Monte Carlo Random Numbers

Francesco Banterle, Ph.D. - July 2021

Real Random Numbers Introduction

- Montecarlo methods require randomness:
 - We have a match between our mathematical model and our computational model.
- To draw truly random number is not an easy task:
 - We need special hardware based on thermal noise, shot noise, etc.

Real Random Numbers Introduction

- There are limitations too:
 - We cannot debug with them.
 - Such generators are computationally slow.
 - readings.

• Some hardware generators fails some randomness tests -> flaws while

A Pseudo-Random Generator Introduction

- In this course, pseudo-random numbers will be called random numbers for the sake of simplicity.
- The main reasons to use such generators:
 - Computationally complexity: they are computationally fast in drawing numbers.
 - **Debugging**: we can restart the stream of drawn numbers.

A Pseudo-Random Generator Introduction

- outputs:
 - We can then predict the next draws.

 Cryptography requires random generators where this problem is computationally expensive to solve.

For some random generators, their inner state can be inferred from their

A Pseudo-Random Generator Introduction

- Blum Blum Shub generator is defined as:
 - $x_{i+1} = x_i^2 \mod M \quad M = p \cdot q,$

from 0 or 1.

• The square root mod M of x_i is not a computationally easy to solve problem.

• For Montecarlo, we do not need cryptographic security!

where p and q are large primes (4096-bit), and x_0 is co-prime to M; different

A Pseudo-Random Generator Properties

- Computationally Fast: Montecarlo-based algorithms devour a huge number of random numbers. We
 need to draw such numbers computationally quickly.
- Multiple Streams: Montecarlo-based algorithms typically are executed in parallel (more CPUs or threads), we need different and independent streams.
- Large Period: the sequence of random numbers starts to repeat only after P numbers were drawn; where P is a very large number.
- Quality: the generated numbers are independent and identically distributed (i.i.d.) in the range [0,1] or (0,1) or (0,1], or [0,1).
 - Equidistribution: when drawing numbers in $x_i \in [0,1]$, we do not want more dense regions of others:

$$\forall_{[y_s, y_e] \in [0, 1]} | \{x_i|\}$$

 $x_i \in [y_s, y_e]\} \mid \propto \mid y_e - y_s \mid$

Classic Random Generators The Middle-Square Method

- A very simple method introduced by Von Neumann. This method is considered the first PRNG.
- A 32-bit version would be:

$$x_{i+1} = \left(x_i^2 \ge$$

where $x_0 \neq 0$.

Drawbacks: very small period.

$> 8) \odot 00FFFFFF,$

Classic Random Generators LCGs

that is defined as:

$$x_{i+1} = \left(x_i \cdot a_0 + a_1\right) \mod M,$$

where:

- $x_0 \in [0, M 1]$ is called the seed or start value,
- M is called the modulus (a positive integer),
- $a_0 \in [0, M-1]$ is the multiplier, and
- $a_1 \in [0, M 1]$ is the increment.

• A classic and well-known random generator is the linear congruential generator (LCG)

Classic Random Generators LCGs

• As we could expect, LCGs generates values in the range [0, M - 1].

- To get floating-point values in the range [0,1], we divided by M-1:
- Typically, we want to avoid to draw 0 and 1:

$$f_{(0,1)}(x)$$

 $f_{[0,1]}(x) = \frac{x}{M-1}.$ x + 1

Classic Random Generators MCGs

• If $a_1 = 0$, we have:

- $x_{i+1} = x_0 \cdot a_0^i \mod M \quad i \ge 1$
- This random generator is typically called multiplicative congruential generator (MCG) or Lehmer's RNG.
- To have an extra term as in a LCG does not bring any quality improvement. So MCGs are typically used instead of LCGs.

 $x_{i+1} = x_i \cdot a_0 \mod M$

Classic Random Generators LCGs

 A LCGs and MCGs, more in general other RNGs, will generate a sequence of values. For example, let's draw some numbers using a generator, G_0 :

 X_i

• After a while, this sequence will restart:

• For example:

P = 5.

[11, 10, 39, 44, 23, ...]

$$= x_{i+P}$$

[11, 10, 39, 44, 23, **11**, **10**, **39**, **44**, **23**, **11**, **10**, **39**, **44**, **23**]

• In this case, the sequence restart after 5 numbers are drawn. This means that G_0 has a period

Classic Random Generators LCGs Parameters Selection

- To get maximum *P*:
 - a_1 is relatively prime to M;
 - $a_0 = 1 \mod p$ for all p dividing M;
 - $a_0 = 1 \mod 4$ if *M* is a multiple of 4.
- If the period is maximized; the period is maximized for all x_0 .

Classic Random Generators MCGs Parameters Selection

- It cannot achieve maximum P:
 - If *M* is prime and large, it can achieve P = M 1:
 - $M = 2^{31} 1$ for 32-bit numbers
 - If M is odd, we have an alternation between odd and even numbers.
 - We need to find an a_0 such that

$$\mathsf{t} \, \forall_{x \in [0, M-1]} \exists_i \, | \, a_0^i = x \mod M$$

Classic Random Generators Parameters Selection

- choose parameters for LCGs and MCGs including:
 - Number of bits to be used;
 - Period length;
 - Quality of the drawn numbers; e.g., statistical test results.

Several publications (papers, technical reports, blogs, etc.) reports how to

Classic Random Generators MRGs

 A further generalization of MCGs are Multiple Recursive Generators or MRGs that are defined as:

$$x_i = a_0 \cdot x_{i-1} + .$$

where $k \ge 1$ and $a_i \ne 0$.

 A special case of MRGs are the Lagged Fibonacci Generators or LFGs defined as: $x_i = x_{i-r} + x_{i-s} \mod M$,

where r and s need to be chosen carefully.

 $\ldots + a_k \cdot x_{i-k} \mod M$,

Combining RNGs Main Idea

- A typical trick is to combine different RNGs (which can be not too good) to improve the overall performance and to increase its period.
- Given *n* RNGs, U_1, \ldots, U_n , we can put their results together as:

$$x_{i} = \left(x_{i,\mathbf{U}_{1}} + x_{i,\mathbf{U}_{2}} + \dots + x_{i,\mathbf{U}_{n}} \right) \mod 1$$
$$\forall_{z \in \mathbb{R}} \quad z \mod 1 \longrightarrow z - \lfloor z \rfloor$$

$$\begin{pmatrix} x_{i,\mathbf{U}_{1}} + x_{i,\mathbf{U}_{2}} + \dots + x_{i,\mathbf{U}_{n}} \end{pmatrix} \mod 1$$
$$\forall_{z \in \mathbb{R}} \quad z \mod 1 \longrightarrow z - \lfloor z \rfloor$$

Combining RNGs The Wichmann-Hill Generator

- A classic example is the Wichman-Hill Generator:

 - $x_i = 171 \cdot x_{i-1} \mod 30269$ $y_i = 172 \cdot y_{i-1} \mod 30307$ $z_i = 170 \cdot z_{i-1} \mod 30323$

$$w_i = \left(\frac{x_i}{30269} + \frac{y_i}{30307} + \frac{z_i}{30323}\right) \mod 1$$

• This way we can achieve $P = 6.95 \cdot 10^{12}$.

Combining RNGs MRG32k3a

- L'Ecuyer proposed to combine two MRGs obtaining MRG32k3a.
- The method has combines two MRGs:

$$\begin{aligned} x_i &= (1403580x_{i-2} - 810728x_{i-3}) \mod (2^{32} - 209) \\ y_i &= (527612y_{i-2} - 1370589y_{i-3}) \mod (2^{32} - 22853) \\ U_i &= \begin{cases} \frac{x_i - y_i + 2^{32} - 209}{2^{32} - 208} & \text{if } x_i \leq y_i \\ \frac{x_i - y_i}{2^{32} - 208} & \text{otherwise} \end{cases} \end{aligned}$$

- By combining two MRGs, we can achieve $P = 3 \times 10^{37}$.
- MATLAB has employed MRG32k3a.

Quality Tests for RNGs

Test Main Idea

- If N samples are drawn in the interval [0,1], then the number of drawn samples in each interval has to be equal on average.
- This test the range of data in k subintervals; i.e., discrete distribution.
- We, then, count the sample for each subinterval.
- The number of samples that fall in each subinterval is close to the expected number.

 χ^2 Test Main Idea

• The test is defined as

where:

- α is the level of significance;
- k is the number of bin in the histogram;
- o_i is the number of observed values in the i-th bin of the histogram;

N• $e_i = \frac{1}{k}$ is the number of expected values in the i-th bin of the histogram.

 $D = \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i} < \chi^2_{[1-\alpha,k-1]}$

χ^2 Test Example using RANDU

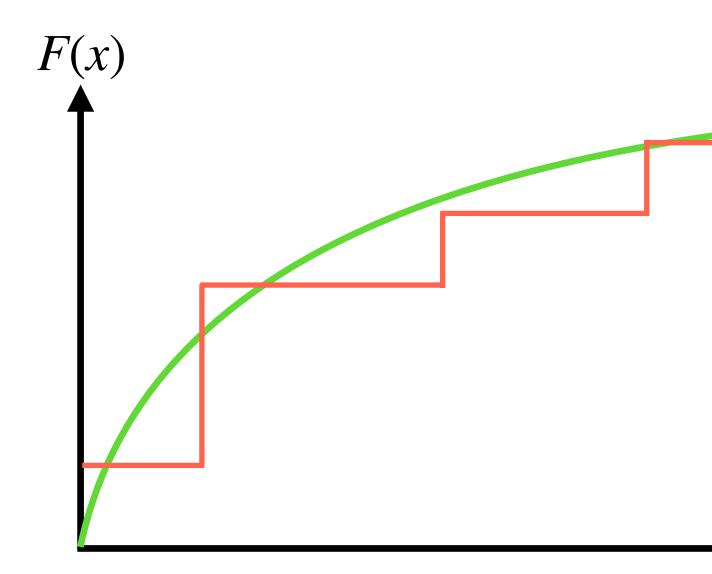
- We draw 1,000 numbers in [0,1].
- We create a histogram with k = 10 bins.
- We compute D = 14.2
- $\chi^2[0.9,9] = 14.684$
- 14.2 < 14.684:
 - We accept these values!

