
Francesco Banterle, Ph.D. - July 2021

Monte Carlo
Non-Uniform Random Numbers



Non-Uniform Random Numbers
Introduction

• Typically, to draw random numbers in a non-uniform way following a given 
distribution is not an easy task; and it needs to be crafted for each distribution!


• A solution is to convert uniform random number into a non-uniform one.


• How?


• All the information that we need about how a random variable  is 
distributed is inside its CDF:


.

X

FX(x) = P(X ≤ x) = ∫
x

−∞
fX(x)dx



Inverting the CDF



Inverting the CDF
Main Idea

• How do we extract this information from the CDF?


• Let’s say we generate a random value , and we set , 
we obtain:





.


• In this way, we can have  values with  as distribution!

u ∈ U(0,1) X = F−1
X (U)

P(X ≤ x) = P(F−1
X (u) ≤ x) = P(FX(F−1

X (u)) ≤ FX(x)) =

P(u ≤ FX(x)) = FX(x)

X FX



Inverting the CDF
Main Idea

• Given the CDF of a distribution:


.


• We generate a non-uniform random numbers as:


• We first generate a uniform random number, ;


• Then, we compute:


.

FX(x) = P(X ≤ x) = ∫
x

−∞
pX(x)dx

u ∈ U(0,1)

u′ = F−1
X (u)



Inverting the CDF
Example
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Inverting the CDF
Example
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Inverting the CDF
Main Idea

• Note that we draw uniform random numbers .


• Why?

u ∈ (0,1)



Inverting the CDF
Main Idea

• Note that we draw uniform random numbers .


• Why?

u ∈ (0,1)

• 0 and 1 may generate some singularities:


• NaN, +Inf, -Inf



Inverting the CDF
Main Idea

• Note that if  we have that .


• This means that .


• In some cases, to compute  may be difficult.


• In these cases the complementary inversion equation may be easier to 
compute!

u ∼ U(0,1) 1 − u ∼ U(0,1)

F−1(1 − u) ∼ F

F−1(u)



Inverting the CDF
Issues
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Inverting the CDF
Issues

• In such cases, the inverse is not unique, and it can happen for both 
continuous and discrete distributions!


• A solution to this problem is:


.F−1
X (u) = inf{x FX(u) ≥ u ∧ u ∈ (0,1)}



Inverting the CDF
Example: Uniform Distribution

• The uniform distribution is defined as


.


• Its CDF is given by:


.


• So let’s compute its inverse:                            


              multiply both sides by 


f(x) =
1

b − a
x ∈ [a, b]

F(x) = ∫
x

−∞

1
b − a

dx =
1

b − a ∫
x

−∞
dx =

x
b − a

y =
x

b − a
(b − a)

x = y(b − a)



Inverting the CDF
Example: Exponential Distribution

• Standard exponential distribution is:


.


• Its CDF is given by:





• So let’s compute its inverse:                                        


  add -1 both sides


 multiply by -1 both sides


 apply log to both sides


 simplify and multiply by -1 both sides

f(x) = exp(−x) x > 0

F(x) = ∫
x

−∞
e−xdx = 1 − e−x

y = 1 − e−x

y − 1 = − e−x

1 − y = e−x

log(1 − y) = log(e−x)

x = − log(1 − y)



Inverting the CDF
Example: Exponential Distribution

• Now, in order to draw samples exponentially distributed, , we do:


• ;


• .


• Note that doing the inversion, we have the same distribution and its faster:


• ;


• .


• In this case it would not be safe to draw 0 and 1 for  because depending on the method it 
may create a singularity!

Xi ∼ Exp(1)

Yi ∈ U(0,1)

Xi = − log(1 − Yi)

Yi ∈ U(0,1)

Xi = − log(Yi)

Yi



Inverting the CDF
Example: Exponential Distribution



Inverting the CDF
Example: Normal Distribution

• Normal distribution :


.


• Its CDF is:


.


• Note that there is not closed form for .


•  is related to the Erf function:


.

𝒩(0,1)

f(x) =
1

2π
exp(−

x2

2 )

F(x) =
1

2π ∫
x

−∞
exp(−

x2

2 )dx = Φ(x)

Φ(x)

Φ(x)

erf(x) =
1

2π ∫
x

0
exp(−t2)dt Φ(x) =

erf(x/ 2) + 1
2



Inverting the CDF
Example: Normal Distribution

• In this case, we need to invert  to obtain : 


• There is no closed-form for .


• Typically, we have algorithms for  and its inverse:


. 


• We need to use an approximation such as the AS70:


• R. E.  Odeh and J.O. Evans. “Algorithm AS 70: the percentage points of 
the normal distribution”. Applied Statistics, 23(1):96-97. 1974.

