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Quasi Monte-Carlo
Introduction

• In Monte-Carlo, we have seen that we use randomness to estimate averages, 
quantiles, and ratios.


• The justification why this works is thanks to the Law of Large Numbers.


• In Quasi Monte-Carlo or QMC, our goal is to “bend” this law using 
deterministic samples.


• We may get better results than the ones of classic Monte-Carlo!
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Quasi Monte-Carlo
Introduction

• We still estimate:


.


• Now, our samples, , are deterministic points that fill  in an even way:


• We are half-way between regular grids and Monte-Carlo.


• In QMC, how to measure the uniformity of our samples is important, and 
measures are typically called discrepancies.
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Quasi Monte-Carlo
The Start Discrepancy

• Let’s define an interval in  dimension as:


.


• The local discrepancy of  samples  is defined as:


.
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Quasi Monte-Carlo
The Start Discrepancy: Example
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Quasi Monte-Carlo
The Start Discrepancy

• When  there is the perfect balance.


 


• A sequence, , is low discrepancy when:


.  

δ(a) = 0

D⋆
n = D⋆

n (x1, …, xn) = sup
x∈[0,1)d

δ(x)

x1, …, xn

D⋆
n (x1, …, xn) = O( (log n)d

n ), n → ∞



Quasi Monte-Carlo
Trade-offs

• When we use low discrepancy sequences, , we cannot use the CLT anymore. 


• We have Koksma-Hlawka Theorem:


,


where  is the Hardy and Krause total variation.


• What does this mean?


• If  and we approximate  with , we have:


.
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| ̂μ − μ | = o(n−1+ϵ)



Low Discrepancy Sequences



Low Discrepancy Sequences
Radical Inverse Function

• The radical inverse function is a simple function defined as:


.


• This function is based on the fact that we can encode a number  as a sequence of digits:


.


•  transforms a positive integer into a floating-point in  by reversing its digits:


.


• Van Der Corput’s sequence is a simple 1D sequence that is based on the radical inverse function using base 2:


.
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∞
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Φ(i)b = 0.di,0di,1…dn

xi = Φ2(i)



Low Discrepancy Sequences
Radical Inverse Function: Example




 





 


n = 1 = 1 × 20 + 0 × 22 + … = (…001)2

Φ(1)2 = (0.100…)2 = 1 × 2−1 = 0.5

n = 2 = 0 × 20 + 1 × 21 + 0 × 22 + … = (…0010)2

Φ(2)2 = (0.010…)2 = 0 × 2−1 + 1 × 2−2 = 0.25



Low Discrepancy Sequences
Radical Inverse Function: Example

Binary Reversed

1 1 0.1 0.5

2 10 0.01 0.25

3 11 0.11 0.125

4 100 0.001 0.0625

Φ2(i)i



Low Discrepancy Sequences
Halton Sequence

• The Halton sequence employs the radical inverse base.


• In this case, we use a different base for each dimension:


• Each base needs to be co-prime with the others!


• A popular choice is to use the first -prime for generating a -dimension vector:


,


where  is the -th prime number.

d d

xi = (Φ2(i), Φ3(i), …, Φp(d)(i))
p(k) k



Low Discrepancy Sequences
Halton Sequence: Example
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Low Discrepancy Sequences
Halton Sequence: Example
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Low Discrepancy Sequences
Halton Sequence

• The discrepancy when generating a -dimensional vector is:


,


where  is the number of samples.

d

O( (log n)d
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n



Low Discrepancy Sequences
Hammersley Sequence

• The Hammersley sequence employs as well the radical inverse base.


• Again, we use a different base for each dimension:


• Each base needs to be co-prime with the others!


• As before, we use the first -prime for generating a -dimension vector. The 
vector, compared to Halton’s one, has the following change in the generation:


.


• Note: the number of samples, , has to be known in advance!

(d − 1) d
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Low Discrepancy Sequences
Hammersley Sequence: Example
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Low Discrepancy Sequences
Halton Sequence

• The discrepancy when generating a -dimensional vector is:


,


where  is the number of samples.

d
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Low Discrepancy Sequences
Limitations

• Both Halton sequence and Hammersley sequence have some issues:


• We may have regular patterns.


• They are not ideal for parallel applications:


• All threads will generate the same sequence!


• A possible solution is to randomize such sequences:


• We apply a random permutation for the digits of a number.



Low Discrepancy Sequences
Other Sequences

• Faure: is based on Van der Corput’s sequences, but there is only a base for 
different dimensions. This is a large prime number:


• We have permutations with each dimension.


• Sobol: based on algebra of polynomials in :


• It can be computed using Gray codes. 

𝔽2



Poisson-Disk Sampling



Poisson-Disk Sampling
Main Idea

• Poisson-disk sampling is a sequential random process for generating 
samples in a domain.


• Each generated sample/point has to be “disk-free” for a minimum distance :r

r
Disk-Free
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Poisson-Disk Sampling
Main Idea

• This method does not guarantee low-discrepancy, but it creates point-sets 
without regularity.


• The goal of this sequence is to generate samples with blue noise properties; 
i.e., the spectrum of a sequence has certain properties:


• uniformity.


• isotropic.



Poisson-Disk Sampling
Main Idea

• To achieve Poisson-Disk Sampling, there are a huge literature: 2D, nD, spatially varying 
radius according a PDF, different distributions, etc.


• The most famous algorithms:


• Dart Throwing: we draw a sample, , we accept it if its neighbors are at a minimum 
distance .


• Samples removal: we draw a huge number of samples, we remove that samples that 
close to others; i.e., .


• Spatial data structures helps in reducing computational complexity:


• Bridson 2007 algorithm.

xi
d ≥ r

d ≤ r



Possin-Disk Sampling
Example

PeriodogramSamples



Randomized QMC



Randomized QMC
Main Idea: Cranley-Patterson Rotation

• One problem of QMC is that if we run it on parallel, all threads will start to 
generate exactly the same samples!


• Another issue is that we cannot have the error estimation that we have in 
classic Monte-Carlo.


• A solution is to apply a random shift to the sequence:


.


• This solution is called Cranley-Patterson rotation.

x′ i = x + u mod 1 u ∈ U(0,1)



Main Idea: Cranley-Patterson

Example
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Randomized QMC
Main Idea: Scrambling

• Cranley-Patterson rotation works and is low discrepancy. However, it does not preserve stratification 
properties of a sequence.


• A solution is scrambling the digits of numbers in a sequence. For example in 1D:


,


• Where we apply random permutations:


,


and  are permutations of .

x =
∞

∑
i=0

xib−i−1 → x′ =
∞

∑
i=0

x′ ib−i−1

x′ 0 = π(x0)
x′ 1 = πx0

(x1)
x′ 2 = πx0,x1

(x2)
…

π {0,…, b − 1}
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Thank you for your attention!