χ^2 Test Example using RANDU

- We draw 1,000 numbers in [0,1].
- We create a histogram with k = 10 bins.
- We compute D = 14.2
- $\chi^2[0.9,9] = 14.684$
- 14.2 < 14.684:
 - We accept these values!

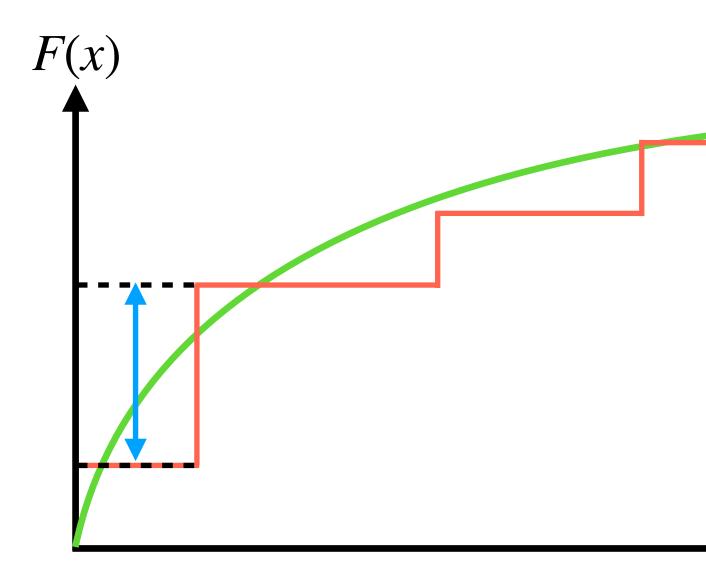
Observed	Expected
104	100
89	100
79	100
103	100
108	100
94	100
102	100
126	100
102	100
93	100

- function (CDF) or $F_{\rho}(x)$ and the expected CDF or $F_{\rho}(x)$.
- This difference has to be small.



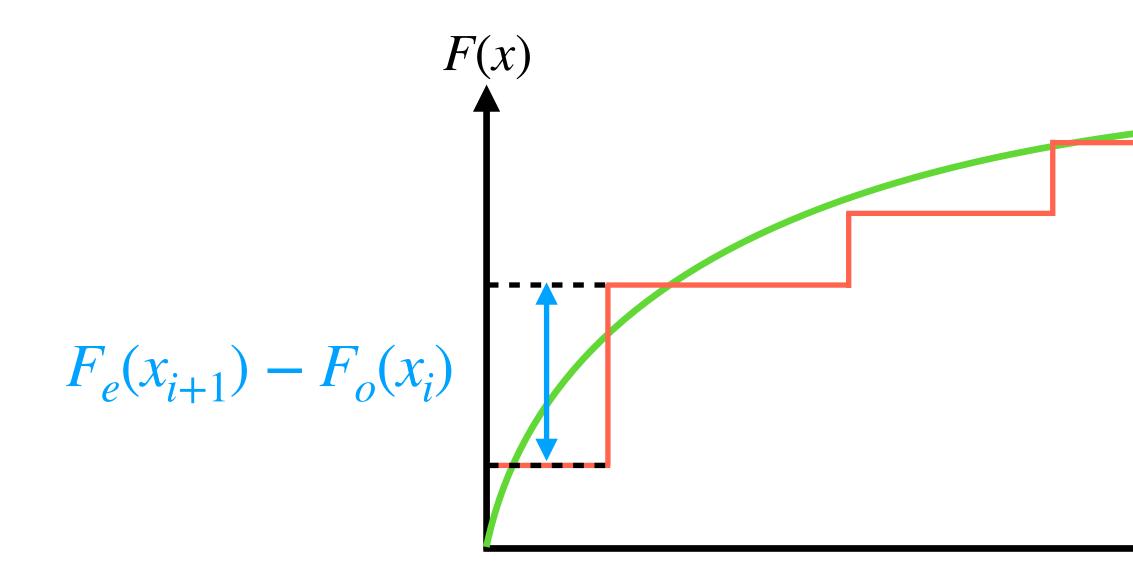
We measure the differences between the observed cumulative distribution

- function (CDF) or $F_{\rho}(x)$ and the expected CDF or $F_{\rho}(x)$.
- This difference has to be small.



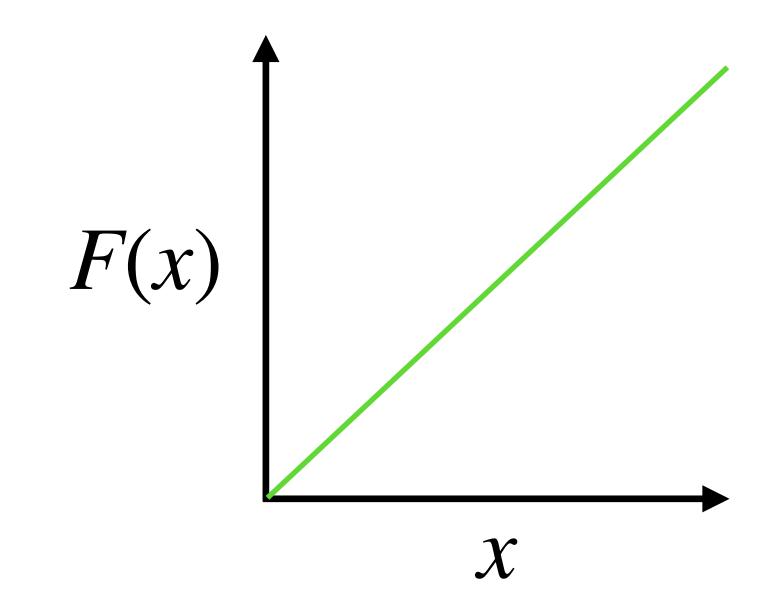
We measure the differences between the observed cumulative distribution

- function (CDF) or $F_o(x)$ and the expected CDF or $F_o(x)$.
- This difference has to be small.



We measure the differences between the observed cumulative distribution

• If N samples are drawn in the interval [0,1], then the graph of the empirical distribution of samples follows the CDF of uniform distribution in [0,1].



- test:
 - 0.56020847, 0.03633356, 0.70865904, 0.39256236, 0.6442009,0.2163937, 0.56919288, 0.28660165, 0.04716307, 0.41800649, 0.61657189, 0.84608168, 0.41675127, 0.67504593, 0.08985331, 0.06058904, 0.69510391, 0.45404319, 0.31664501, 0.67808957,0.48707878, 0.27557392, 0.45049086, 0.97062946, 0.30428724]

• As first step, we draw some numbers (n = 30) from our RNG that we want to

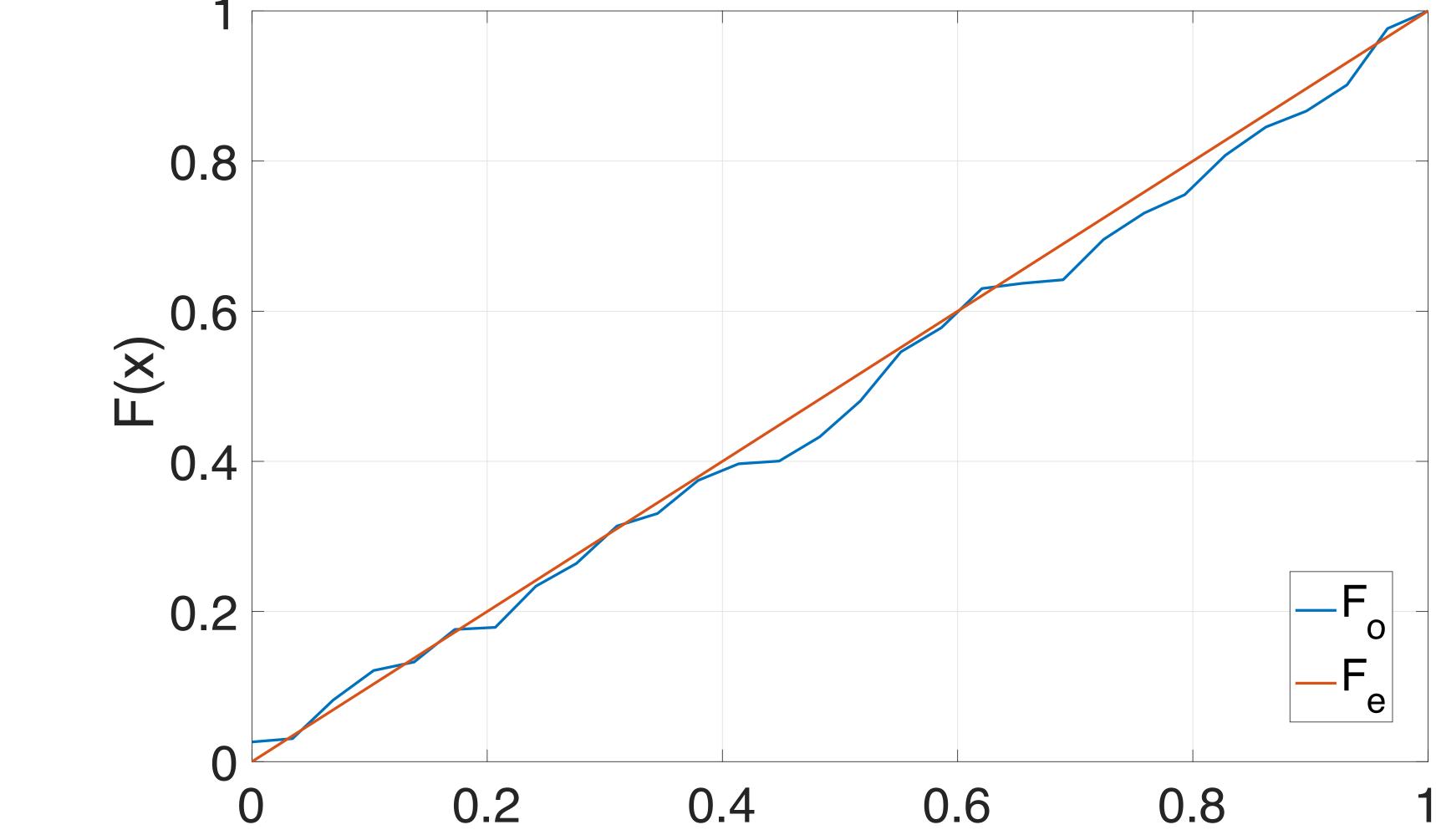
• X = [0.33967685, 0.05724571, 0.66265701, 0.51043379, 0.14676791,

