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The Matching Problem

o Why?

* 3D Reconstruction.

* Image Registration.
e Visual Tracking.

* Object Recognition.

* elcC.
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Extraction of Features



Features

* A feature is a piece of the input image that is
relevant for solving a given task.

* Features can be global or local.

e \We will focus on local features that are more robust
to occlusions and variations.



Extraction of Local Features

* We can extract different kind of features:
* Flat regions or Blobs
* Edges

e Corners



Harris Corner Detector

e | et’s consider a window W

centered in (x, y): \
* how do pixels change from a L

window in (x, y) to another one
with a shift d = (u, v)?

« |Let's compare each pixel before
and after moving Wby d = (u, v)
using the sum of squared
differenced (SSD).

E(x,y)= Y (I(xk +u,yp +v) — I(x, yk)) 2

Lk,Yk EW(QE,y)



What a Corners IS

Flat Region: Edge: Corner:
Nno change Nno change significant change
in all directions. along the edge. in all directions.



Harris Corner Detector:
Small Motion Assumption

 Let's apply a first-order approximation, which

provides good results for small motions:

o1 0l
[z +uy+v)=I(z,y)+ 5 ud "

U

~ I(x,y) + [Ix Iy} |,




Harris Corner Detector:
Small Motion Assumption

| 2
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Harris Corner Detector:
Small Motion Assumption

E(xr,y) = Z (Ix(wk, ye ) u” + 20 (zr, yr) Iy (T, yi) + Iy (2, yk)2U2>
xk;,yk;GW(af,y)

—Au® + 2Buv + Cv?



Harris Corner Detector:
Small Motion Assumption

* The surface at (x, y) can be locally approximate by a
quadratic form:

E(x,y) ~ Au® 4+ 2Buv 4+ Cv*
A B | U
_B C_

~ |u vl -

: <

A= Z Iw(xkvyk)z

Tk,Yk EW(CU,y)

B = Z ]x(xkayk)ly(xkayk)
LTk Yk EW(CIZ,y)

C= >  ILwkyw)’

Lk,Yk EW(xay)



Harris Corner Detector:
Small Motion Assumption

* E(x,y) can be rewritten as

E(x,y)~ Y  [u v]: {[x(xk’yk)fy(wk,yk) I (zk, yr) }M

Lk ,2Yk EW(w,y)

= [u U}.M.m

M= Y (e, yk) Lo (25, yi) Iy (T3, yr)

Lk,Yk EW(:Uay) B



Harris Corner Detector:
Small Motion Assumption

* E(x,y) can be rewritten as

E(z,y)~ Y [u v] [ I (@, i) fx(fk,yk)fy(wk,yk)} | H

Ia: Ll L, (x , I2 T, v

fu o] m Ellipse Equation:
v E(u,v)==k
Iz, yk) Lo (xk, yi) Iy (zh, i)
M — X ) X y Yy y
Z Lo (g, yu ) Ly (@, Yi) I (2k, Yr)

Lk Yk EW(xay) -



Harris Corner Detector:
Second Moment Matrix

e M reveals information about the distribution of
gradients around a pixel.

* The eigenvectors of M identity the directions of
fastest and slowest change.

Direction of the fastest change

Direction of
the slowest change




Harris Corner Detector:
Second Moment Matrix

Eigenvalues and eigenvectors of M define shift directions with the smallest
and largest change in E:

® x... = direction of largest increase in £

e \... = amount of increase in direction x,,.,,
e x... = direction of smallest increase in E

e 1. = amount of increase in direction x,,.,



Classification

%)

Flat Region

Corner




Harris Corner Detector:
Cornerness Measure

e Instead of directly computing the eigenvalues, we
use a measure that determines the * " of
a pixel (i.e., how close to be a corner is):

R = Det(M) — kTr(M)?
Det(M) — )\1)\2
TT(M) — )\1 -+ )\2

e kis an empire constant with values [0.04 0.06].



Harris Corner Detector:
Cornerness Measure

D

put Image R



Harris Corner Detector:
Pruning Corners

* We have to find pixels with large corner response,
R, 1.e., R>To.

* Jypically, To in [0,1] depends on the number of
points we want to extract; a default value is 0.01.



IS Corner Detector

Harr

Thresholding

¥
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R after thresholding



Harris Corner Detector:
Pruning Corners

* At this point, we need to suppress/remove values that
are not maxima.

R A

T




Harris Corner Detector:
Pruning Corners

o At this point, we need to suppress/remove values that are
not maxima, but they are over the threshold (yellow pixels).