Φ(x) Φ−1(x)

Φ−1(x)

erf

Φ−1(x) = 2πerf−1(2x − 1)



Inverting the CDF
Transformations: Linear Transformation

• In some cases, if we have a distribution  with mean 0 and variance 1, we 
may want to shift its mean by  and scale it to have variance :


• , and  is our random variable with the desired 
distribution. 


• To achieve this, we have to:


.

F
μ σ2 > 1

X ∼ FX → Y = σX + μ Y

fY(y) =
1
σ

fX( x − μ
σ )



Inverting the CDF
Transformations

• Transformations can be very general. Let’s assume:


• ;


•  where  is an invertible increasing function. This means:


.


• Therefore,  has the following PDF:


. 


• Note that:


.

X ∼ FX

Y = τ(X) τ

P(Y ≤ y) = P(τ(X) ≤ y) = P(X ≤ τ−1(y))

Y

fY(y) =
d
dy

P(X ≤ τ−1(y)) = fX(τ−1(y))
d
dy

τ−1(y)

d
dx

P(X ≤ x) =
d
dx (∫

x

−∞
fX(x)dx)



Inverting the CDF
Transformations: An Example

• Let’s define:


  where .


• Let’s assume that :


• This means:  with PDF:


.

τ(x) = xp p > 0

X ∼ U(0,1)

Y = τ(X) = Xp

fY(y) =
1
p

y
1
p −1 y ∈ (0,1)



Inverting the CDF
Numerical Inversion

• It can happen that we may have , but we cannot invert it.


• In such cases there are other options:


• We can use bisection algorithms to search  such that .


• Although bisection can get the job done, it is very slow. Another viable option is to 
Newton’s method:


.


• The only issue here is that this method may not converge when  is close to 0. 

F

x F(x) = u

xi+1 = xi −
F(xi) − u

f(xi)

f



Inverting the CDF
Inversion for Discrete Random Variables

• In many situations, we may face to have discrete distributions; i.e., histograms.


• In a histogram , we have  bins and each bin has a frequency number associated to 
that bin.


• We can convert a histogram into a discrete by normalizing it (i.e., sum of all ) obtaining .

H 1,…, N

H[i] H′ 

1 2 3 4 5 6 7



Inverting the CDF
Inversion for Discrete Random Variables

• At this point, we have can define a random variable  such that


.


• In this case, the cumulative distribution is defined as:


 with .


• In order to compute:


,  


we have to run the binary search on the cumulative distribution using .

X

P(X = k) = pk = H′ [k] ≥ 0

Pk =
k

∑
i=1

pi P0 = 0

F−1(u) = k u ∈ (Pk−1, Pk]

u ∼ U(0,1)



Acceptance-Rejection



Acceptance-Rejection
Main Idea

• In some cases, we cannot use the inversion method to get the  distribution 
that we want.


• When this happens, we can employ another distribution ; key concepts:


• We reject some values from ;


• We accept other values from ;


• In accepting and rejecting, we try to get .

F

G

G

G

F



Acceptance-Rejection
Main Idea

• The first step is to find a distribution  such that its PDF :


•  always holds;


• We can compute:


 .

G g(x)

f(x) ≤ cg(x) c ≥ 1

f(x)
g(x)



Acceptance-Rejection
Main Idea

repeat 

;


;


until 





return 

Y ∼ g

U ∼ U(0,1)

U ≤ f(Y)/(cg(Y))

X ← Y

X



Acceptance-Rejection
Main Idea

repeat 

;


;


until 





return 

Y ∼ g

U ∼ U(0,1)

U ≤ f(Y)/(cg(Y))

X ← Y

X

Theorem 4.2 in Owen’s book 
tells us that the generated 
samples have PDF .f



Acceptance-Rejection
Main Idea

f(x)



Acceptance-Rejection
Main Idea

cg(x)



Acceptance-Rejection
Main Idea

Sample



Acceptance-Rejection
Main Idea

Rejected

Accepted



Acceptance-Rejection
The Ziggurat Algorithm

• The Ziggurat algorithm is an acceptance-rejection method for drawings sampling 
according to normal distribution (i.e., half).


• The method divides the region below  into  (e.g., 256) horizontal regions that are 
ideally of similar area; i.e., equiprobable.


• At this point, the method generate samples points  uniformly distributed in each 
region such that:


.


• Typically, the normalization factor  is ignored for speeding the algorithm up.

𝒩(0,1) k

(Z, Y)

{(z, y) y ∈ [0, exp(−z2/2); x ∈ [0,∞)]}
1/ 2π



Acceptance-Rejection
The Ziggurat Algorithm
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Acceptance-Rejection
The Ziggurat Algorithm
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Acceptance-Rejection
The Ziggurat Algorithm
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Random Vectors 
aka Joint PDFs



Joint PDFs
Main Idea

• Typically, it can happen to have joint probabilities; e.g., sampling shapes such as disks, 
triangles, etc. So we end up to have:


.


