3D from Photographs:
Automatic Matching

of Images

Dr Francesco Banterle
francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it

3D from Photographs

Automatic
Matching of Ccl?‘g“ etr.an
mages alibratio
Surface Dense
Reconstruction Matching

3D model

3D from Photographs

Automatic
Matching of
Images

Camera
Calibration

Surface
Reconstruction

Dense
Matching

3D model

Problem

I'he Matching

INg feature across two

d correspond

1N

Oor maore VIews

e Weneedtof

The Matching Problem

o Why?

* 3D Reconstruction.

* Image Registration.
e Visual Tracking.

* Object Recognition.

* elcC.

The Matching Problem:
Automatic Panorama Generation

Input
Photographs

The Matching Problem:
Automatic Panorama Generation

Input
Photographs

The Matching Problem:
Automatic Panorama Generation

Input
Photographs

Panorama

Extraction of Features

Features

* A feature is a piece of the input image that is
relevant for solving a given task.

* Features can be global or local.

e \We will focus on local features that are more robust
to occlusions and variations.

Extraction of Local Features

* We can extract different kind of features:
* Flat regions or Blobs
* Edges

e Corners

Harris Corner Detector

e | et’s consider a window W

centered in (x, y): \
* how do pixels change from a L

window in (x, y) to another one
with a shift d = (u, v)?

« |Let's compare each pixel before
and after moving Wby d = (u, v)
using the sum of squared
differenced (SSD).

E(x,y)= Y (I(xk +u,yp +v) — I(x, yk)) 2

Lk,Yk EW(QE,y)

What a Corners IS

Flat Region: Edge: Corner:
Nno change Nno change significant change
in all directions. along the edge. in all directions.

Harris Corner Detector:
Small Motion Assumption

 Let's apply a first-order approximation, which

provides good results for small motions:

o1 0l
[z +uy+v)=I(z,y)+ 5 ud "

U

~ I(x,y) + [Ix Iy} |,

Harris Corner Detector:
Small Motion Assumption

| 2
1 =]

Harris Corner Detector:
Small Motion Assumption

E(xr,y) = Z (Ix(wk, ye) u” + 20 (zr, yr) Iy (T, yi) + Iy (2, yk)2U2>
xk;,yk;GW(af,y)

—Au® + 2Buv + Cv?

Harris Corner Detector:
Small Motion Assumption

* The surface at (x, y) can be locally approximate by a
quadratic form:

E(x,y) ~ Au® 4+ 2Buv 4+ Cv*
A B | U
B C

~ |u vl -

: <

A= Z Iw(xkvyk)z

Tk,Yk EW(CU,y)

B = Z]x(xkayk)ly(xkayk)
LTk Yk EW(CIZ,y)

C= > ILwkyw)’

Lk,Yk EW(xay)

Harris Corner Detector:
Small Motion Assumption

* E(x,y) can be rewritten as

E(x,y)~ Y [u v]: {[x(xk’yk)fy(wk,yk) I (zk, yr) }M

Lk ,2Yk EW(w,y)

= [u U}.M.m

M= Y (e, yk) Lo (25, yi) Iy (T3, yr)

Lk,Yk EW(:Uay) B

Harris Corner Detector:
Small Motion Assumption

* E(x,y) can be rewritten as

E(z,y)~ Y [u v] [I (@, i) fx(fk,yk)fy(wk,yk)} | H

Ia: Ll L, (x , I2 T, v

fu o] m Ellipse Equation:
v E(u,v)==k
Iz, yk) Lo (xk, yi) Iy (zh, i)
M — X) X y Yy y
Z Lo (g, yu) Ly (@, Yi) I (2k, Yr)

Lk Yk EW(xay) -

Harris Corner Detector:
Second Moment Matrix

e M reveals information about the distribution of
gradients around a pixel.

* The eigenvectors of M identity the directions of
fastest and slowest change.