R A




Harris Corner Detector:
Pruning Corners

* \We set a radius (in pixel) for suppressing non-maxima;
e.g., 3-9.

* We apply to R a maximum filter; it is similar to a median
filter, but it computes the maximum instead of the
median. After this we obtain a filtered image called Rmax.

e A pixel at position (x, y) is a local maximum if and only if:

Rmax(z,y) = R(z,y) AN R(z,y) > To



Harris Corner Detector:
Pruning Corners Example 1

The current pixel that we are evaluating Is the central one!
To=)5



Harris Corner Detector:
Pruning Corners Example 1

The maximum is 100!



Harris Corner Detector:
Pruning Corners Example 1

20 < 100 so it has to be suppressed; i.e., set to O!



Harris Corner Detector:
Pruning Corners Example 2

The current pixel that we are evaluating Is the central one!
To=)5



Harris Corner Detector:
Pruning Corners Example 2

The maximum is 100!



Harris Corner Detector:
Pruning Corners Example 2

100 == 100 so it has to be kept!



Harris Corner Detector:
Non-Maximal Suppression

R after thresholding Non-Maximal Suppression



Harris Corner Detector:
Non-Maximal Suppression




Harris Corner Detector:
Non-Maximal Suppression




Harris Corner Detector:
Non-Maximal Suppression




Harris Corner:
Advantages

e Jranslational invariance: - -
e Rotation invariance: - -

* Only derivatives are employed:

e |ntensity shift invariance: I'=1+b

* |ntensity scale invariance: I'=1a



Harris Corner:
Disadvantage

e Not scale invariant!

=) o

All points are It IS now
classified as edges a corner!




The same feature In
different images can have
different size!



The Scale Problem

Near Object Far Object



Scale Invariant:
Stable Corners

A

Original

> X

AN

1/2 scale



Scale Invariant:
Stable Corners
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Original 1/2 scale



Scale Invariant:
Unstable Corners

R R
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X

Original 1/2 scale



Scale Invariant:
Unstable Corners

R R

BAD/
f%&rs méymgrge!

X > X

Original 1/2 scale



Scale Invariant:
A Multi-Scale Approach

* Depending on the content of the image:
e \We need to detect the scale of corner.

* We need to use its scale to vary the size of the
window W for computing corners!



Scale Invariant:
The Signature Function

* A signature function, s, Is a function giving us an
iIdea of the local content of the image, I, around a
point with coordinates (x, y) at a given scale o.

 An example of signature function is the Difference
of Gaussians (DoG):

s(I,z,y,0) =[I @ G(o)|(x,y) — [I @ G(o - 2)](z,y)

e where GG is a Gaussian kernel.



Scale Invariant:
The Signature Function

B LS o b et ot Lt o e

e




Scale Invariant:
The Approach

We need to find the right scale for resizing W tor each
image!



Scale Invariant:
The Approach

* The signature function, s, can give us an idea of the
content of the image.

* [herefore, we need to find a maximum point of s for
pixel of an input image!



Scale Invariant:
The Approach

Let’'s build s at the red point!



Scale Invariant:
The Approach

1 2 4 8

This Is our start!



lant:
an
le Invarl
Sca

h
rOacC
APP

The

> O



lant:
rian
INnva h
SCr%‘eApproaC
1

> O



lant:
rian
INnva h
SCr%‘eApproaC
1

> O



Scale Invariant:
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Scale Invariant:
The Approach

1 2 4 8
Which is o for which s i1s the maximum?



I[tisoc=4

Scale Invariant:

The Approach
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Scale Invariant:
The Approach

1 2 4 8 12 4 8



Extraction of Features

e (General overview:

* We compute the scale for each pixel using the
sigma value at which we have the maximum
value of the signature function.

* We compute the Harris Corner using the scale to
increase the size of the local window; i.e., the
scale of the window will be multiplied by the
sigma value.




~eature Descriptors



~eature Descriptors

* Once we found our features (i.e., corners), we need
to describe in a meaningful and possibly unigue

way.
 Why”

* We want compare corners between images in
order to find correspondences between

images.



~eature Descriptors

A patch, P, is a sub-image
centered in a given point (u, v).




~eature Descriptors

A patch, P, is a sub-image
centered in a given point (u, v).




~eature Descriptors

 [here are many local features descriptors in
iterature:

 BRIEF/ORB descriptor.
» SIFT descriptor.

 SURF descriptor.

* elC.



~eature Descriptors

* (Good properties that we want are invariance to:
* |llumination changes.

e Rotation.