• In such cases, we firstly compute the marginal density  as:


.


• Then, we compute the conditional density as:


.

p(x, y)

p(x)

p(x) = ∫𝒟x

p(x, y)dy

p(y |x) =
p(x, y)
p(x)



Joint PDFs
Main Idea

• At this point, we compute the CDF of  and  through integration:


, and


.


• Finally, we draw samples by inverting these CDFs:


,


.

p(x) p(y |x)

P(x) = ∫
x

−∞
p(t)dt

P(y |x) = ∫
y

−∞
p(t |x)dt

n1 = P−1(u1) u1 ∈ U(0,1)

n2 = P−1(u1 |u2) u2 ∈ U(0,1)



Joint PDFs
Main Idea

• The method, we have just seen, is called sequential inversion.


• This process can be extended to  dimension.d



Joint PDFs
The Unit Disk

• Let’s say we want to sample a unit disk in a uniform way.


• The disk looks simple, but it has hidden insidious challenges!


• The wrong approach:


• .


• Then, we remap into XY coordinates:


.

r = u1 θ = 2πu2 u1 ∈ U(0,1) u2 ∈ U(0,1)

(x, y) = [cos(θ)r, sin(θ)r]



Joint PDFs
The Unit Disk



Joint PDFs
The Unit Disk

Samples are focusing in the center!



Joint PDFs
The Unit Disk

Samples are focusing in the center!

BY THE WAY, THAT’S VEERY BAD!



Joint PDFs
The Unit Disk

• The PDF, , has to be a constant!


• Assuming a unit disk, this has to be:


.


• Let’s transform it in polar coordinates:


.

p(x, y)

p(x, y) =
1
π

p(r, θ) =
r
θ



Joint PDFs
The Unit Disk

• Let’s compute the marginal density:


.


• Now, we can compute the conditional density:


.


• We need to invert their CDFs!

p(r) = ∫
2π

0
p(r, θ)dθ = ∫

2π

0

r
π

dθ =
r
π ∫

2π

0
dθ = 2r

p(θ |r) =
p(r, θ)
p(r)

=
r
π

2r
=

r
π

1
2r

=
1

2π



Joint PDFs
The Unit Disk

• The first CDF is:


.


• The second CDF is:


.


• Now, we have all pieces to generate samples:


.

P(r) = ∫
r

0
2xdx = r2 → P−1(x) = x

P(θ |r) = ∫
θ

0

1
2π

dx → P−1(x) = 2πx

r = u1 θ = 2πu2 u1 ∈ U(0,1) u2 ∈ U(0,1)



Joint PDFs
The Unit Disk



Joint PDFs
The Unit Disk



Joint PDFs
Transformations: Box Muller

• An alternative to generate normally distributed random numbers, without inverting 
, is to use transformations:


• Box-Muller Method:


• Let’s say, we have two independent variables,  and , that have normal 
distribution.


• Their joint PDF is:


.

Φ

X Y

pXY(x, y) = pX(x)pY(y) =
exp(−x2/2)

2π
⋅

exp(−y2/2)

2π
=

exp( − (x2 + y2)/2)
2π



Joint PDFs
Transformations: Box Muller

• We convert the distribution in coordinate  in polar coordinates  using the Jacobian matrix:


.


• Knowing that  and , we can define the joint PDF as:


.


• Note that  and  are independent variables:


.

(x, y) (r, θ)

J =
∂(x, y)
∂(r, θ)

=
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

= [cos(θ) r sin(θ)
sin(θ) −r cos(θ)]

x2 + y2 = r | det(J) | = r

f(r, θ) =
1

2π
exp(−r2/2)r θ ∈ [0,2π] r ∈ (0,∞)

θ R

X = R cos(θ) Y = R sin(θ)



Joint PDFs
Transformations: Box Muller

• We can compute the PDF of  as:


.


• This leads to:


• ,


• ,


where .

R

fR(r) = r exp(−r2/2) r ∈ (0,∞)

X = −2 log U1 cos(2πU2)

Y = −2 log U1 sin(2πU2)

U1, U2 ∼ U(0,1)



Joint PDFs
Transformations: Box Muller

• We can compute the PDF of  as:


.


• This leads to:


• ,


• ,


where .

R

fR(r) = r exp(−r2/2) r ∈ (0,∞)

X = −2 log U1 cos(2πU2)

Y = −2 log U1 sin(2πU2)

U1, U2 ∼ U(0,1)

Always check ,  
and better to add: 

U1 ∈ (0,1)
max(−2 log U1,0)



Joint PDFs
Uniform Directions over a Hemisphere

• In this case, we want to generates random vectors, directions, that are 
normalized; i.e., .


