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Non-Uniform Random Numbers

Introduction

* Typically, to draw random numbers in a non-uniform way following a given
distribution is not an easy task; and it needs to be crafted for each distribution!

e A solution Is to convert uniform random number into a non-uniform one.
e How?

e All the information that we need about how a random variable X is
distributed is inside its CDF:

Fy(x) =P(X Lx) = r fx(x)dx.



Inverting the CDF



Inverting the CDF

Main Idea

e How do we extract this information from the CDF?

 Let’s say we generate a random value u € U(0,1), and we set X = F)}l(U),
we obtain:

P(X <x) = P(Fx'(w) < x) = P(Fx(Fx'(w)) < Fx(x)) =
P(u < Fy(x)) = Fy(x).

« In this way, we can have X values with F as distribution!



Inverting the CDF

Main Idea

 Given the CDF of a distribution:

Fy(x) = P(X <x) = J Px(x)dx.

* We generate a non-uniform random numbers as:

» We first generate a uniform random number, u € U(0, 1);

 Then, we compute:

u' = Fy'(u).



Inverting the CDF

Example
y = Fy(x)
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Inverting the CDF
Example
y = Fx(x)

1

Uniform Random in [0,1]
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We remap @) into ©



Inverting the CDF

Main Idea

» Note that we draw uniform random numbers u € (0,1).

e Why?



Inverting the CDF

Main Idea

» Note that we draw uniform random numbers u € (0,1).
e Why?
0 and 1 may generate some singularities:

e NaN, +Inf, -Inf



Inverting the CDF

Main Idea

e Note that if u ~ U(0,1) we have that 1 — u ~ U(0O,1).
+ This means that F~'(1 —u) ~ F.

. In some cases, to compute F~!(u) may be difficult.

* |n these cases the complementary inversion equation may be easier to
compute!



Inverting the CDF

Issues
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Inverting the CDF

Issues

* |n such cases, the inverse is not unique, and it can happen for both
continuous and discrete distributions!

e A solution to this problem is:

Fgl(u) = inf{x‘FX(u) > UAUE (O,l)}.



Inverting the CDF

Example: Uniform Distribution

 The uniform distribution is defined as

f(x) = 7 : X € |[a, b].

—d

* |ts CDF is given by:

A 1 1 A X
F(x)=[ dx = J dx = .
o b—a b—al__ b—a

* So let’s compute its inverse:

y = multiply both sides by (b — a)

x =y —a)



Inverting the CDF

Example: Exponential Distribution

e Standard exponential distribution is:
f(x) = exp(—x) x> 0.
 lts CDF is given by:

F(x) = J e dx=1—-e""

 So let’'s compute its inverse: y=1—-e""

y— 1= —e¢e™" add -1 both sides
1 —y = e™ multiply by -1 both sides
log(1 — y) = log(e™) apply log to both sides

x = —log(1l — y) simplify and multiply by -1 both sides



Inverting the CDF

Example: Exponential Distribution

 Now, in order to draw samples exponentially distributed, X; ~ Exp(1), we do:
- Y; € U(0,1);
. X; = —log(1 - Y).
* Note that doing the inversion, we have the same distribution and its faster:
- Y. € U(0,1);
» X; = —log(Y).

« In this case it would not be safe to draw 0 and 1 for Y, because depending on the method it
may create a singularity!



>-

Inverting the CDF

Example: Exponential Distribution
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Inverting the CDF

Example: Normal Distribution

« Normal distribution .//°(0,1):

* |ts CDF is:

1 X
- o
g 27 —ooexp

« Note that there is not closed form for ®(x).

« ®O(x) is related to the Erf function:

erf(x) = : Jexp(—tz)dt
21 Jo




Inverting the CDF

Example: Normal Distribution

. In this case, we need to invert ®(x) to obtain ®~!(x):
« There is no closed-form for @~ (x).
o Jypically, we have algorithms for erf and its inverse:
O~ !(x) = 2zerf~1(2x = 1).
* We need to use an approximation such as the AS70:

 R. E. Odeh and J.O. Evans. “Algorithm AS 70: the percentage points of
the normal distribution”. Applied Statistics, 23(1):96-97. 1974.