- Then, we sort X:
 - 0.14676791, 0.2163937, 0.27557392, 0.28660165, 0.30428724,0.31664501, 0.33967685, 0.39256236, 0.41675127, 0.41800649,0.45049086, 0.45404319, 0.48707878, 0.51043379, 0.56020847,0.56919288, 0.61657189, 0.6442009, 0.66265701, 0.67504593,0.67808957, 0.69510391, 0.70865904, 0.84608168, 0.97062946]

• X=[0.03633356, 0.04716307, 0.05724571, 0.06058904, 0.08985331,

- At this point, we create our CDF:
 - 0.17606128, 0.17887067, 0.23366556, 0.26401925, 0.31383012,0.3305621, 0.3745732, 0.3967338, 0.40038054, 0.43270162, 0.48037616, 0.54579684, 0.57802086, 0.63021673, 0.63716436, 0.64184922, 0.69559601, 0.73070352, 0.75518713, 0.80761833, 0.84528021, 0.86658813, 0.90142096, 0.97647192, 1.0]

• $F_e = [0.02626448, 0.03069083, 0.08192876, 0.12139649, 0.13274487,$



Χ

Kolmogorov-Smirnov Goodness-of-Fit Test **Main Idea**

• We compute *D* as:

where D^+ and D^+ are defined as:

 $D = \max\left(D^+, D^-\right),$

 $D^{+} = \arg \max \left(F_{o}(x) - F_{e}(x) \right) \qquad D^{-} = \arg \max \left(F_{e}(x) - F_{o}(x) \right)$

Kolmogorov-Smirnov Goodness-of-Fit Test Main Idea

- How do we compute D^+ exactly in our case?
- How do we compute D^- exactly in our case?

 $D^- = \arg$

 $D^{+} = \arg \max_{i \in [1,n]} \left(\frac{i}{n} - x_{i} \right)$

$$\max_{i \in [0,n-1]} \left(x_i - \frac{i}{n} \right)$$

Kolmogorov-Smirnov Goodness-of-Fit Test Main Idea

distributed in [0,1]) if:

where α is the significance value.

• $D_{\alpha,n}$ can be found in tables; but it can be approximated when n > 35:

$$D_{\alpha=0.1,n} = \frac{1.22}{\sqrt{n}}; D_{\alpha=0.05,n} = \frac{1.36}{\sqrt{n}}; D_{\alpha=0.01,n} = \frac{1.63}{\sqrt{n}}$$

• Finally, to pass the test (I.e., we accept the Null Hypothesis that X numbers are uniformly

$$< D_{\alpha,n},$$

Kolmogorov-Smirnov Goodness-of-Fit Test **Back to the Example**

- In our example, we have:

$D^+ = 0.0672984$ $D^- = 0.0431386$

$D = \max\left(D^+, D^-\right) = 0.0672984$

$D < D_{0.1.30} \rightarrow 0.0672984 < 0.21756$

• We have passed the test -> the data is uniformly distributed over the range [0,1].

RANDU

RANDU **A MCG Generator**

RANDU is a MCG RNG¹ defined as:

where X_0 is an odd number.

- The generator was designed to generate high-quality tu tuples such as:

• for $L \in \{1, 2, 3\}$.

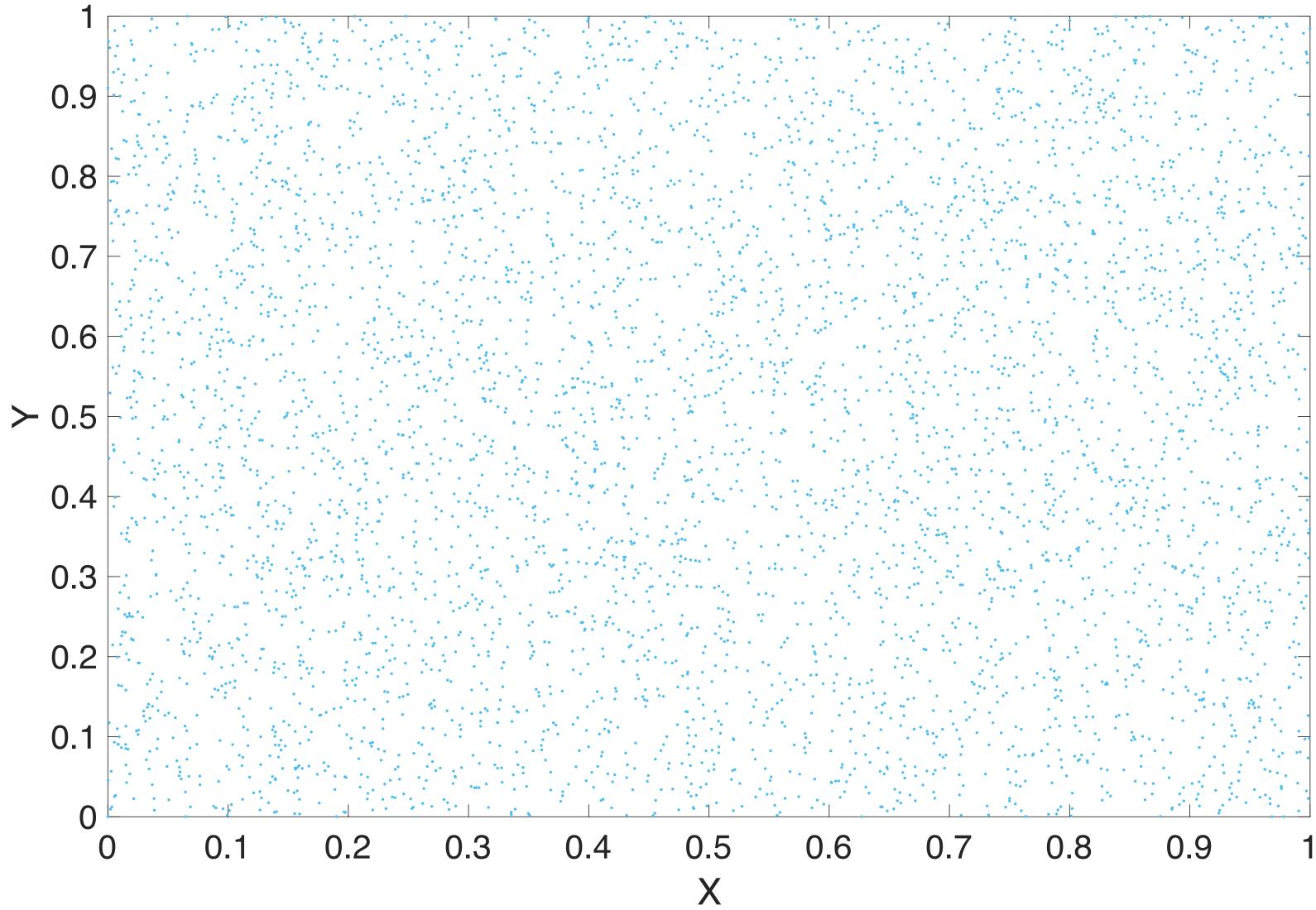
 $X_{i+1} = X_i \cdot 65539 \mod 2^{31}$,

• This generator is meant to generate uniformly distributed number in the range $[1, 2^{31} - 1]$.