Direction of the fastest change

Direction of
the slowest change

Harris Corner Detector:
Second Moment Matrix

Eigenvalues and eigenvectors of M define shift directions with the smallest
and largest change in E:

® x... = direction of largest increase in £

e \... = amount of increase in direction x,,.,,
e x... = direction of smallest increase in E

e 1. = amount of increase in direction x,,.,

Classification

%)

Flat Region

Corner

Harris Corner Detector:
Cornerness Measure

e Instead of directly computing the eigenvalues, we
use a measure that determines the * " of
a pixel (i.e., how close to be a corner is):

R = Det(M) — kTr(M)?
Det(M) —)\1)\2
TT(M) —)\1 -+)\2

e kis an empire constant with values [0.04 0.06].

Harris Corner Detector:
Cornerness Measure

D

put Image R

Harris Corner Detector:
Pruning Corners

* We have to find pixels with large corner response,
R, 1.e., R>To.

* Jypically, To in [0,1] depends on the number of
points we want to extract; a default value is 0.01.

IS Corner Detector

Harr

Thresholding

¥

i

Mo CS

.\

R after thresholding

Harris Corner Detector:
Pruning Corners

* At this point, we need to suppress/remove values that
are not maxima.

R A

T

Harris Corner Detector:
Pruning Corners

o At this point, we need to suppress/remove values that are
not maxima, but they are over the threshold (yellow pixels).

R A

Harris Corner Detector:
Pruning Corners

* \We set a radius (in pixel) for suppressing non-maxima;
e.g., 3-9.

* We apply to R a maximum filter; it is similar to a median
filter, but it computes the maximum instead of the
median. After this we obtain a filtered image called Rmax.

e A pixel at position (x, y) is a local maximum if and only if:

Rmax(z,y) = R(z,y) AN R(z,y) > To

Harris Corner Detector:
Pruning Corners Example 1

The current pixel that we are evaluating Is the central one!
To=)5

Harris Corner Detector:
Pruning Corners Example 1

The maximum is 100!

Harris Corner Detector:
Pruning Corners Example 1

20 < 100 so it has to be suppressed; i.e., set to O!

Harris Corner Detector:
Pruning Corners Example 2

The current pixel that we are evaluating Is the central one!
To=)5

Harris Corner Detector:
Pruning Corners Example 2

The maximum is 100!

Harris Corner Detector:
Pruning Corners Example 2

100 == 100 so it has to be kept!

Harris Corner Detector:
Non-Maximal Suppression

R after thresholding Non-Maximal Suppression

Harris Corner Detector:
Non-Maximal Suppression

Harris Corner Detector:
Non-Maximal Suppression

Harris Corner Detector:
Non-Maximal Suppression

Harris Corner:
Advantages

e Jranslational invariance: - -
e Rotation invariance: - -

* Only derivatives are employed:

e |ntensity shift invariance: I'=1+b

* |ntensity scale invariance: I'=1a

Harris Corner:
Disadvantage

e Not scale invariant!

=) o

All points are It IS now
classified as edges a corner!

The same feature In
different images can have
different size!

The Scale Problem

Near Object Far Object

Scale Invariant:
Stable Corners

A

Original

> X

AN

1/2 scale

Scale Invariant:
Stable Corners

R

GOOD:
f@ate&c er

X

Original 1/2 scale

Scale Invariant:
Unstable Corners

R R

AP

X

Original 1/2 scale

Scale Invariant:
Unstable Corners

R R

BAD/
f%&rs méymgrge!

X > X

Original 1/2 scale

Scale Invariant:
A Multi-Scale Approach

* Depending on the content of the image:
e \We need to detect the scale of corner.

* We need to use its scale to vary the size of the
window W for computing corners!

Scale Invariant:
The Signature Function

* A signature function, s, Is a function giving us an
iIdea of the local content of the image, I, around a
point with coordinates (x, y) at a given scale o.

 An example of signature function is the Difference
of Gaussians (DoG):

s(I,z,y,0) =[I @ G(o)|(x,y) — [I @ G(o - 2)](z,y)

e where GG is a Gaussian kernel.

Scale Invariant:
The Signature Function

B LS o b et ot Lt o e

e

Scale Invariant:
The Approach

We need to find the right scale for resizing W tor each
image!

Scale Invariant:
The Approach

* The signature function, s, can give us an idea of the
content of the image.

* [herefore, we need to find a maximum point of s for
pixel of an input image!