Inverting the CDF

Transformations: Linear Transformation

* |n some cases, if we have a distribution F with mean 0 and variance 1, we
may want to shift its mean by p and scale it to have variance o> > 1:

« X~ Fy— Y =0X+pu,and Y is our random variable with the desired
distribution.

e To achieve this, we have to:

1 _
Jy(y) =_fx(x ﬂ)-
o

O



Inverting the CDF

Transformations

* Transformations can be very general. Let’'s assume:
o« X ~ Fy;
« Y = 7(X) where 7 is an invertible increasing function. This means:
P(Y <y) = P((X) <y) = PX < 77'().

« Therefore, Y has the following PDF:

() = iP(X <t7'(y) =1 (f‘l(y))if‘l(y)
U ody VT . dy |

e Note that:



Inverting the CDF

Transformations: An Example

o |et’s define:
7(x) = xP where p > 0.
e Let’s assume that X ~ U(0,1):

e This means: Y = 7(X) = X? with PDF:

1
() = ;yrl y € (0,1).



Inverting the CDF

Numerical Inversion

|t can happen that we may have F, but we cannot invert it.

* |[n such cases there are other options:

» We can use bisection algorithms to search x such that F(x) = u.

* Although bisection can get the job done, it is very slow. Another viable option is to
Newton’s method:

F(x;) —u
J(x;) |

» The only issue here is that this method may not converge when f is close to 0.

Aipl — X —



Inverting the CDF

Inversion for Discrete Random Variables

* |n many situations, we may face to have discrete distributions; i.e., histograms.

* In a histogram H, we have 1,..., N bins and each bin has a frequency number associated to

that bin.

1 2 3 4 3} §) /
» We can convert a histogram into a discrete by normalizing it (i.e., sum of all H[i]) obtaining H'.




Inverting the CDF

Inversion for Discrete Random Variables

At this point, we have can define a random variable X such that
P(X =k)=p,=HT[k] > 0.
* |n this case, the cumulative distribution is defined as:

k
P,= ) p;with Py =0.
=1

* |n order to compute:
Flu=k ueP_,, Pl

we have to run the binary search on the cumulative distribution using u ~ U(0,1).



Acceptance-Rejection



Acceptance-Rejection

Main Idea

* |[n some cases, we cannot use the inversion method to get the F distribution
that we want.

» When this happens, we can employ another distribution G; key concepts:
» We reject some values from G;
» We accept other values from G;

* |n accepting and rejecting, we try to get F.



Acceptance-Rejection

Main Idea

 The first step is to find a distribution G such that its PDF g(x):

e f(x) £ cg(x) c¢ = 1 always holds;

 \WWe can compute:

)
g(x)



Acceptance-Rejection

Main Idea

repeat

Y ~ g;

U~ U,1);
until U < f(Y)/(cg(Y))
X <Y

return X



Acceptance-Rejection

Main ldea
Y ~ g;
U ~ U(0,1); Theorem 4.2 in Owen’s book
tells us that the generated
U < J(¥)/(cg(Y)) samples have PDF /.
X <Y

return X



Acceptance-Rejection

Main Idea

J(x)



Acceptance-Rejection

Main Idea




Acceptance-Rejection

Main ldea




Acceptance-Rejection

Main Idea

O Rejected



Acceptance-Rejection
The Ziggurat Algorithm

* The Ziggurat algorithm is an acceptance-rejection method for drawings sampling
according to normal distribution (i.e., half).

» The method divides the region below ./ (0,1) into k£ (e.g., 256) horizontal regions that are
ideally of similar area; I.e., equiprobable.

* At this point, the method generate samples points (Z, Y') uniformly distributed in each
region such that:

{(Z, y)|y € [0, exp(—z2/2);x e [0,00)] }

 Typically, the normalization factor 1/4/ 27 is ignored for speeding the algorithm up.