 $(x_{i}, x_{i+I}),$

Let's draw some 2D points in $[0,1]^2$ with RANDU

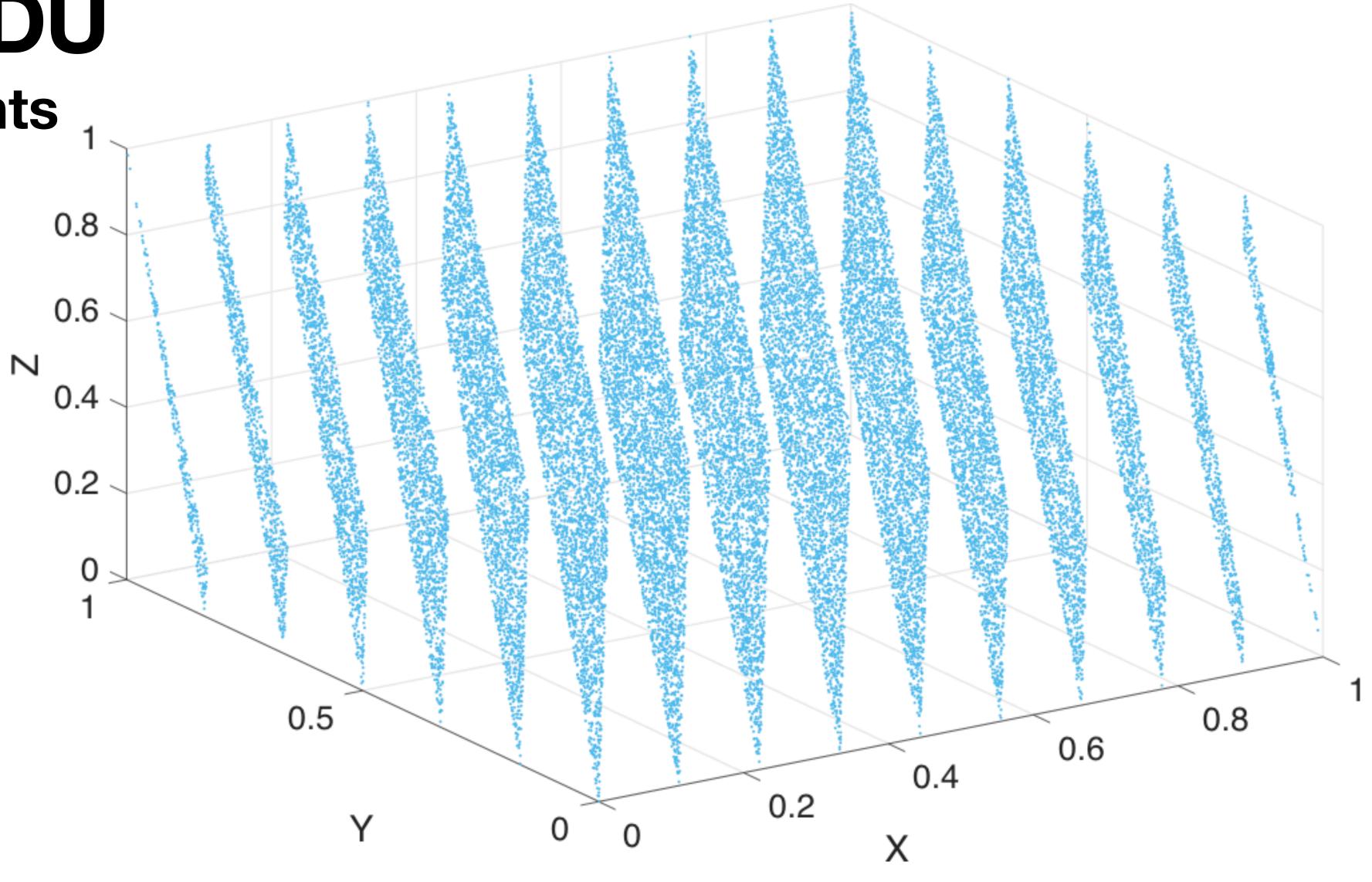
RANDU 2D Points



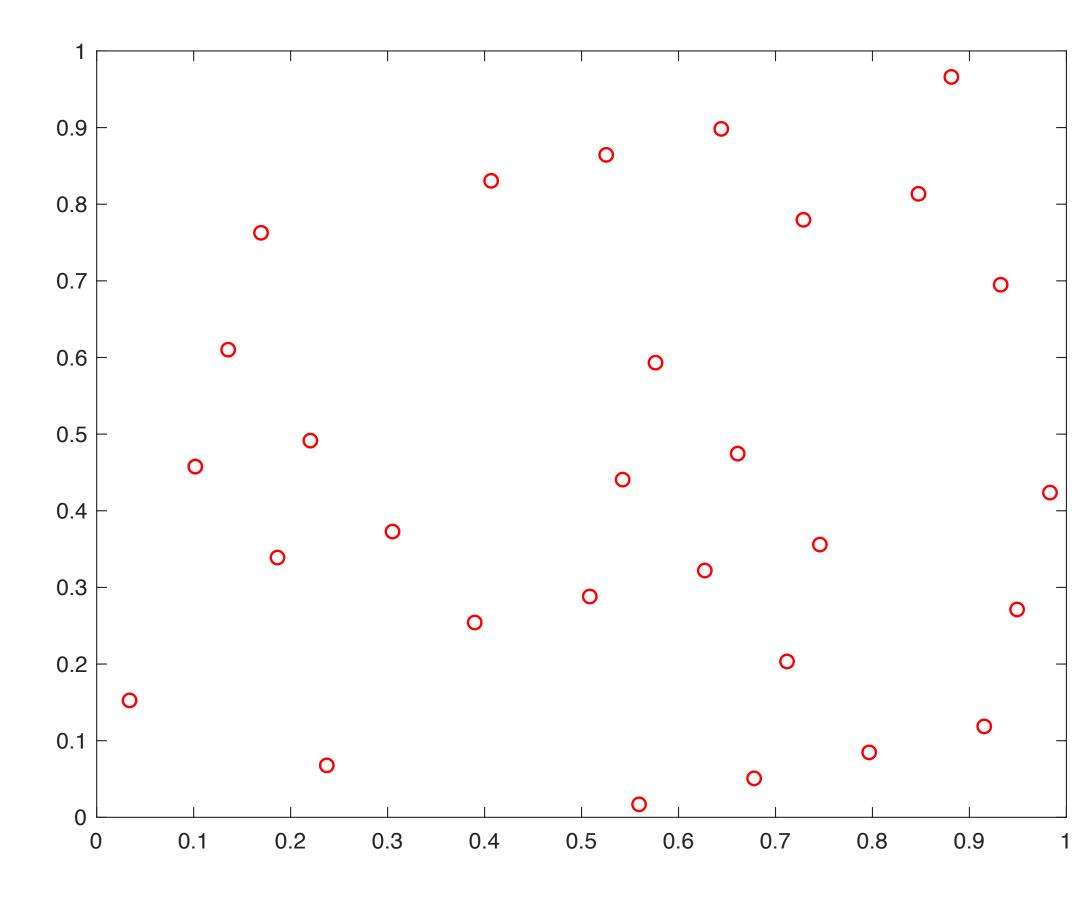
It looks nice! Doesn't it?