BRIEF Descriptor

* [he descriptor creates a vector of n binary values:

BRIEF(P) =b=10,1,0,0,...,1]"

* [For efficiency, it is encoded as a number:

Np — zn: Qi_lbi
I=1



BRIEF Descriptor

 (Given a patch, P, of size XS an element of b Is
defined as

1 if P(p;) < P(q;),
0 otherwise

bi(qfi>pi> = {

* where p; and q; are the coordinates (x, y) of two
random points in P.



BRIEF Descriptor: eExample




BRIEF Descriptor: eExample




BRIEF Descriptor: Test

* Let’'s say we have two descriptor b! and b2. How do we
check if they are describing the same corner?

e \We count the number of different bits in the two vectors
(Hamming distance):

i (b, b?) = Zﬂxor (b, b?)

* Thisis a very computationally efficient distance
function.



BRIEF Descriptor: Test

A XOR B
= NOT (A XOR B)

[(NOT A) AND B] OR
[(NOT B) AND A]

0 0 0 1
0 1 1 0
1 0 1 0



BRIEF Descriptor: Point-Set

* The optimal number of points’ couple (i.e., the size
of the descriptor; n) is

e This value was computed from experiments testing
different lengths: 16, 32, 64, 128, 256, and 512.

* Points can be generated in different ways:

o Uniform distribution in the patch

52
e (p;,q;) ~ ii.d. Gaussian((),%)



BRIEF Descriptor: Point-Set

e Points are pre-computed, only once, generating a set:

A — _p()a P1, ... Pn
d0, d1, ... dn

* This set is always used for the extraction of all descriptors in all
photos!

* |f this is not done, we cannot do comparisons because we are
comparing different tests (e.g., comparing apples and organges):

 We need to keep



BRIEF Descriptor

 Advantages:
o Computationally fast.
* |nvariant to illumination changes.
 Compact!
o Patent free.
 Disadvantage:
* Rotation is an issue:

 [he method can handle rotations up to 10-15 degrees only.
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BRIEF Descriptor

 Advantages:

« Computationally fast.

Invariant to illumination changes.

 Compact!

Patent free.

 Disadvantage:

e Rotation Is an issue:

 [he method can handle rotations up to 10-15 degrees only.



ORB Descriptor

* [he descriptor is a modified version of BRIEF and it
can handle rotations!

* The first step of the algorithm is to compute the
orientation of the current patch P.

* ldea: we determine the “center of mass” of the
Image, and we compute the angle between this
‘center of mass” and the center of the patch. This
IS a hint for the orientation of the patch.



ORB Descriptor:
Patch Orientation

* We compute the patch orientation using Rosin moments
of a patch:

Ma,b = Z xaybp(x7y>
r,ych

* From this, we define the centroid, C, as

* Now, we can create a vector from corner’s center, O, to
the centroid, C. This allows us to calculate the angle of
rotation.



ORB Descriptor:
Patch Orientation




ORB Descriptor:
Patch Orientation

 From this vector, the orientation of the patch can be
computed simply as

0 = atan2(mg 1, m1 o)

 From this, we can rotate the patch P, but this
operation Is very computationally expensive:

* We need to rotate each single point in the patch!



ORB Descriptor




ORB Descriptor:
Patch Orientation

e |nstead of rotating the whole patch, we can rotate
only the points stored in 4 as

AQ — RQ . A
« Where Ry 1S a 2D rotation matrix.

* NOTE: we need to rotate less points!



ORB Descriptor

 Advantages:
o Computationally fast.
* |nvariant to illumination changes.
 Compact!
e |nvariant to rotation.
o Patent free.
 Disadvantage:

 Not robust as SIFT.



SIFT Descriptor

* |t is the state-of-the-art descriptor.

e |t was introduced Iin 1999, but it Is still the king.



SIFT Descriptor:
Patch Orientation

* [he first step is to compute the orientation of P.

* We compute the horizontal (Px) and vertical (Py)
gradients of the P.

* For each pixel at coordinates (i, j) in the patch we
compute its orientation and magnitude:

m(i, §) = /Peli,§) + P, (i, j)?

0(.3) = atan2( P,(i,5). Pali. 7))



SIFT Descriptor:
Patch Orientation

* A histogram, H, of directions is created for each
orientation taking into account its magnitude.

* We repeat this process for all gradients in the
patch!

e Note that H Is initialized as a vector of zeros.



SIFT Descriptor:
Patch Orientation

e [et’s say, we have a histogram H with 18 bins (b = 18).

* This means each bin has a size (k) in degree of 20° (k =
360 /b =360/ 18).