Acceptance-Rejection
The Ziggurat Algorithm




Acceptance-Rejection
The Ziggurat Algorithm
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Acceptance-Rejection
The Ziggurat Algorithm

NOTE: most of generated samples
Will be accepted!
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Random Vectors
aka Joint PDFs




Joint PDFs

Main Idea

* Jypically, it can happen to have joint probabillities; e.g., sampling shapes such as disks,
triangles, etc. So we end up to have:

px, ).
* In such cases, we firstly compute the marginal density p(x) as:
p(x) = I p(x, y)dy.
D,
 Then, we compute the conditional density as:

px,y)
p(x)

p(y|x) =



Joint PDFs

Main Idea

» At this point, we compute the CDF of p(x) and p(y | x) through integration:

P(x) = r p(t)dt, and

P(y|x) = r p(t| x)dt.
* Finally, we draw samples by inverting these CDFs:
n=P ) u €UOD),
n, = P_l(ul | u,) u, € U0,1).



Joint PDFs

Main Idea

 The method, we have just seen, Is called sequential inversion.

 This process can be extended to d dimension.



Joint PDFs

The Unit Disk

* |et’s say we want to sample a unit disk in a uniform way.

* The disk looks simple, but it has hidden insidious challenges!

 [The wrong approach:
. r=u, 0 = 2nu, u; € UO,1) u, € UQO,I).
 Then, we remap into XY coordinates:

(x,y) = [cos(O)r, sin(O)r].



Joint PDFs

The Unit Disk
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Joint PDFs

The Unit Disk

Samples are focusing in the center!




Joint PDFs

The Unit Disk

Samples are focusing in the center!




Joint PDFs

The Unit Disk

» The PDF, p(x, y), has to be a constant!

 Assuming a unit disk, this has to be:

1
p(xay) — -
T

e | et’s transform it in polar coordinates:

(r,0) = -
r,0) = —.
P 0



Joint PDFs

The Unit Disk

* | et’'s compute the marginal density:

27 27

27
P(r)=J P(F,H)d9=J idé’:ij dl = 2r.
0 o T Jg

 Now, we can compute the conditional density:
p(r,0)

O|r) = = — .
pIn) p(r) 2r Tmw2r 2«

e We need to invert their CDFs!



Joint PDFs

The Unit Disk

e The first CDF is:

r

P(r) = [ 2xdx = 1r* > P~ I(x) = \/;

0
e The second CDF is:

0

|
P@|r) = J —dx —» P~ (x) = 2xx.
0 2T

* Now, we have all pieces to generate samples:

r = \M 0 = 2rxu, u; € UW,1) u, € UO,1).



Joint PDFs

The Unit Disk
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Joint PDFs

The Unit Disk
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Joint PDFs

Transformations: Box Muller

* An alternative to generate normally distributed random numbers, without inverting
®, is to use transformations:

e Box-Muller Method:

+ Let’s say, we have two independent variables, X and Y, that have normal
distribution.

* Thelir joint PDF is;
exp(—x*/2) —x2/2) exp(=y*/2) —y2/2) _exp( - (x? + y%)/2)

Vir z

Pxy(X,y) = px(0)py(y) =



Joint PDFs

Transformations: Box Muller

« We convert the distribution in coordinate(x, y) in polar coordinates (r, &) using the Jacobian matrix:

- ox,y) % % [cos(é’) r sin(6) ]

T o) x> ~ |sin(@) —rcos(®)

J

. Knowing that x* + y* = rand | det(J) | = r, we can define the joint PDF as:

f(r,0) = 2L exp(—r2/2)r 0 e [0,2z] r e (0,00).
T

* Note that & and R are independent variables:

X = R cos(0) Y = R s1in(0).



Joint PDFs

Transformations: Box Muller

« We can compute the PDF of R as:
fo(r) = rexp(=r*/2) r € (0,00).
* This leads to:

. X =4/—2log U, cos(2zU,),
. Y=4/-2log U, sin(2zU,),

where U, U, ~ U(0,1).



Joint PDFs

Transformations: Box Muller

« We can compute the PDF of R as:
fo(r) = rexp(=r*/2) r € (0,00).
* This leads to:

o X — —2 log Ul COS(Q’ﬂUZ)’ Always check Ul = (0,1)!

. Y =l/=21log U, sin(2zU,), and better to add: \/max(—2log U,,0)

where U, U, ~ U(0,1).