Let's draw some 3D points in $[0,1]^3$ with RANDU

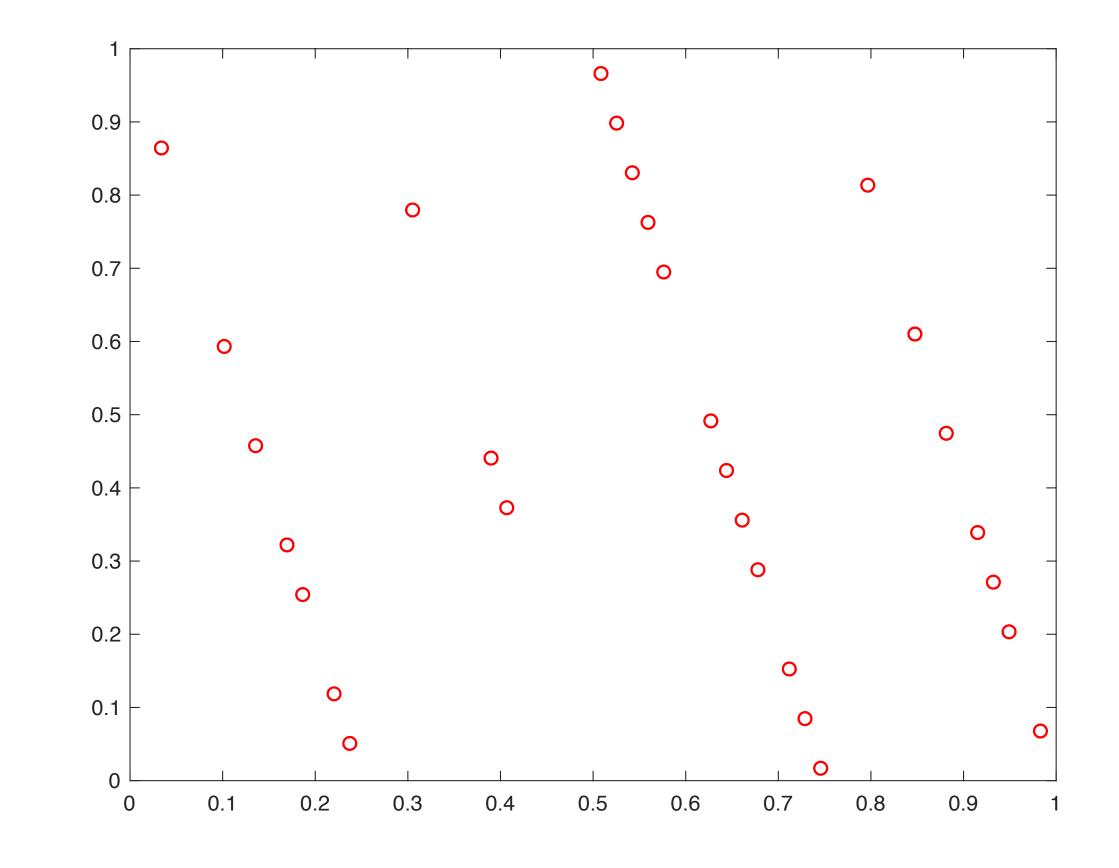
RANDU 3D Points



The Lattice Structure in 2D MCGs in 2D

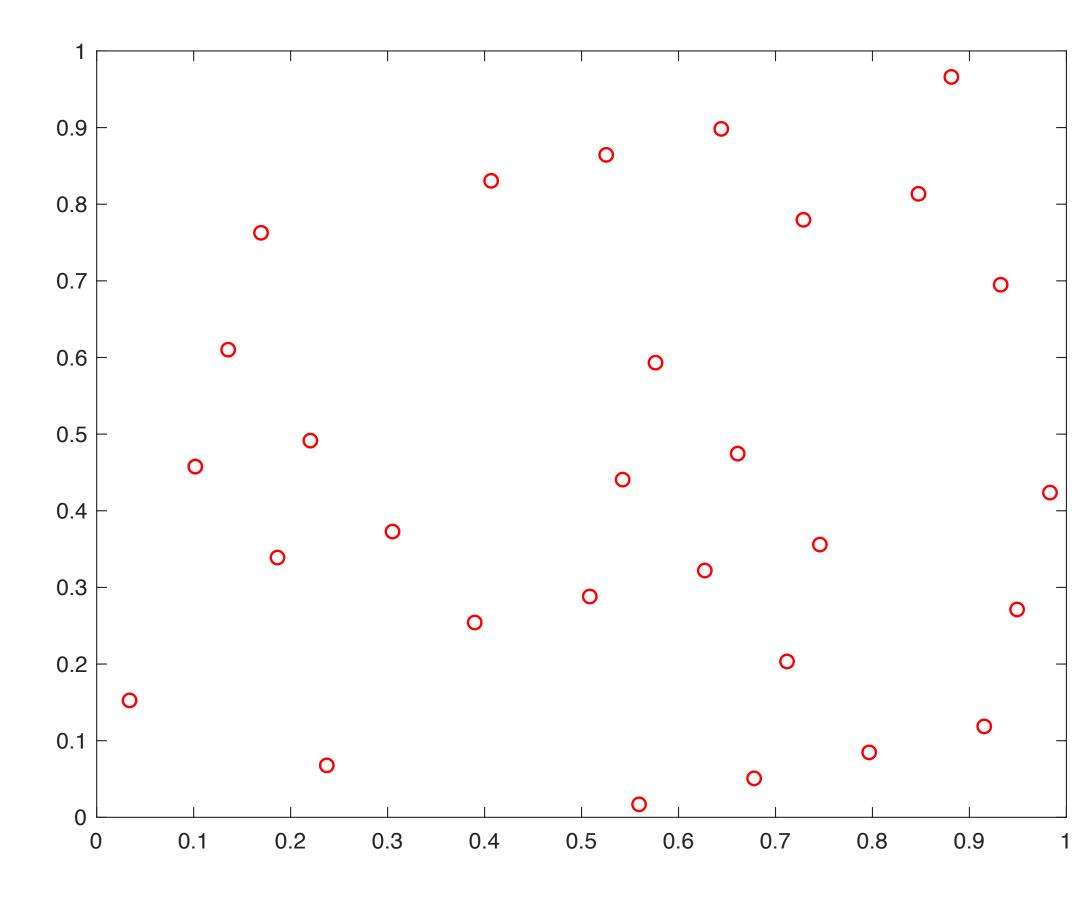


 $M = 59; a_0 = 33$

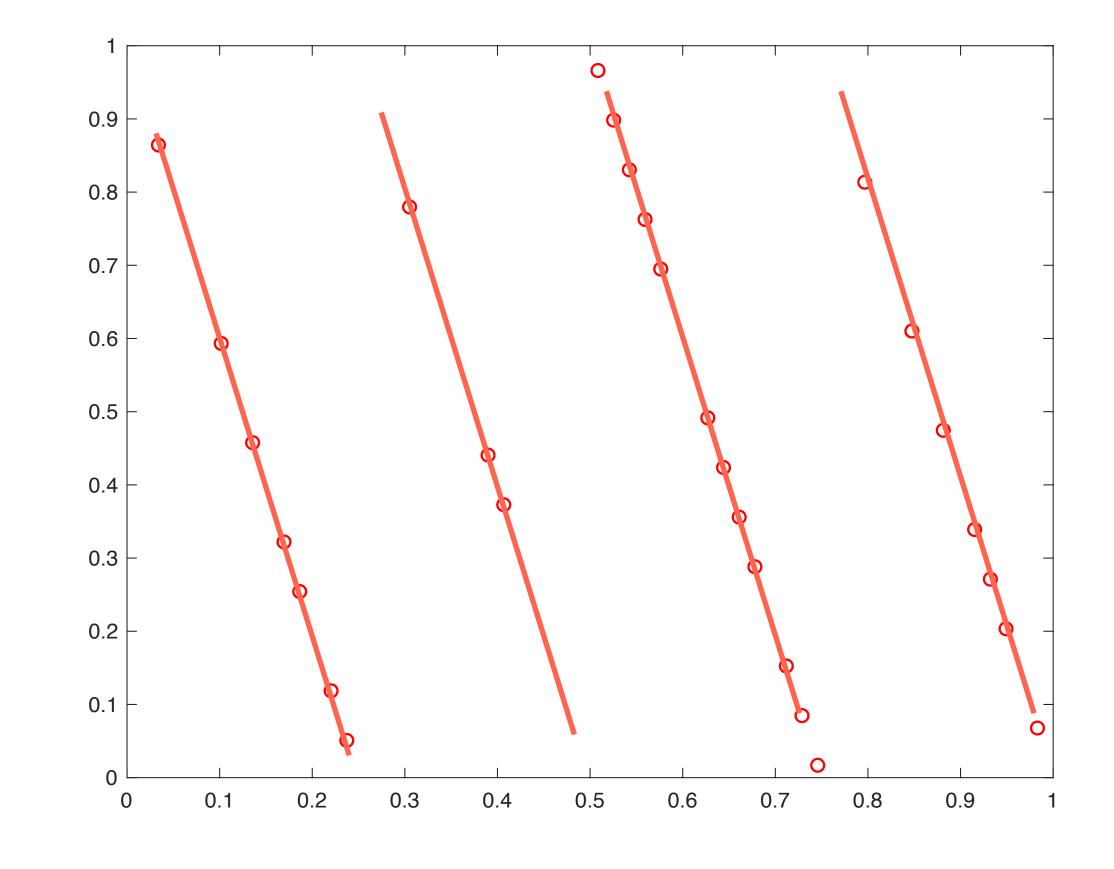


 $M = 59; a_0 = 44$

The Lattice Structure in 2D MCGs in 2D

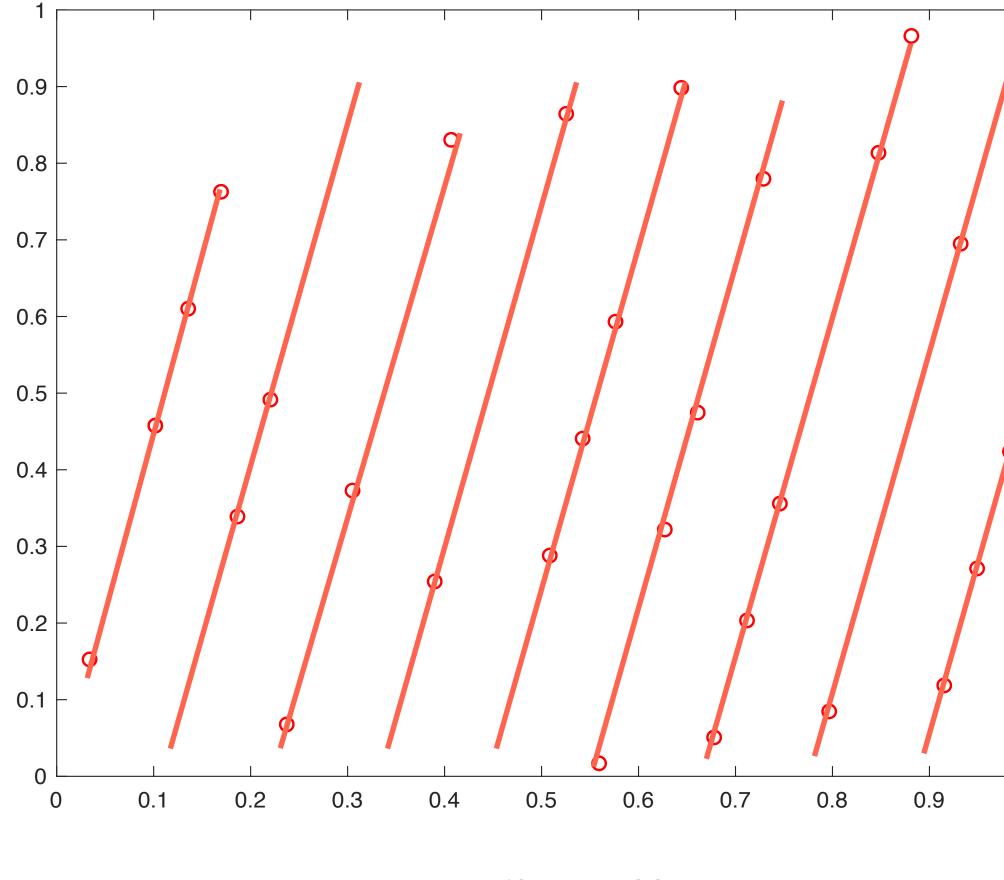


 $M = 59; a_0 = 33$

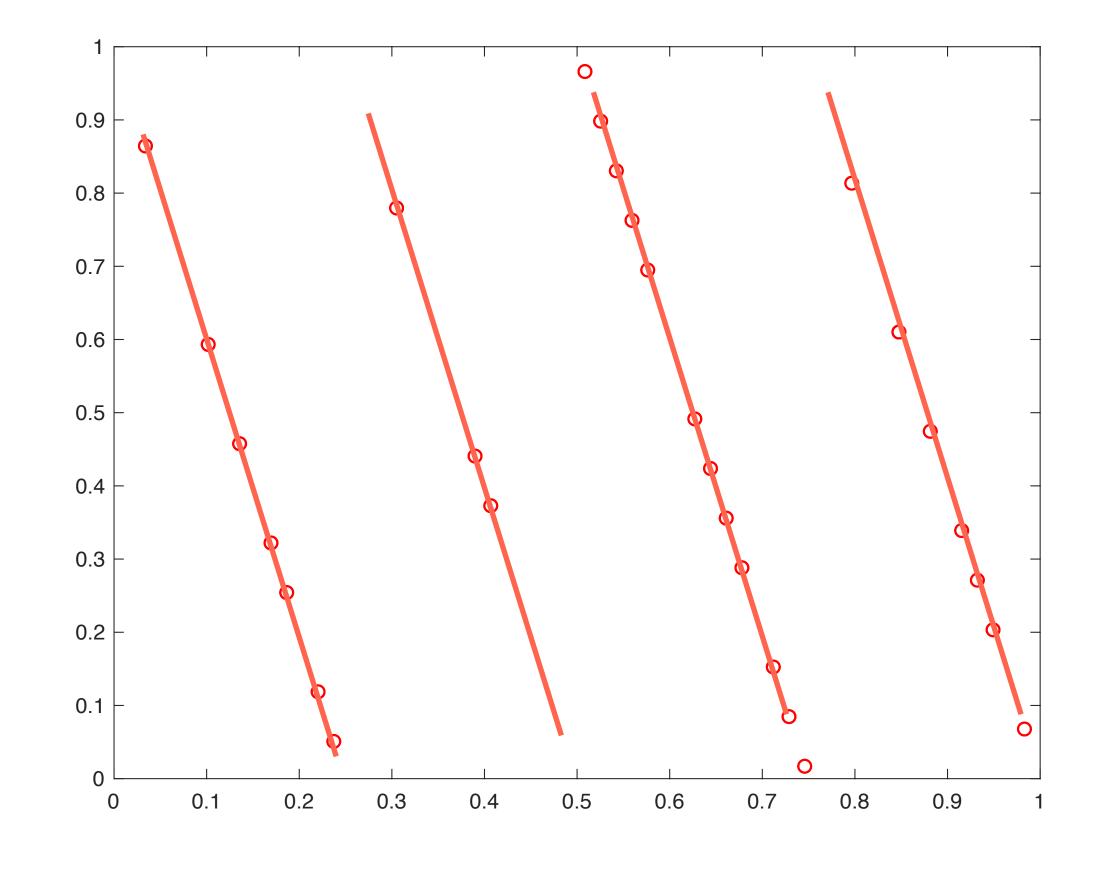


 $M = 59; a_0 = 44$

The Lattice Structure in 2D MCGs in 2D



 $M = 59; a_0 = 33$



 $M = 59; a_0 = 44$

1

Marsaglia Theorem **Lattice Structure**

• Marsaglia showed that consecutive tuples; e.g.:

from an MCG have a lattice structure:

$$\mathscr{L} = \left\{ \sum_{j=1}^{k} \alpha_{j} \cdot \mathbf{v}_{j} | \alpha_{j} \in \mathbb{Z} \right\},\$$

where \mathbf{v}_i are linearly independent basis vector in \mathbb{R}^k .