• This problem is similar to generating points on the surface of the hemisphere, 
, because we can convert them into normal directions as:


,   ,


where  is the center of the hemisphere. 

∥ ⃗ωi∥ = 1

xs
i

⃗ω i =
xs

i − c
∥xs

i − c∥
⃗ω i(θ, ϕ) =

cos ϕ sin θ
cos θ

sin ϕ sin θ

c
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Joint PDFs
Uniform Directions over a Hemisphere

⃗ω i

x

y

z



Joint PDFs
Uniform Directions over a Hemisphere

• Let’s assume that the sphere has radius 1. Since it is a uniform sampling, the PDF is 
constant:


; i.e., the inverse of the area of half sphere.


• Note that:


.


• We need to convert from  to . Therefore, we need to compute the Jacobian for 
such transformation:


.

p( ⃗ω i) =
1

2π

ωx = sin θ cos ϕ ωy = cos θ ωx = sin θ sin ϕ

p(ω) p(θ, ϕ)

p(ω) = p(θ, ϕ) |Jt | |Jt | = sin θ → p(ω) = p(θ, ϕ)sin θ



Joint PDFs
Uniform Directions over a Hemisphere

• At this point, we compute the marginal density:


.


• Then, we compute the conditional density as:


.


• Finally, we compute the marginal of both these densities, we invert them, and we get:


.

p(θ) = ∫
2π

0
p(θ, phi)dϕ = ∫

2π

0

1
2π

sin θ =
1

2π ∫
2π

0
sin θ = sin θ

p(ϕ |θ) =
p(θ, ϕ)

p(θ)
=

1
2π

θ = cos−1 u1 ϕ = 2πu2 u1, u2 ∈ U(0,1)



Joint PDFs
Uniform Directions over a Hemisphere

• Practically, we do not compute , but we compute directly  as:


• .


• .


• The direction vector is given by:


.


• Note: we could generate our vector with less math by using rejection sampling, but it would take more time.

θ cos θ

cos θ = u1 u1 ∈ U(0,1)

sin θ = 1 − (cos θ)2 = 1 − u2
1

⃗ω =
cos ϕ sin θ

cos−1 θ
sin ϕ sin θ

=

cos(2πu2) 1 − u2
1

u1

sin(2πu2) 1 − u2
1



Joint PDFs
Uniform Directions over a Hemisphere

• Practically, we do not compute , but we compute directly  as:


• .


• .


• The direction vector is given by:


.


• Note: we could generate our vector with less math by using rejection sampling, but it would take more time.

θ cos θ

cos θ = u1 u1 ∈ U(0,1)

sin θ = 1 − (cos θ)2 = 1 − u2
1

⃗ω =
cos ϕ sin θ

cos−1 θ
sin ϕ sin θ

=

cos(2πu2) 1 − u2
1

u1

sin(2πu2) 1 − u2
1

Always check ,  

and better to add: 

U1 ∈ (0,1)
max(1 − u2

1 ,0)



Joint PDFs
From Hemisphere To Sphere

• In this case, , so with a few changes:


.

cos−1 θ = 1 − 2u1

⃗ω =
cos ϕ sin θ

cos−1 θ
sin ϕ sin θ

=
cos(2πu2)2 u1(1 − u1)

1 − 2u1

sin(2πu2)2 u1(1 − u1)



Joint PDFs
The Multi-Dimensional Sphere

• The -dimensional sphere is defined:


.


• In order to generate uniform samples over  is to compute:


 .


• Where the PDF is:


  .

d

S = (x ∥x∥ = 1)
S

X =
Y

∥Y∥
Z ∼ N(0,Id)

pY(y) =
1

(2π)− d
2

exp(−
∥y∥2

2 )



One More Thing…



One Last Thing…
Other Random Objects

• Permutations:


• We may need to generate random permutations in uniformly.


• Matrices:


• We may need to create random matrices following a given distribution. For example, orthogonal 
matrices.


• Graphs:


• To generate a random graphs, , is useful to have models of real-world networks; e.g., 
a social network.


• The problem is basically to generate a  binary random matrix; i.e., the graph is defined by 
its adjacency matrix.

G = (V, E)

n × n



One Last Thing…
Random Objects: Permutations

• A permutation, , of  elements is defined as:


.


• A uniform random permutations can be computed as:





• This is uniform algorithm has probability .

π n

π = ( 1, …, n
π1, …, πn)

π = (1,…, n)
for i = n, …,2 do

j ∼ U(1,i)
swap(πi, πj)

1
n!
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Thank you for your attention!