Joint PDFs

Uniform Directions over a Hemisphere

* |n this case, we want to generates random vectors, directions, that are
. . —
normalized; i.e., ||w;|| = 1.

* This problem is similar to generating points on the surface of the hemisphere,
Xf because we can convert them into normal directions as:

S cos ¢ sin
— Xi —C —
W; =" , w0, ) = cos @ ,
Ix; —cll sin ¢ sin 0

where ¢ is the center of the hemisphere.



Joint PDFs

Uniform Directions over a Hemisphere
Y
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Uniform Directions over a Hemisphere
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Joint PDFs

Uniform Directions over a Hemisphere
Y




Joint PDFs

Uniform Directions over a Hemisphere

» Let’s assume that the sphere has radius 1. Since it is a uniform sampling, the PDF is
constant:

. |
plw);) = 2—; i.e., the inverse of the area of half sphere.
T

e Note that:

w,=smbcos¢p ,=cosl o, =sindsing.

» We need to convert from p(w) to p(@, ¢). Therefore, we need to compute the Jacobian for
such transformation:;

p(w) = p(@,P)|J;| | J;| = sin@ — p(w) = p(0, ¢p)sin 6.



Joint PDFs

Uniform Directions over a Hemisphere

* At this point, we compute the marginal density:

27 2T 1 1 27
p(0) = J p(0, phi)dg = [ —sinf = —J sin @ = sin 6.
0 0 27 21 )
* Then, we compute the conditional density as:
p@,¢) 1
p(@|0) = = —.
p(0) 2r

* Finally, we compute the marginal of both these densities, we invert them, and we get:

0 = cos™ ! u, ¢ = 2ru, u;, uy, € UO,1).



Joint PDFs

Uniform Directions over a Hemisphere

 Practically, we do not compute 8, but we compute directly cos 6 as:

e COSO = u, u, € U(O,1).

. sin0=1/1-(cos0) = /1 -u}

* The direction vector is given by:

cos ¢ sin @ COS(Z”“z)\/ I —uj

®=| cosTlg | = i
OINOL | sinQaupn /1 - uf

* Note: we could generate our vector with less math by using rejection sampling, but it would take more time.




Joint PDFs

Uniform Directions over a Hemisphere

 Practically, we do not compute 8, but we compute directly cos 6 as:

. 0 — U@0,1).
COS Uq U € (0,1) AlwayS check Ul = (091)5

Y N 12
' Sm‘g_\/l (cos ) \/1 "1 and better to add: 4/ max(1 — u?,0)

* The direction vector is given by:

cos ¢ sin @ COS(Z”“z)\/ I —uj

®=| cosTlg | = U
OINOL | sinQaupn /1 - uf

* Note: we could generate our vector with less math by using rejection sampling, but it would take more time.




Joint PDFs

From Hemisphere To Sphere

+ In this case, cos™' @ = 1 — 2u,, so with a few changes:

COS ¢ sin @ cos(2muy)2y/uy (1 — u))

®=| coslg | = I =2u,

SIn ¢ sin 6 sm(27m2)2\/m



Joint PDFs

The Multi-Dimensional Sphere

= (x| =1)

* In order to generate uniform samples over S is to compute:

» The d-dimensional sphere is defined:

X = Y Z ~ N(0,1)
Y]] e

| lyll°
27)~2 2

e Where the PDF is:




One More Thing...



One Last Thing...

Other Random Objects

* Permutations:
 We may need to generate random permutations in uniformly.
* Matrices:

 We may need to create random matrices following a given distribution. For example, orthogonal
matrices.

* Graphs:

« To generate a random graphs, G = (V, E), is useful to have models of real-world networks; e.g.,
a social network.

* The problem is basically to generate a n X n binary random matrix; i.e., the graph is defined by
its adjacency matrix.



One Last Thing...

Random Objects: Permutations

o A permutation, i, of n elements is defined as:

I, ..., n
T — :
T, ooy T,

* A uniform random permutations can be computed as:

7= (1,...,n)
fori =n,...,2 do
J ~ U(Li)
swap(z;, ;)

1

. This is uniform algorithm has probability —
n!
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Thank you for your attention!