• The tuples are the intersection of the infinite \mathscr{L} set with the unit cube $[0,1)^k$.

 $(x_i, ..., x_{i+k-1}),$

Marsaglia Theorem **Uniformity in 1D**

- parallel planes in the unit cube.
- What do we want?
 - All the k-tuples, (x_i, \ldots, x_{i+k-1}) , should be uniform:
 - At least when k is small.

• In RANDU, all consecutive triples, (x_i, x_{i+1}, x_{i+2}) , are all contained within 15

Marsaglia Theorem **Uniformity in 1D**

- How do we assess uniformity?
 - In 1D, we split [0,1) into:
 - 2^l congruent subintervals:
 - $\forall a \in [0,]$
 - The subinterval containing x_i can be found from its first l-bits.

$$2^{l}\right) \quad \left[\frac{a}{2^{l}}, \frac{a+1}{2^{l}}\right).$$

Marsaglia Theorem **Uniformity in k-Dimension**

- Similarly to the 1D case, we can split $[0,1)^k$ into 2^{kl} sub-cubes.
- An RNG $P = 2^{K}$ is k-distributed to l-bits accuracy if each box:

 $B_a \equiv \prod^{\kappa}$

for $a_i \in [0, 2^l)$ has 2^{K-kl} of the points (x_i, x_{i+k-1}) for $i \in [1, P]$. **NOTE**: many RNGs do not have the point **0**; so they have $2^{K-kl} - 1$.

$$\mathbf{I}_{1}\left[\frac{a_{j}}{2^{l}},\frac{a_{j}+1}{2^{l}}\right),$$

More Tests Further Readings

- L'Ecuyer and Simard's Test01:

 - <u>http://simul.iro.umontreal.ca/testu01/tu01.html</u>

- Marsaglia's Die Hard Tests extended by Brown:
 - https://webhome.phy.duke.edu/~rgb/General/dieharder.php lacksquare

"TestU01: A C library for empirical testing of random number generators"

Modern RNGs

Main Idea

- Makoto Matsumoto and Takuij Nishimura introduced this RNG in 1997.
 This RNG takes its name because its period is a Mersenne Primer; i.e.,
- This RNG takes its name because in $P = 2^n 1$ is a prime.
- The most famous Mersenne Twister version is the MT19937 (e.g., C++11):
 - $P = 2^{19937} 1$.
- MT generates a sequence of word vectors with *w*-dimension, which are considered to be uniform pseudo-random integer in the range $[0,2^w 1]$.

• The method is defined by:

$$\mathbf{x}_{i+n} = \mathbf{x}_{i+m} \bigoplus \left((\mathbf{x}_i^u | \mathbf{x}_{i+1}^l) \cdot A \right) \quad i = 0, 1, \dots$$

dimensional vectors, $\mathbf{x} = (x_{w-1}, \dots, x_0)$, over $\mathbb{F}_2 = \{0, 1\}$:

where vectors are w-d

- A finite field of two elements (0 and 1):
 - Two operations:
 - + : neutral element 0, commutative and associative
 - • : neutral element 1, commutative, associative, and distributive

$$\mathbf{x}_{i+n} = \mathbf{x}_{i+m} \oplus \left((\mathbf{x}_i^u) \right)$$

- *n* is the degree recurrence.
- $m \in [1,n]$.
- n > m.
- The first *n* elements, $\mathbf{x}_0, \ldots, \mathbf{x}_{n-1}$, are seeds and they are cyclically updated.

 $\left(\mathbf{x}_{i+1}^{l} \right) \cdot A \right) \quad i = 0, 1, \dots,$

$$\mathbf{x}_{i+n} = \mathbf{x}_{i+m} \oplus \left((\mathbf{x}_i^u | \mathbf{x}_{i+1}^l) \cdot A \right) \quad i = 0, 1, \dots,$$

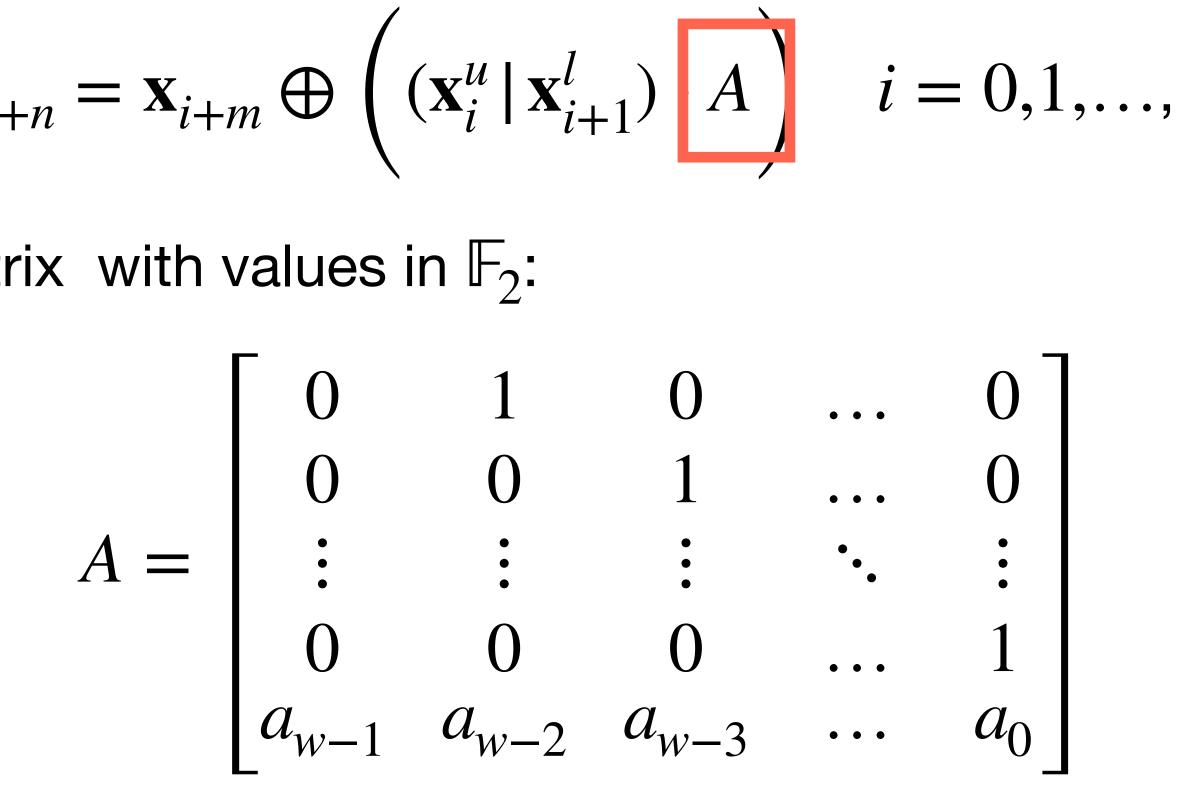
$$r w - r \text{ bits of } \mathbf{x}_i, \text{ where } r \in [0, w - 1];$$

- \mathbf{X}_{i}^{u} the upper
- \mathbf{X}_{i}^{l} the lower *r* bits of \mathbf{X}_{i} .

• Parameters need to be picked such that $2^{nw-r} - 1$ is a Mersenne prime.

$$\mathbf{x}_{i+n} = \mathbf{x}_{i+m} \bigoplus \left((\mathbf{x}_i^{l}) \right)$$

• A is a $w \times w$ matrix with values in \mathbb{F}_2 :



Main Idea

- The RNG draws:
 - \mathbf{x}_n for i = 0;
 - \mathbf{x}_{n+1} for i = 1;
 - \mathbf{x}_{n+2} for i = 2;
 - etc.
- Note that given, $\mathbf{x} = (x_{w-1}, \dots, x_0)$ and $\mathbf{a} =$

$$\mathbf{x} \cdot \mathbf{x}_0 \text{ and } \mathbf{a} = (a_{w_1}, \dots, a_0), \, \mathbf{x} \cdot A \text{ can be computed as:}$$
$$\mathbf{x} \cdot A = \begin{cases} (\mathbf{x} \gg 1) \bigoplus \mathbf{a} & \text{if } x_0 = 1\\ (\mathbf{x} \gg 1) & \text{otherwise} \end{cases}$$

Mersenne Twister Tampering

• To improve the distribution properties, the output value is multiplied by $W \times W$ a matrix T:

- As before, we implement this transformation with shifts and xors:
 - $y = x \oplus ((\mathbf{x} \gg u) \cdot \mathbf{d})$ $y = x \oplus ((\mathbf{x} \ll s) \cdot \mathbf{b})$ $y = x \oplus ((\mathbf{x} \ll t) \cdot \mathbf{c})$

