Monte-Carlo Methods and
Sampling for Computing

Introduction

Francesco Banterle, Ph.D. - July 2021



Meet Your Instructor

Francesco Banterle

 Ph.D. in Engineering from Warwick University, UK.

 Monte-carlo and sampling are daily tools for my research:
 Computer Graphics;
 Computer Vision;

* Imaging.



Course

Reference Material

* The beautiful book by prof. Art Owen:
* “Monte Carlo theory, methods and examples”

» https://statweb.stanford.edu/~owen/mc/

* @book{mcbook,
author = {Art B. Owen},
year = 2013,
title = {Monte Carlo theory, methods and examples}
}
* Other references:
* Christian P. Robert, George Casella. “Monte Carlo Statistical Methods”. Springer Texts in Statistics. 2004.

» Kurt Binder, Dieter Heermann. “Monte Carlo Simulation in Statistical Physics”. Springer. 2010.


https://statweb.stanford.edu/~owen/mc/

Course

Exam

e Different options:

* |iterature review on a few papers;

e |nterview.



Course
Schedule

* First week:
* 06/07/2021: 10:30-12:30: INTRODUCTION
« 08/07/2021: 10:30-12:30: UNIFORM RANDOM NUMBERS
« Second week:
* 14/07/2021: 10:30 —12:30: NON-UNIFORM RANDOM NUMBERS
* 15/07/2021: 10:30 —12:30: LOW DISCREPANCY SEQUENCES
« 16/07/2021: 10:30 —12:30: VARIANCE REDUCTION TECHNIQUES
* Third week:
* 19/07/2021: 10:30 —12:30: METROPOLIS SAMPLING
e 20/07/2021: 10:30 —12:30: MONTE-CARLO APPLICATIONS
e 21/07/2021: 10:30 —12:30: MONTE-CARLO APPLICATIONS



What Is the most visible
application of Monte-Carlo today?



Monte-Carlo
Everyday

e Movies;
o Cars advertisement;

* |KEA Catalog;



Randomized Algorithms



Randomized Algorithms

The Basics

 Randomized algorithms try to solve a problem using randomness.
e Why?
* |t may be too computationally expensive without.
» Jypically, we have two classes of randomized algorithms:
* |Las Vegas Methods
 Monte-Carlo Methods

* They both use pseudo-random number generators as source of randomness.



Las Vegas Algorithms

Main Idea

* A Las Vegas algorithm outputs for a given problem.

* The running time may be ; the expected running time is required
to be bounded.

* A classic Las Vegas algorithms:
e QuickSort;

» Karger’s algorithm (Minimum cut of a connected graph);

e efcC.



Monte-Carlo Algorithms

Main Idea

* A Monte-Carlo algorithm outputs for a given
problem.

* Typically, we want to compute a quantity of interest:
 The average of some random variable;
* Quantiles;
* Ratio

 The running time Is



Monte-Carlo History



Monte-Carlo Algorithms
History

« 18th Century: Buffon’s Needle
 Based on a question by Georges-Louis Leclerc, Comte de Buffon:

e “What’s the probability that a needle (that we threw on the floor) will lie across two strips on a floor made of parallel

strips of wood?”




Monte-Carlo Algorithms
History

« 18th Century: Buffon’s Needle
 Based on a question by Georges-Louis Leclerc, Comte de Buffon:

e “What’s the probability that a needle (that we threw on the floor) will lie across two strips on a floor made of parallel

strips of wood?”

2 1
P(X = btwstrips) = ——
Tl

This holds for short needles: [ < t




Monte-Carlo Algorithms
History

 1900s: Gosset with pen-name Student; while developing the Student’s t-
distribution ran some simulations;
 1930s: Fermi first experiments with Monte-Carlo;

 1940s: Ulam, von Neumann, Metropolis during Manhattan project developed
the modern Monte-Carlo especially for running simulations of nuclear
weapons.

 1950s: The method becomes popular in different fields such as physics,
chemistry, etc.



Monte-Carlo Algorithms
History

 Montecarlo algorithms won three technical Oscars:
e 1997: Ken Perlin for “solid noise” used in the movie Tron (1982);
 2003: Thomas Driemeyer’s team for MentalRay that uses quasi-montecarlo;
o 2014: Eric Veach for multiple importance sampling;

o 2014: Matt Pharr, Pat Hanrahan, and Greg Humphreys for formalization and
reference implementation of Montecarlo methods for Computer Graphics.






