a

Quasi Monte-Carlo
The Start Discrepancy: Example

0.51

0.60

0.00

δ(a) =
6
14

− 0.6 ⋅ 0.50 = 0.42 − 0.30 = 0.12

Quasi Monte-Carlo
The Start Discrepancy

• When there is the perfect balance.

• A sequence, , is low discrepancy when:

.

δ(a) = 0

D⋆
n = D⋆

n (x1, …, xn) = sup
x∈[0,1)d

δ(x)

x1, …, xn

D⋆
n (x1, …, xn) = O((log n)d

n), n → ∞

Quasi Monte-Carlo
Trade-offs

• When we use low discrepancy sequences, , we cannot use the CLT anymore.

• We have Koksma-Hlawka Theorem:

,

where is the Hardy and Krause total variation.

• What does this mean?

• If and we approximate with , we have:

.

x1, …, xn

1
n

n

∑
i=1

f(xi) − ∫[0,1)d

f((x)dx ≤ D⋆
n ⋅ VHK(f)

VHK

VHK(f) < ∞ D⋆
n = o(n−1+ϵ) ϵ > 0

| ̂μ − μ | = o(n−1+ϵ)

Low Discrepancy Sequences

Low Discrepancy Sequences
Radical Inverse Function

• The radical inverse function is a simple function defined as:

.

• This function is based on the fact that we can encode a number as a sequence of digits:

.

• transforms a positive integer into a floating-point in by reversing its digits:

.

• Van Der Corput’s sequence is a simple 1D sequence that is based on the radical inverse function using base 2:

.

Φb(i) =
∞

∑
k=0

dk,b(i)b−k−1 b ≥ 2 ∧ dk,b(i) ∈ {0,…, b − 1}

i

i =
∞

∑
k=0

dk,b(i)bk

Φb [0,1)

Φ(i)b = 0.di,0di,1…dn

xi = Φ2(i)

Low Discrepancy Sequences
Radical Inverse Function: Example

n = 1 = 1 × 20 + 0 × 22 + … = (…001)2

Φ(1)2 = (0.100…)2 = 1 × 2−1 = 0.5

n = 2 = 0 × 20 + 1 × 21 + 0 × 22 + … = (…0010)2

Φ(2)2 = (0.010…)2 = 0 × 2−1 + 1 × 2−2 = 0.25

Low Discrepancy Sequences
Radical Inverse Function: Example

Binary Reversed

1 1 0.1 0.5

2 10 0.01 0.25

3 11 0.11 0.125

4 100 0.001 0.0625

Φ2(i)i

Low Discrepancy Sequences
Halton Sequence

• The Halton sequence employs the radical inverse base.

• In this case, we use a different base for each dimension:

• Each base needs to be co-prime with the others!

• A popular choice is to use the first -prime for generating a -dimension vector:

,

where is the -th prime number.

d d

xi = (Φ2(i), Φ3(i), …, Φp(d)(i))
p(k) k

Low Discrepancy Sequences
Halton Sequence: Example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

0
1

0.2

0.8

0.4

1

Y

0.6

0.6 0.8

Z

0.8

0.6

X

0.4

1

0.40.2 0.2
0 0

Base X = 2; Base Y = 3 Base X = 2; Base Y = 3; Base Z = 5

Low Discrepancy Sequences
Halton Sequence: Example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Base X = 2; Base Y = 6Base X = 2; Base Y = 3

Low Discrepancy Sequences
Halton Sequence

• The discrepancy when generating a -dimensional vector is:

,

where is the number of samples.

d

O((log n)d

n)
n

Low Discrepancy Sequences
Hammersley Sequence

• The Hammersley sequence employs as well the radical inverse base.

• Again, we use a different base for each dimension:

• Each base needs to be co-prime with the others!

• As before, we use the first -prime for generating a -dimension vector. The
vector, compared to Halton’s one, has the following change in the generation:

.

• Note: the number of samples, , has to be known in advance!