 $x \cdot T$

 $z = x \oplus (\mathbf{x} \gg l)$

Mersenne Twister Seeds

- We need to fill *n* seeds that are *w*-vectors.
- *n* is typically large; e.g., 312.
- Strategy:
 - We supply \mathbf{X}_0 as a seed number.
 - The remaining seeds are computed as:

$$\mathbf{x}_k = f \cdot (\mathbf{x}_{k-1} \bigoplus (\mathbf{x}_{k-1} \gg (w-2)) + k \text{ for } k = 1, \dots, n-1$$

Mersenne Twister Conclusions

- Advantages:

 - Computationally fast implementations, and it can exploit SIMD architectures;
 - accuracy;

• MT has a very long period, $P = 2^{19937} - 1$. Some RNGs have very short periods (e.g., $P = 2^{32}$) which can lead to issues during simulations;

• We can generate points with 623 dimension with equi-distribution to 32-bit

Mersenne Twister Conclusions

- Disadvantages: lacksquare
 - Initialization needs to be done with care: \bullet
 - generations;
 - may be correlated;
 - Large state; I.e., 2.5KiB (w = 64; n = 312; m = 156; r = 31)

• If there are too many 0s; the sequence may contain many 0s for many

• If the seeds are picked systematically (e.g., (0, 20, 30, ...)) the output

Modern RNGs XORShift Family

• L'Ecuyer proposed a simple RNGs based on XOR and shift operators:

$$x_t = x \oplus (x_{i-4} \ll 15))$$

$$x_i = (x_{i-1} \oplus (x_{i-1} \gg 21)) \oplus (x_t \oplus (x_t))$$

- The seeds, x_0, x_1, x_2, x_3 , can be set to random numbers; not all 0.
- Note: we need to store the latest generated values.
- When 32/64-bit numbers are used we have a $P = 2^{32} 1/P = 2^{64} 1$

 $(x_t \gg 4))$

Modern RNGs XORShift

modulo $2^{32} - 1/2^{64} - 1$:

• 32-bit
$$->P=2^{192}-2^{32}$$

- 64-bit $-> P = 2^{192} 2^{64}$
- - XOR/SHIFT operations;
 - Four value state.

• For 32/64-bit, we can achieve a larger period by adding to x_i an additive counter

• Furthermore, the method is computationally fast and efficient in terms of memory:

Modern RNGs XORShift

 L'Ecuyer proposed also a simple and fast version 64-bit version: X_0 $X_t =$ X_t $x_{i+1} =$ • This has $P = 2^{64} - 1_{-1}$

88172645463325252LL $x_i \ll 13$ $x_t \oplus (x_t \gg 7)$ $x_t \oplus (x_t \ll 17)$

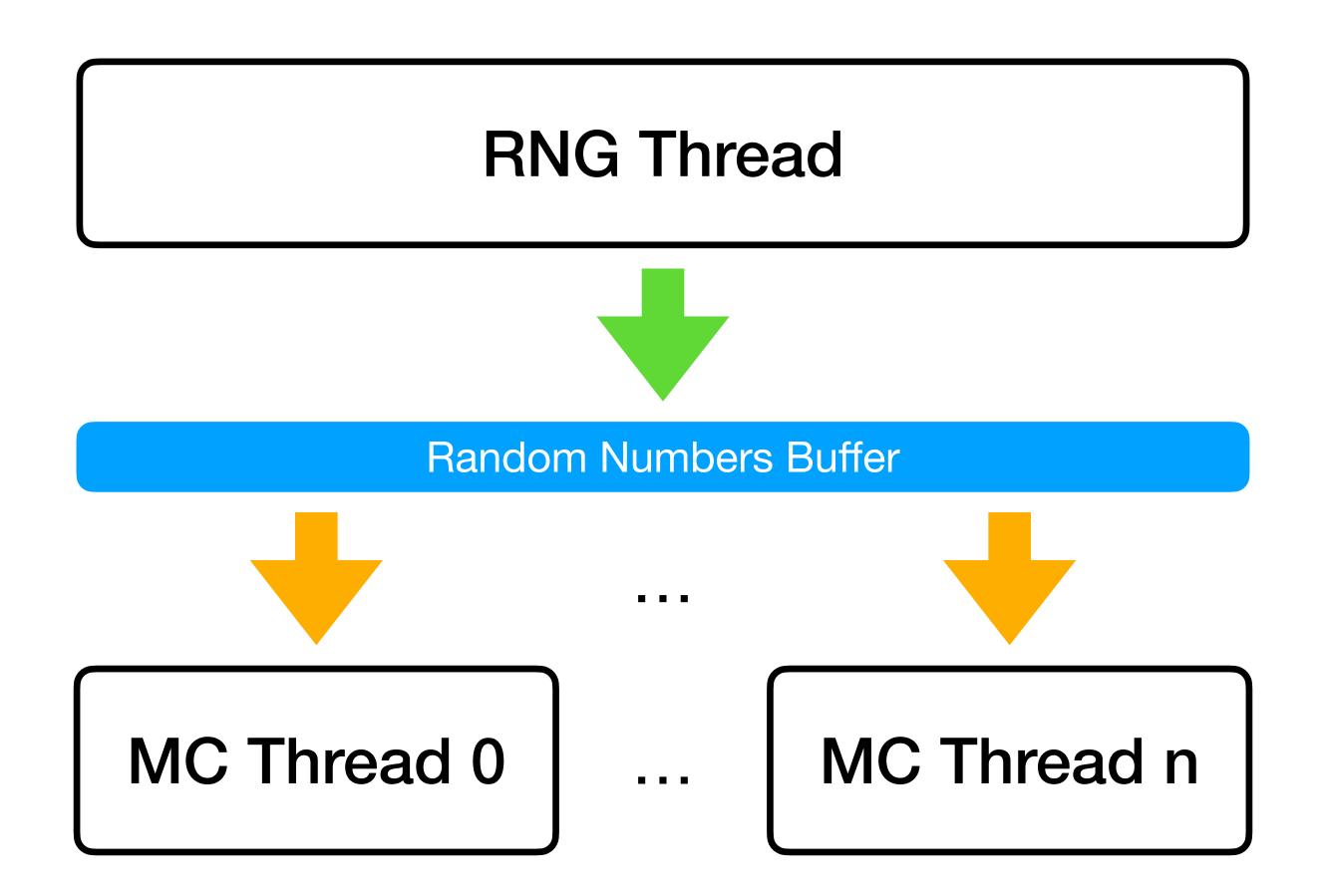
Modern RNGs Other Methods

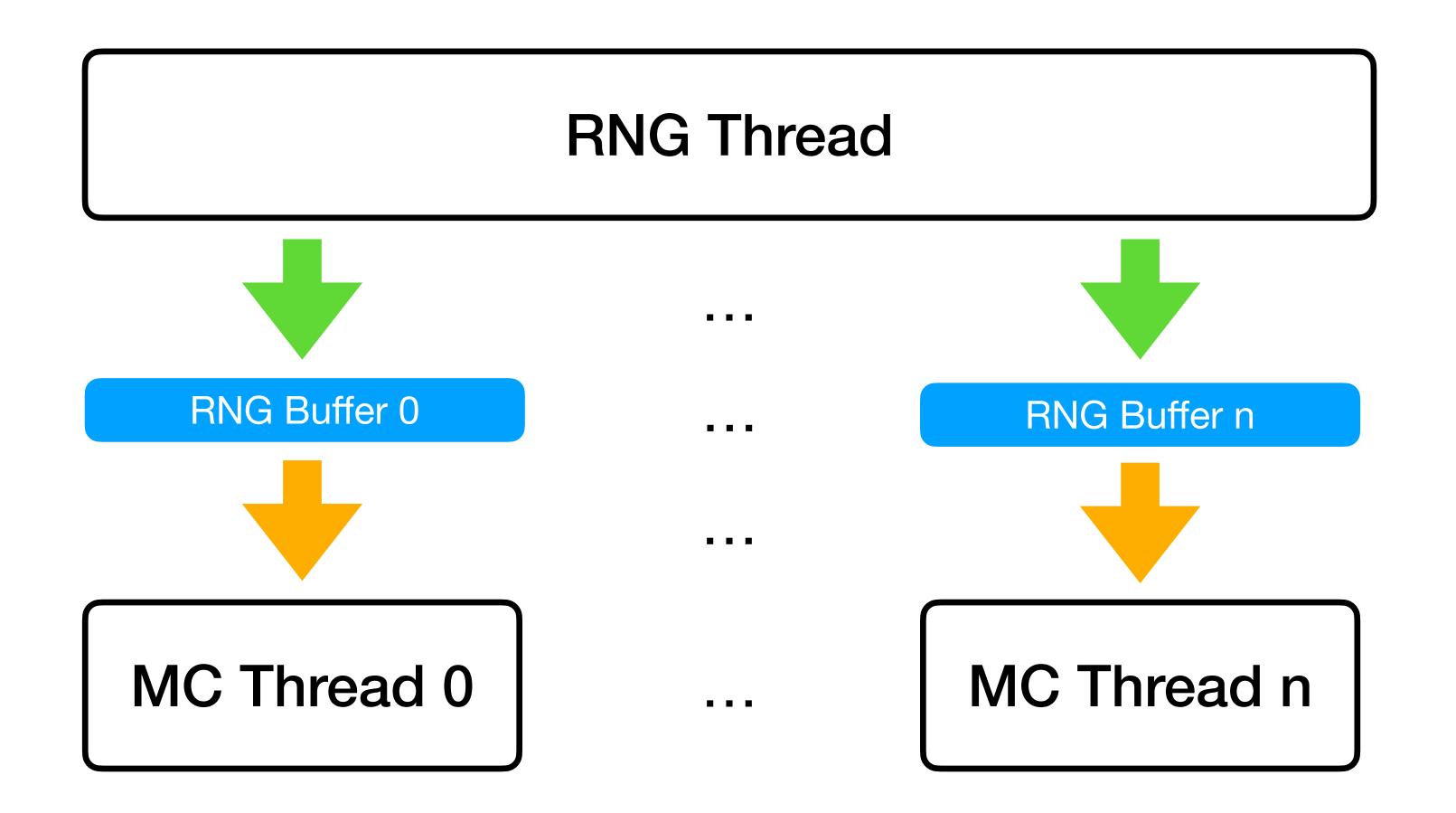
- Permuted congruential generator (PCG) family: uint64 t oldstate = state; uint32 t rot = oldstate >> 59u;
 - <u>https://www.pcg-random.org/index.html</u>
- Xoroshiro128+ and more:
 - <u>https://prng.di.unimi.it/</u>

```
uint32 t pcg32 random r(uint64 t &state; uint64 t &inc) {
    state = oldstate * 6364136223846793005ULL + (inc|1);
   uint32 t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
    return (xorshifted >> rot) (xorshifted << ((-rot) & 31));
```

Parallel Random Generators

- We have a single RNG, R_0 :
 - Thread safe: locks, atomic operations, etc.
- R_0 draws random numbers for all other threads of the simulations.
- We may precompute a large set of numbers:
 - Single buffer.
 - A buffer for each thread.