Scale Invariant:
The Approach

Let’'s build s at the red point!

Scale Invariant:
The Approach

1 2 4 8

This Is our start!

lant:
an
le Invarl
Sca

h
rOacC
APP

The

> O

lant:
rian
INnva h
SCr%‘eApproaC
1

> O

lant:
rian
INnva h
SCr%‘eApproaC
1

> O

Scale Invariant:
The Approach

Scale Invariant:

The Approach

1

2 4 8

> O

Scale Invariant:
The Approach

1 2 4 8
Which is o for which s i1s the maximum?

I[tisoc=4

Scale Invariant:

The Approach

1

2 4 8

> O

Scale Invariant:
The Approach

1 2 4 8 12 4 8

Extraction of Features

e (General overview:

* We compute the scale for each pixel using the
sigma value at which we have the maximum
value of the signature function.

* We compute the Harris Corner using the scale to
increase the size of the local window; i.e., the
scale of the window will be multiplied by the
sigma value.

~eature Descriptors

~eature Descriptors

* Once we found our features (i.e., corners), we need
to describe in a meaningful and possibly unigue

way.
 Why”

* We want compare corners between images in
order to find correspondences between

images.

~eature Descriptors

A patch, P, is a sub-image
centered in a given point (u, v).

~eature Descriptors

A patch, P, is a sub-image
centered in a given point (u, v).

~eature Descriptors

 [here are many local features descriptors in
iterature:

 BRIEF/ORB descriptor.
» SIFT descriptor.

 SURF descriptor.

* elC.

~eature Descriptors

* (Good properties that we want are invariance to:
* |llumination changes.

e Rotation.

BRIEF Descriptor

* [he descriptor creates a vector of n binary values:

BRIEF(P) =b=10,1,0,0,...,1]"

* [For efficiency, it is encoded as a number:

Np — zn: Qi_lbi
I=1

BRIEF Descriptor

 (Given a patch, P, of size XS an element of b Is
defined as

1 if P(p;) < P(q;),
0 otherwise

bi(qfi>pi> = {

* where p; and q; are the coordinates (x, y) of two
random points in P.

BRIEF Descriptor: eExample

BRIEF Descriptor: eExample

BRIEF Descriptor: Test

* Let’'s say we have two descriptor b! and b2. How do we
check if they are describing the same corner?

e \We count the number of different bits in the two vectors
(Hamming distance):

i (b, b?) = Zﬂxor (b, b?)

* Thisis a very computationally efficient distance
function.

BRIEF Descriptor: Test

A XOR B
= NOT (A XOR B)

[(NOT A) AND B] OR
[(NOT B) AND A]

0 0 0 1
0 1 1 0
1 0 1 0

BRIEF Descriptor: Point-Set

* The optimal number of points’ couple (i.e., the size
of the descriptor; n) is

e This value was computed from experiments testing
different lengths: 16, 32, 64, 128, 256, and 512.

* Points can be generated in different ways:

o Uniform distribution in the patch

52
e (p;,q;) ~ ii.d. Gaussian((),%)

BRIEF Descriptor: Point-Set

e Points are pre-computed, only once, generating a set:

A — _p()a P1, ... Pn
d0, d1, ... dn

* This set is always used for the extraction of all descriptors in all
photos!

* |f this is not done, we cannot do comparisons because we are
comparing different tests (e.g., comparing apples and organges):

 We need to keep

BRIEF Descriptor

 Advantages:
o Computationally fast.
* |nvariant to illumination changes.
 Compact!
o Patent free.
 Disadvantage:
* Rotation is an issue:

 [he method can handle rotations up to 10-15 degrees only.

BRIEF Descriptor

 Advantages:

« Computationally fast.

Invariant to illumination changes.

 Compact!

Patent free.

 Disadvantage:

e Rotation Is an issue:

 [he method can handle rotations up to 10-15 degrees only.

BRIEF Descriptor

 Advantages:

« Computationally fast.

Invariant to illumination changes.

 Compact!

Patent free.

 Disadvantage:

e Rotation Is an issue:

 [he method can handle rotations up to 10-15 degrees only.

BRIEF Descriptor

 Advantages:

« Computationally fast.

Invariant to illumination changes.