 Now, we have to insert a gradient (m =10 and 6 = 45°) from
our patch in H we need to process a gradient in the patch.

e First, we compute the index of the bin to update:

-5

 [hen, we update H as
H@) = HG) +m = H@) + 10



SIFT Descriptor:
Patch Orientation

e Finally, we get this (an example with 8 bins; i.e., 8 directions):

—><—/"\\/

« [he patch orientation, a, is given by the highest peak:

* |t we have two equal peaks, we take the as winner the first
one in histogram.



SIFT Descriptor:
Patch Orientation

e Finally, we get this (an example with 8 bins; i.e., 8 directions):

—><—/"\\/

« [he patch orientation, a, is given by the highest peak:

* |t we have two equal peaks, we take the as winner the first
one in histogram.



SIFT Descriptor

o Once we have a, we can rotate all gradients in the
patch using It.

e This ensures to be invariant to rotations!

—

Rotation




SIFT Descriptor

* \Why do we rotate the gradients? It is
computationally faster:

* |ntheory, we should rotate the patch and then
recompute the gradients.

e [his is computationally expensive!



SIFT Descriptor

e At this point, we divide the patch into 4x4 blocks.

For each block, we compute a new histogram of
directions.

* The final SIFT descriptor is the concatenation
(flattening) of all these histograms.
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SIFT Descriptor:
Example with 2x2 Blocks

Patch and its gradients




SIFT Descriptor:
Example with 2x2 Blocks
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NANN 27255
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Patch and its gradients

We compute the histogram for the first block in violet



SIFT Descriptor:
Example with 2x2 Blocks
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NANN 27255
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Patch and its gradients

We compute the histogram for the second block in red



SIFT Descriptor:
Example with 2x2 Blocks
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Patch and its gradients

We compute the histogram for the third block in orange



SIFT Descriptor:
Example with 2x2 Blocks

Bkl
KAl
i
e
-1

Patch and its gradients

We compute the histogram for the fourth block in yellow



SIFT Descriptor:
Example with 2x2 Blocks

The final descriptor is the concatenation of the histogram of all blocks.
Note that this can be encoded as a vector; in this example the vector has size equal
{o:

4x8 = 32
4 because we have 2x2 Blocks
8 because we have 8 direction for each histogram.



SIFT Descriptor: Test

e We test the differences as distance between
histograms:

D(h',h?) = \ Z(h% — h?)?

e The lower the closer:

* This is the opposite compared to BRIEF/ORB.



SIFT Descriptor

 Advantages:
* |nvariant to illumination changes.
* Invariant to rotation.
* Disadvantages:
e Slower than BRIEF/ORB.
 More memory than binary methods.

o Patented! It is patent-free from 12th of Aprile 2020!



Matching Images



Matching:
An Image Against Another One

* Input: two descriptor lists (
), desci and desc, respectively of

image 1 and L.

* Output: a vector with indices of matches for each
list:

* The output is called Mz if we match I against I

* The output is called My if we match > against I



Matching:
How the Output is Encoded Example 1

e |et's say we have 4 descriptors in desc;
* Let's say we have 3 descriptors in desc:

* Let's say that we want to match I; against I, this
means that we want to compute Ma.



Matching: Example 1

o -
d

d;
desc; = descy, = |d3
d} 2
d

dy_



Matching: Example 1

g
i
d;
desc, = descy, = |d3
ds
ds
dy_ o
We find out that the first descriptor of dese; matches with

the second descriptor of desc:.

Mi2=[ |



Matching: Example 1

ik
i
d;
desc, = descy, = #pd>
ds
ds
dy_ o
We find out that the first descriptor of dese; matches with

the second descriptor of desc:.

Mi2=(2,]



Matching: Example 1

o N
a7

ds
desc; = descy = |d3
d :
d3

i

We find out that the second descriptor of dese1 matches with
the third descriptor of desc:.

Mi2=(2,]



Matching: Example 1

o N
a7

ds
desc; = descy = |d3
d :
d3

i

We find out that the second descriptor of dese1 matches with
the third descriptor of desc:.

Mi2=(2, 3,]



Matching: Example 1

o N
a7

ds
desc; = descy = |d3
d :
d3

d

We find out that the third descriptor of desc: matches with
the first descriptor of desc:.

Mi2=(2, 3,]



Matching: Example 1

ks C72”
a7
ds
desc; = descy = |d3
d :
d3
d

We find out that the third descriptor of desc: matches with
the first descriptor of desc:.