- Advantages:
 - We avoid the problem to generate independent streams.
- Disadvantages: \bullet
 - Not efficient: very slow!
 - **Reproducibility: hard to debug!**

Parallel Random Generators The Replicated Approach

- For each thread of our simulation, we have a RNG with the same seed or a unique seed:
 - We may use parametrization; i.e., different parameters for each RNG: • This is hard for thousands of threads.
- Advantages:
 - Efficiency: very fast;
 - Easy to implement.

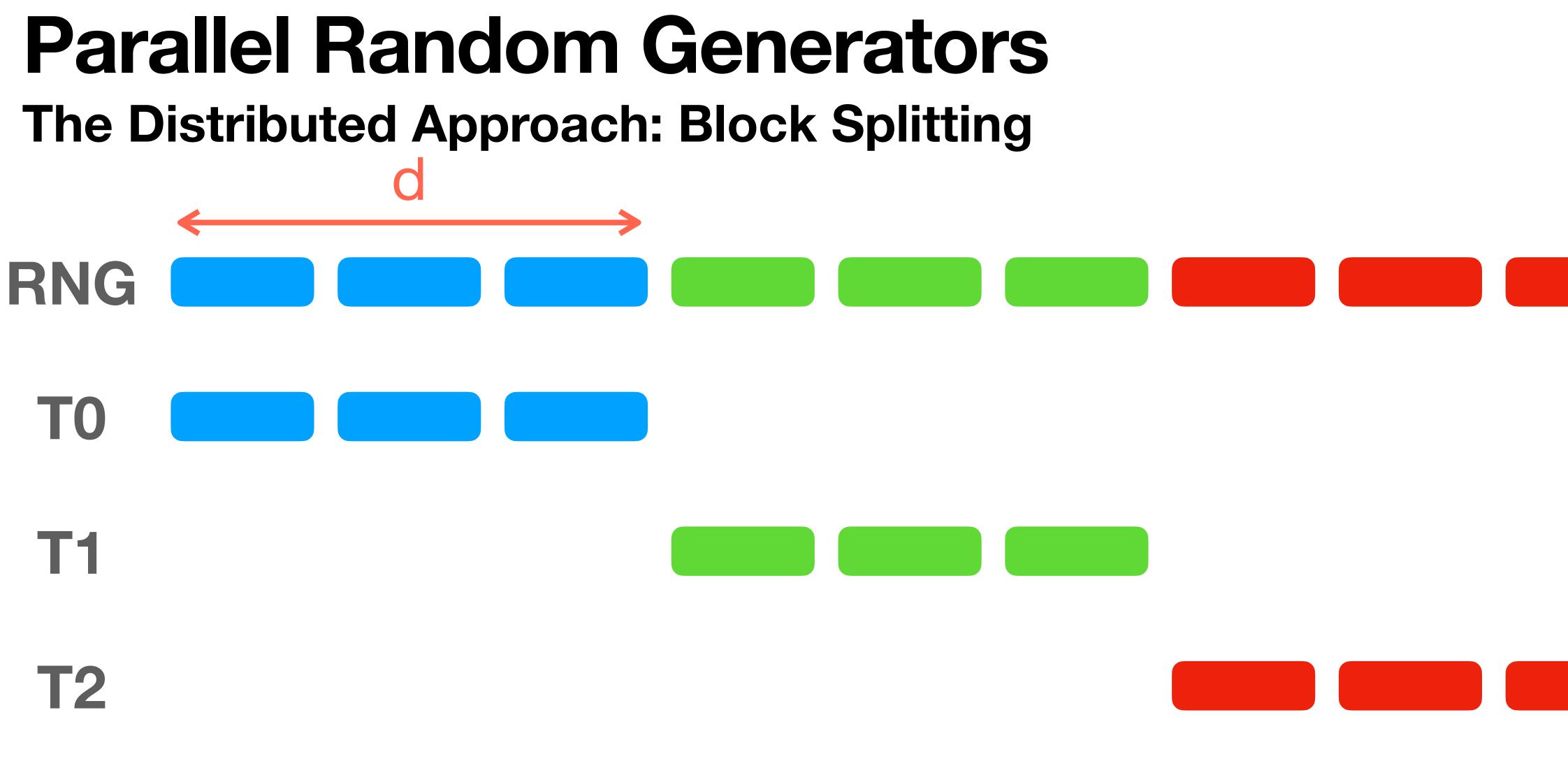
Parallel Random Generators The Replicated Approach

- Disadvantages:
 - Are the streams independent? We cannot guarantee it; we may have correlation between drawn numbers.
 - In MT, a solution is that the seed is a mix between the potential seed and the unique ID of the thread.
 - NOTE: if the period is huge, this may be a viable option:
 - There is a possibility of overlap:
 - The probability is often negligible.

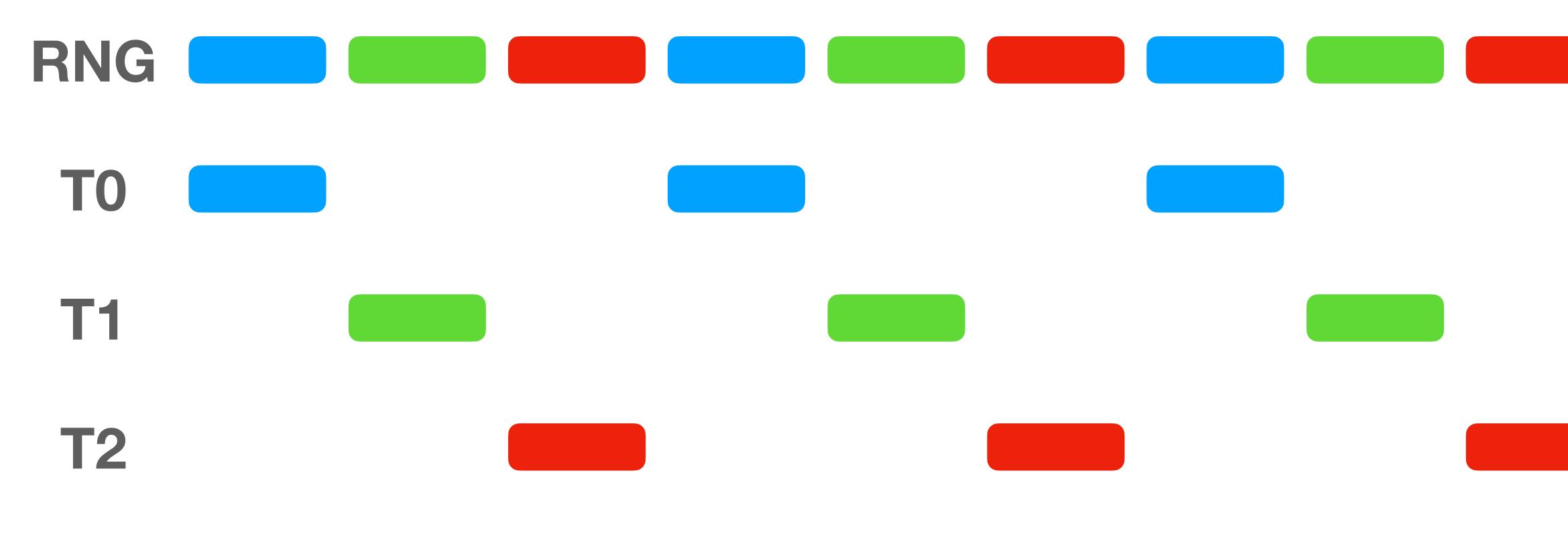
Parallel Random Generators The Distributed Approach

- i.e., one for each thread.
- Advantages:
 - Efficient;
- Disadvantages:
 - Hard to implement it!

• The generation of a single sequence is partitioned among many generators;



Parallel Random Generators The Distributed Approach: Leap Frog



Parallel Random Generators The Distributed Approach

- What do we need for implementing these approaches?
 - We need to know how to skip numbers: we need a RNG that can skip to the d-th number:
 - MT can do that.
 - Block splitting:
 - We need to know how many numbers are consumed before synchronization!

Conclusions

Conclusions Wrapping Up

- Try to use the latest RNGs that works; e.g., Mersenne Twister.
- Write a wrapper RNG class; so you can change your RNG when a better one comes out.
- Try to write a testing example, and test different RNGs.
- Try to avoid using too many numbers from the same RNG.

Bibliography

- Art Owen. "Chapter 3: Uniform Random Numbers" from the book "Monte Carlo theory, methods and examples". 2013.
- Jeff Wehrwein. "Random Number Generation". Senior Thesis in Mathematics. 2007.
- Donald E. Knuth. "The Art of Computer Programming, Volume 2: Seminumerical Algorithms (second edition)". Addison Wesley, 1997.
- Lewis, Peter A. W., A. S. Goodman and J. M. Miller. "A Pseudo-Random Number Generator for the System 350", IBM Systems Journal, 8(2), 136–45. 1969.

Thank you for your attention!