Monte-Carlo Algorithms
Probability Theory Review

e A variable, X, is random/stochastic if its value cannot be determined before
observing it; i.e., it depends on a

» Even though we cannot know in advance the value of a variable X, we can
say something about it in terms of probabilities.

» In general, P(E), is the probability of an event E to happen.

e Our main focus will be on continuous random variables.



Monte-Carlo Algorithms
Probability Theory Review

* A random variable X has an uncountably infinite number of possible values.

» Each variable has a probability density function (PDF) or py(x) defined as:

e a non-negative function defined on an interval (e.g., [xS, xe]);

X

normalized in such intervaI:J' Px(x)dx = 1;

Ag

b
 Pla<X<b)= [ Px(x)dx

. pX(x) — P(_X SXSX+dX)



Monte-Carlo Algorithms
Probability Theory Review

« The cumulative distribution function (CDF) of a single random variable, X, is defined as:
X
Fy(x) = [ Px(x)dx.
'xS
* Note that:

b
. Pla<X<b)= J Px(X)dx = Fy(b) — F'y(a);

 PX<a)= Px(x)dx;
. PX >a)= DPx(x)dx;
e« PX=a)=0.

« Iy is monotonically increasing.

e Fy(x,) =0and Fy(x,) = 1.



Monte-Carlo Algorithms

Probability Theory Review

* |Important measures of a PDF are its mean and its variance.

e The mean is defined as:

e The variance is defined as:

o’ (X) =

b
where E(X?) = J xsz(x)dx.

—((X—

(X))

b
£(X) = p(X) = J xpy(x)dx.

_(XZ) _

=(X)?,




Some Practical Examples



Monte-Carlo Algorithms
An Example: Nagel-Schreckenberg Traffic Model

e [his simulation has »n cars running on a ring track.

» For each car at position x and speed v with distance d from the car ahead, we
have the following rules:

e v e—min(v+1,v,..)
e v« min(v,d — 1)
e v« max(0,yv — 1) withp

* X < X+V



Monte-Carlo Algorithms
An Example: Nagel-Schreckenberg Traffic Model

» |et’s simulate this system with a track
long m = 1000 and n = 100 cars.

 All cars have speed v = 0.

» All cars are placed on the track randomly
without repetition.

 An image In some cases Is more important
to understand how the simulations
behaves.



Monte-Carlo Algorithms
An Example: Nagel-Schreckenberg Traffic Model

» |et’s simulate this system with a track
long m = 1000 and n = 100 cars.

o All cars have speed v = 0.

» All cars are placed on the track randomly
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 An image In some cases Is more important
to understand how the simulations
ehaves.




Monte-Carlo Algorithms

An Example: Estimating =

 We want to estimate & using Monte-Carlo.

. We know that the area of a circle is A = nr.
« We draw samples in a square; [0,2] X [0,2] —>r =1

« Samples that falls inside a circle with r = 1 and center in (1,1) are used to
estimate .



Monte-Carlo Algorithms

An Example: Estimating =
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Monte-Carlo Algorithms

Est

An Example
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Est
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Monte-Carlo Algorithms

An Example: Estimating =
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Monte-Carlo Algorithms

An Example: Interpoint Distances

« We have two points; X = (xl,xz) andy = (yl,yz), where both are in [0,a] X [0,b].

. We define D(X, y) — ‘\/(xl — y1)2 + (.Xz — yz)z.

 The mean of D can be approximated as:

A | +«
(D) =—) d(x,y)
ni=1

where X; and y; are independent and uniformly distributed samples in

10,a] X [0.,b].



Monte-Carlo Algorithms

An Example: Interpoint Distances

e Let’s draw 1,000,000 samples in [0,3] x [0,2].
~(D) = 1.3171...

* This problem has a closed form introduced by Ghosh in 1951. In this case, the correct expected
value for D would be:

(D) = 1.3171...

* |f we compute the relative error, we get:
=(D) — E(D)
=(D)

* |n many cases, we do not have a closed form for a problem!

= 6.44 x 1077,
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Thank you for your attention!