(d − 1) d

xi = (Φ2(i), Φ3(i), …, Φp(d−1)(i),
i
n)

n

Low Discrepancy Sequences
Hammersley Sequence: Example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Halton Sequence Hammersley Sequence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Low Discrepancy Sequences
Halton Sequence

• The discrepancy when generating a -dimensional vector is:

,

where is the number of samples.

d

O((log n)d−1

n)
n

Low Discrepancy Sequences
Limitations

• Both Halton sequence and Hammersley sequence have some issues:

• We may have regular patterns.

• They are not ideal for parallel applications:

• All threads will generate the same sequence!

• A possible solution is to randomize such sequences:

• We apply a random permutation for the digits of a number.

Low Discrepancy Sequences
Other Sequences

• Faure: is based on Van der Corput’s sequences, but there is only a base for
different dimensions. This is a large prime number:

• We have permutations with each dimension.

• Sobol: based on algebra of polynomials in :

• It can be computed using Gray codes.

𝔽2

Poisson-Disk Sampling

Poisson-Disk Sampling
Main Idea

• Poisson-disk sampling is a sequential random process for generating
samples in a domain.

• Each generated sample/point has to be “disk-free” for a minimum distance :r

r
Disk-Free

Poisson-Disk Sampling
Main Idea

• Poisson-disk sampling is a sequential random process for generating
samples in a domain.

• Each generated sample/point has to be “disk-free” for a minimum distance :r

No Disk-Free

Poisson-Disk Sampling
Main Idea

• This method does not guarantee low-discrepancy, but it creates point-sets
without regularity.

• The goal of this sequence is to generate samples with blue noise properties;
i.e., the spectrum of a sequence has certain properties:

• uniformity.

• isotropic.

Poisson-Disk Sampling
Main Idea

• To achieve Poisson-Disk Sampling, there are a huge literature: 2D, nD, spatially varying
radius according a PDF, different distributions, etc.

• The most famous algorithms:

• Dart Throwing: we draw a sample, , we accept it if its neighbors are at a minimum
distance .

• Samples removal: we draw a huge number of samples, we remove that samples that
close to others; i.e., .

• Spatial data structures helps in reducing computational complexity:

• Bridson 2007 algorithm.

xi
d ≥ r

d ≤ r

Possin-Disk Sampling
Example

PeriodogramSamples

Randomized QMC

Randomized QMC
Main Idea: Cranley-Patterson Rotation

• One problem of QMC is that if we run it on parallel, all threads will start to
generate exactly the same samples!

• Another issue is that we cannot have the error estimation that we have in
classic Monte-Carlo.

• A solution is to apply a random shift to the sequence:

.

• This solution is called Cranley-Patterson rotation.

x′ i = x + u mod 1 u ∈ U(0,1)

Main Idea: Cranley-Patterson

Example

Main Idea: Cranley-Patterson

Example

u

Main Idea: Cranley-Patterson

Example

u

Randomized QMC
Main Idea: Scrambling

• Cranley-Patterson rotation works and is low discrepancy. However, it does not preserve stratification
properties of a sequence.

• A solution is scrambling the digits of numbers in a sequence. For example in 1D:

,

• Where we apply random permutations:

,

and are permutations of .

x =
∞

∑
i=0

xib−i−1 → x′ =
∞

∑
i=0

x′ ib−i−1

x′ 0 = π(x0)
x′ 1 = πx0

(x1)
x′ 2 = πx0,x1

(x2)
…

π {0,…, b − 1}

Bibliography

• Art Owen. “Chapter 15: The Quasi-Monte Carlo parts” from the book “Monte
Carlo theory, methods and examples”. 2019.

• Paolo Brandimarte. “Handbook in Monte-Carlo Simulation”. Wiley. 2014.

• Matt Pharr, Greg Humphreys. “Chapter 7: Sampling and Reconstruction” from
the book “Physically Based Rendering - Second Edition”. Morgan Kaufmann.
2010.

Thank you for your attention!