Mi2=[2, 3, 1,]



Matching: Example 1

g
i
d;
desc, = descy =vd>
ds
ds
% o
We find out that the fourth descriptor of desci matches with

the second descriptor of desc:.

Mi2=(2, 3, 1, 2]



Matching:
How the Output is Encoded Example 2

 |et's say we have 3 descriptors in desci
* Let's say we have 2 descriptors in desca

* |Let's say that we match 11 against Iz, obtaining M.
Then, we match > against 11 obtaining Mo,
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Matching: Example 2

 From this example, we can notice that:

* The matching operator is NOT an invertible
function:

* [herefore, Mi2 and Mz can be very different!

« Why” Let’s see it!



Matching: Example 2

*

1 g

Let’s say that stars in this example are feature-point.



Matching: Example 2

1 g

When we match I against I, we have two matches; between
the two stars in I; and the one in L. This is because we need to match the star with
something in the other image no matter what.




Matching: Example 2

I b
When we match > against /1, we do not have a match
between the star in I1 and the orange one in > because the other

orange star in 1 is closer than the star!



Matching:
Brute Force Algorithm

A simple method to find a N
desc> for each descriptor in desc:

* For each descriptor in desei, we test it against all
descriptors in descz, and we keep as matched
one the (in terms of distance; either
Hamming or Euclidean).



Matching:
Brute Force Algorithm

descriptor d!; in dese;:
matched(i) = -1;
matched_dist =
descriptor d?; in desca:
Closer( D(d!;, d?), matched_dist)
matched(i) = J;

D(,) is a distance function; it can
matched_dist = D(d!;, d?)); be Hamming, Euclidean, etc.



Matching:
Brute Force Algorithm

descriptor d!; in dese;:
matched(i) = -1;
matched_dist =
descriptor d?; in desca:
Closer( D(d!;, d?), matched_dist)
matched(i) = J;

D(,) is a distance function; it can
matched_dist = D(d!;, d?)); be Hamming, Euclidean, etc.



Matching:
Brute Force Algorithm

~or each descriptor d!; in desc:
matched(i) = -1;
matched_dist =|BOTTOM;
~or each descriptor d?; in desca:
it Closer( D(d!;, d?j), matched_dist)
matched(i) = ;;
matched_dist = D(d!;, d?));

endif

BOTTOM = +Inf for SIFT
BOTTOM = 0 for BRIEF/ORB

D(,) is a distance function; it can
be Hamming, Euclidean, etc.



Matching:
Brute Force Algorithm

 Advantage:

* |t Is exhaustive and finds the |

 Disadvantage:
* [his method is very slow:

* Let's say we have n descriptors in desczand z In
desc2. In the worst case, we need to compare
roughly n2 descriptors. This becomes an issue when

we have more than 100 descriptors per image!



Matching:
Improving Efficiency

* How can we improve (approximating results)?

* Hashing: the idea is to group similar descriptors in
k groups or buckets that have a constant size.



Matching:
Improving Efficiency

e \We create k bucket.

 Each iNn descz Of 12 IS assigned to a bucket
using a function f', called hash function. This is detined
as:
f —> [1, k] (positive integer numbers!)

 This means that f cover generates a number in [1, k]
given a descriptor.

* For example, an f for BRIEF/ORB, where the descriptor
IS a 256-bit number, is the modulo operation.



Matching:
Improving Efficiency




Matching:

Improving Efficiency
d?




Matching:
Improving Efficiency




Matching:

Improving Efficiency
d?>




Matching:
Improving Efficiency

AVERY



Matching:

Improving Efficiency
d?3

AWERW



Matching:
Improving Efficiency

AWERW



elcC.



Matching:
Improving Efficiency

* Now, we have all descriptors of I, into buckets.

* Jo find a match for a descriptor d'; of I1, we apply f
to dl;. In this way, we obtain a bucket number, let's
call it r.

e \We run the brute force method between d!; and all
the descriptors that are in 7.



Matching:
Improving Efficiency

dl

AWERW



Matching:
Improving Efficiency

e



Matching:
Improving Efficiency

" d?;
d?1

We run brute-force: we compare d'1 with descriptor in the bucket.




Matching:
Improving Efficiency

 Advantages:

e |t s faster, we run the brute force method for a subset
of descriptors.

* Disadvantages:

e [tis notexact, itis - l.e., we test only a
sub-set of descriptors.

* It fis not well crafted, we may have distant
descriptors in the same bucket.



- Example

Matching




Matching

* Once we have know matches between images, we
can understand which images are near each
others!

* This is important for stable algorithms for
triangulation of points and determining cameras’
poses!



that’s all folks!