 Compact!

Patent free.

 Disadvantage:

e Rotation Is an issue:

 [he method can handle rotations up to 10-15 degrees only.

ORB Descriptor

* [he descriptor is a modified version of BRIEF and it
can handle rotations!

* The first step of the algorithm is to compute the
orientation of the current patch P.

* ldea: we determine the “center of mass” of the
Image, and we compute the angle between this
‘center of mass” and the center of the patch. This
IS a hint for the orientation of the patch.

ORB Descriptor:
Patch Orientation

* We compute the patch orientation using Rosin moments
of a patch:

Ma,b = Z xaybp(x7y>
r,ych

* From this, we define the centroid, C, as

* Now, we can create a vector from corner’s center, O, to
the centroid, C. This allows us to calculate the angle of
rotation.

ORB Descriptor:
Patch Orientation

ORB Descriptor:
Patch Orientation

 From this vector, the orientation of the patch can be
computed simply as

0 = atan2(mg 1, m1 o)

 From this, we can rotate the patch P, but this
operation Is very computationally expensive:

* We need to rotate each single point in the patch!

ORB Descriptor

ORB Descriptor:
Patch Orientation

e |nstead of rotating the whole patch, we can rotate
only the points stored in 4 as

AQ — RQ . A
« Where Ry 1S a 2D rotation matrix.

* NOTE: we need to rotate less points!

ORB Descriptor

 Advantages:
o Computationally fast.
* |nvariant to illumination changes.
 Compact!
e |nvariant to rotation.
o Patent free.
 Disadvantage:

 Not robust as SIFT.

SIFT Descriptor

* |t is the state-of-the-art descriptor.

e |t was introduced Iin 1999, but it Is still the king.

SIFT Descriptor:
Patch Orientation

* [he first step is to compute the orientation of P.

* We compute the horizontal (Px) and vertical (Py)
gradients of the P.

* For each pixel at coordinates (i, j) in the patch we
compute its orientation and magnitude:

m(i, §) = /Peli,§) + P, (i, j)?

0(.3) = atan2(P,(i,5). Pali. 7))

SIFT Descriptor:
Patch Orientation

* A histogram, H, of directions is created for each
orientation taking into account its magnitude.

* We repeat this process for all gradients in the
patch!

e Note that H Is initialized as a vector of zeros.

SIFT Descriptor:
Patch Orientation

e [et’s say, we have a histogram H with 18 bins (b = 18).

* This means each bin has a size (k) in degree of 20° (k =
360 /b =360/ 18).

 Now, we have to insert a gradient (m =10 and 6 = 45°) from
our patch in H we need to process a gradient in the patch.

e First, we compute the index of the bin to update:

-5

 [hen, we update H as
H@) = HG) +m = H@) + 10

SIFT Descriptor:
Patch Orientation

e Finally, we get this (an example with 8 bins; i.e., 8 directions):

—><—/"\\/

« [he patch orientation, a, is given by the highest peak:

* |t we have two equal peaks, we take the as winner the first
one in histogram.

SIFT Descriptor:
Patch Orientation

e Finally, we get this (an example with 8 bins; i.e., 8 directions):

—><—/"\\/

« [he patch orientation, a, is given by the highest peak:

* |t we have two equal peaks, we take the as winner the first
one in histogram.

SIFT Descriptor

o Once we have a, we can rotate all gradients in the
patch using It.

e This ensures to be invariant to rotations!

—

Rotation

SIFT Descriptor

* \Why do we rotate the gradients? It is
computationally faster:

* |ntheory, we should rotate the patch and then
recompute the gradients.

e [his is computationally expensive!

SIFT Descriptor

e At this point, we divide the patch into 4x4 blocks.

For each block, we compute a new histogram of
directions.

* The final SIFT descriptor is the concatenation
(flattening) of all these histograms.

LMK HUMNA
MK UNNG
Nk ANARN
NN LEANM
P =N EAE3CE
NEVE MNER

LA
AR NN

SIFT Descriptor:
Example with 2x2 Blocks

Patch and its gradients

SIFT Descriptor:
Example with 2x2 Blocks

FIESAEN V"
NANN 27255

N AEAEE
Al BRI E N
HME
M PN
SEHEE
NSk
MR
K &S =l

—
N
e
\
>
7
N
*

Patch and its gradients

We compute the histogram for the first block in violet

SIFT Descriptor:
Example with 2x2 Blocks

FIESAEN V"
NANN 27255

N AN
Al B RN
 HME
M PN
SEHEE
NSk
MR
K &S =l

—
N
e
\
>
7
N
*

Patch and its gradients

We compute the histogram for the second block in red

SIFT Descriptor:
Example with 2x2 Blocks

FIESAEN V"
NANN 27255

N AEAEE
Al BRI
HME
M PN
SEHEE
NSk
MR
K S =l

—
N
e
\
>
7
N
*

Patch and its gradients

We compute the histogram for the third block in orange

SIFT Descriptor:
Example with 2x2 Blocks

Bkl
KAl
i
e
-1

Patch and its gradients

We compute the histogram for the fourth block in yellow

SIFT Descriptor:
Example with 2x2 Blocks

The final descriptor is the concatenation of the histogram of all blocks.
Note that this can be encoded as a vector; in this example the vector has size equal
{o:

4x8 = 32
4 because we have 2x2 Blocks
8 because we have 8 direction for each histogram.

SIFT Descriptor: Test

e We test the differences as distance between
histograms:

D(h',h?) = \ Z(h% — h?)?

e The lower the closer:

* This is the opposite compared to BRIEF/ORB.

SIFT Descriptor

 Advantages:
* |nvariant to illumination changes.
* Invariant to rotation.
* Disadvantages:
e Slower than BRIEF/ORB.
 More memory than binary methods.

o Patented! It is patent-free from 12th of Aprile 2020!

Matching Images

Matching:
An Image Against Another One

* Input: two descriptor lists (
), desci and desc, respectively of

image 1 and L.

* Output: a vector with indices of matches for each
list:

* The output is called Mz if we match I against I

* The output is called My if we match > against I

Matching:
How the Output is Encoded Example 1

e |et's say we have 4 descriptors in desc;
* Let's say we have 3 descriptors in desc:

* Let's say that we want to match I; against I, this
means that we want to compute Ma.

Matching: Example 1

o -
d

d;
desc; = descy, = |d3
d} 2
d

dy_

Matching: Example 1

g
i
d;
desc, = descy, = |d3
ds
ds
dy_ o
We find out that the first descriptor of dese; matches with

the second descriptor of desc:.

Mi2=[|

Matching: Example 1

ik
i
d;
desc, = descy, = #pd>
ds
ds
dy_ o
We find out that the first descriptor of dese; matches with

the second descriptor of desc:.

Mi2=(2,]

Matching: Example 1

o N
a7

ds
desc; = descy = |d3
d :
d3

i

We find out that the second descriptor of dese1 matches with
the third descriptor of desc:.

Mi2=(2,]

Matching: Example 1

o N
a7

ds
desc; = descy = |d3
d :
d3

i

We find out that the second descriptor of dese1 matches with
the third descriptor of desc:.

Mi2=(2, 3,]

Matching: Example 1

o N
a7

ds
desc; = descy = |d3
d :
d3

d

We find out that the third descriptor of desc: matches with
the first descriptor of desc:.

Mi2=(2, 3,]

Matching: Example 1

ks C72”
a7
ds
desc; = descy = |d3
d :
d3
d

We find out that the third descriptor of desc: matches with
the first descriptor of desc:.

Mi2=[2, 3, 1,]

Matching: Example 1

g
i
d;
desc, = descy =vd>
ds
ds
% o
We find out that the fourth descriptor of desci matches with

the second descriptor of desc:.

Mi2=(2, 3, 1, 2]

Matching:
How the Output is Encoded Example 2

 |et's say we have 3 descriptors in desci
* Let's say we have 2 descriptors in desca

* |Let's say that we match 11 against Iz, obtaining M.
Then, we match > against 11 obtaining Mo,

\vi
atc
N

|

Ng: E

X
a
m
Dle
2

d — C
e |
S
C 1_
| 1
dl
_dé"
e
S
7 —

M
12 —
=[1
N
2]
M
21 —

= [3

2]

Matching: Example 2

 From this example, we can notice that:

* The matching operator is NOT an invertible
function:

* [herefore, Mi2 and Mz can be very different!

« Why” Let’s see it!

Matching: Example 2

*

1 g

Let’s say that stars in this example are feature-point.

Matching: Example 2

1 g

When we match I against I, we have two matches; between
the two stars in I; and the one in L. This is because we need to match the star with
something in the other image no matter what.

Matching: Example 2

I b
When we match > against /1, we do not have a match
between the star in I1 and the orange one in > because the other

orange star in 1 is closer than the star!

Matching:
Brute Force Algorithm

A simple method to find a N
desc> for each descriptor in desc:

* For each descriptor in desei, we test it against all
descriptors in descz, and we keep as matched
one the (in terms of distance; either
Hamming or Euclidean).

Matching:
Brute Force Algorithm

descriptor d!; in dese;:
matched(i) = -1;
matched_dist =
descriptor d?; in desca:
Closer(D(d!;, d?), matched_dist)
matched(i) = J;

D(,) is a distance function; it can
matched_dist = D(d!;, d?)); be Hamming, Euclidean, etc.

Matching:
Brute Force Algorithm

descriptor d!; in dese;:
matched(i) = -1;
matched_dist =
descriptor d?; in desca:
Closer(D(d!;, d?), matched_dist)
matched(i) = J;

D(,) is a distance function; it can
matched_dist = D(d!;, d?)); be Hamming, Euclidean, etc.

Matching:
Brute Force Algorithm

~or each descriptor d!; in desc:
matched(i) = -1;
matched_dist =|BOTTOM;
~or each descriptor d?; in desca:
it Closer(D(d!;, d?j), matched_dist)
matched(i) = ;;
matched_dist = D(d!;, d?));

endif

BOTTOM = +Inf for SIFT
BOTTOM = 0 for BRIEF/ORB

D(,) is a distance function; it can
be Hamming, Euclidean, etc.

Matching:
Brute Force Algorithm

 Advantage:

* |t Is exhaustive and finds the |

 Disadvantage:
* [his method is very slow:

* Let's say we have n descriptors in desczand z In
desc2. In the worst case, we need to compare
roughly n2 descriptors. This becomes an issue when

we have more than 100 descriptors per image!

Matching:
Improving Efficiency

* How can we improve (approximating results)?

* Hashing: the idea is to group similar descriptors in
k groups or buckets that have a constant size.

Matching:
Improving Efficiency

e \We create k bucket.

 Each iNn descz Of 12 IS assigned to a bucket
using a function f', called hash function. This is detined
as:
f —> [1, k] (positive integer numbers!)

 This means that f cover generates a number in [1, k]
given a descriptor.

* For example, an f for BRIEF/ORB, where the descriptor
IS a 256-bit number, is the modulo operation.

Matching:
Improving Efficiency

Matching:

Improving Efficiency
d?

Matching:
Improving Efficiency

Matching:

Improving Efficiency
d?>

Matching:
Improving Efficiency

AVERY

Matching:

Improving Efficiency
d?3

AWERW

Matching:
Improving Efficiency

AWERW

elcC.

Matching:
Improving Efficiency

* Now, we have all descriptors of I, into buckets.

* Jo find a match for a descriptor d'; of I1, we apply f
to dl;. In this way, we obtain a bucket number, let's
call it r.

e \We run the brute force method between d!; and all
the descriptors that are in 7.

Matching:
Improving Efficiency

dl

AWERW

Matching:
Improving Efficiency

e

Matching:
Improving Efficiency

" d?;
d?1

We run brute-force: we compare d'1 with descriptor in the bucket.

Matching:
Improving Efficiency

 Advantages:

e |t s faster, we run the brute force method for a subset
of descriptors.

* Disadvantages:

e [tis notexact, itis - l.e., we test only a
sub-set of descriptors.

* It fis not well crafted, we may have distant
descriptors in the same bucket.

- Example

Matching

Matching

* Once we have know matches between images, we
can understand which images are near each
others!

* This is important for stable algorithms for
triangulation of points and determining cameras’
poses!

that’s all folks!

