3D from Volume: Part II

Dr. Francesco Banterle, francesco.banterle@isti.cnr.it banterle.com/francesco

The Processing Pipeline

RAW Volume

The Processing Pipeline

The Processing Pipeline

RAW Volume

2D/3D Segmentation

Segmentation

- Segmentation is a process after which we obtain a mask of a structure in an/a image/volume.
- A mask is binary image/volume; i.e., its values can be only either 0 or 1.
- 1 —> the pixel/voxel belongs to a structure of our interest
- 0 —> the pixel/voxel does not!

Segmentation

- Obviously, if we need to segment k objects in the image/volume we have two ways to proceed:
 - 1. We create k-masks, one for each object.
 - 2. We create an **unsigned integer** mask in which each object as label a number in [1,k]. Background is always 0!

3D Segmentation

- There are typically two approaches:
 - 2D segmentation for each slice
 - 2D segmentation of a slice and propagation of the segmentation

Manual Segmentation

Manual Segmentation: Painting Approach

- We manually paint the mask using a GUI.
- Obviously, the segmentation mask is created in a different layer and not on the input image!

Manual Segmentation: Painting Approach

Manual Segmentation: Painting Approach

Manual Segmentation: Boundary Definition

- We manually define the mask boundary using a GUI (e.g., GIMP, Adobe PhotoShop, etc.).
- We either define it using polygons or free-hand.
- We can use image gradients and Laplacian to stick polygons to our object of interest.

Manual Segmentation: Boundary Definition

Manual Segmentation: Boundary Definition

 We assume that each object in an image/volume has a unique intensity value

This means:

$$M(i,j) = \begin{cases} 1 & \text{if } d(I(i,j), I_t) < t, \\ 0 & \text{otherwise.} \end{cases}$$

We can have different distance functions:

$$d(x;y) = |x - y|$$

$$d(x;y) = (x - y)^{2}$$

$$d(x;y) = \exp\left(-\frac{(x - y)^{2}}{2\sigma^{2}}\right)$$

This means:

Reference Value

$$M(i,j) = \begin{cases} 1 & \text{if } d(I(i,j), I_t) < t, \\ 0 & \text{otherwise.} \end{cases}$$

We can have different distance functions:

$$d(x;y) = |x - y|$$

$$d(x;y) = (x - y)^{2}$$

$$d(x;y) = \exp\left(-\frac{(x - y)^{2}}{2\sigma^{2}}\right)$$

This means:

Reference Value

$$M(i,j) = \begin{cases} 1 & \text{if } d(I(i,j), I_t) < t, \end{cases}$$
 Threshold otherwise.

We can have different distance functions:

$$d(x;y) = |x - y|$$

$$d(x;y) = (x - y)^{2}$$

$$d(x;y) = \exp\left(-\frac{(x - y)^{2}}{2\sigma^{2}}\right)$$

$$I_t = 1$$
 $t = 0.1$

$$I_t = 0.6$$
 $t = 0.1$

$$I_t = 0.3$$
 $t = 0.1$

$$t = 0.1$$

 After segmentation we may end up with different pieces that are not connected.

- A two-pass algorithm that works in scan order (from left to right and from top to bottom).
- 1-Pass: it creates labels to groups of pixel.
- 2-Pass: it merges groups that are connected.

Scan order

First Pass

We check up and left neighbors to see if they have a label.

If not we create a new one.

Then, we move right, and we repeat the process.

In this case, the left neighbor has a label, so we reuse it.

In this case, the left neighbor has a label, so we reuse it.

1

2

In this case, we choose the lowest label, and we store that 1 is equivalent to 2

Second Pass

We go through all pixels. For each pixel we set the value of lowest equivalent.

Thresholding: Connected Components Example

Thresholding

- It works if each object has a unique intensity value/ color; this is a very limiting constraint!
 - However, it could be used as a starting point for other algorithms.
- The user needs to set the threshold!
 - The I_t value for each class may be inferred by analyzing the histogram of the input image.
- Its 3D extension is trivial!

k-Means

k-Means

- k-means is a clustering algorithm for clustering n-D vectors/points in an n-D space:
 - A pixel with position (x, y) and intensity I is a 3D vector: <x, y, I>
 - A voxel with position (x, y, z) and intensity I is a 4D vector: <x, y, z, I>
- Let's assume we have k objects in the image.
- So we have to determine k-clusters.

k-Means: How it Works

 Let's explain k-Means with 2D points

k-Means: Initialization

- Let's assume k = 3.
- We make a random guess on the kcentroids (the stars).

k-Means: Initialization

- Let's assume k = 3.
- We make a random guess on the kcentroids (the stars).

 We now assign a sample to a cluster if the distance (L1, L2, etc.), between a centroid is the minimum.

 We re-compute the centroid as the mean of samples of a cluster.

 We repeat the process until convergence (no more changes) or after m iterations.

 We repeat the process until convergence (no more changes) or after m iterations.

k-Means Example

k-Means: Outliers

Even Iteration

Odd Iteration

Even Iteration

Odd Iteration

k-Means: Advantages

- The method is fully automatic
- This works for 2D and 3D volumes
- This can "understand" neighbors in an implicit way

k-Means: Disadvantages

- We need to know how many objects (including the background) are in the image:
 - We may run k-means multiple times until a certain criterion is met (e.g., reaching the 80% of percentage of explained variance)
- Outliers:
 - better initialization (sampling)
- The method may not converge
 - we need to set a maximum number of iterations

- This algorithms expands a painted initial mask until it reaches strong edges
- Therefore, we need to compute edges first!

Seed

after a while...

- It is straightforward to extend to 3D!
- This algorithm depends on:
 - The threshold of edge detection
- It may be slow:
 - From an initial seed, the growing region needs to reach the farthest edge pixel/voxel.
 - Computational complexity is a function of the area/ volume of the object we want to segment.

Region Growing: Epic Fail

Region Growing: Epic Fail

Region Growing: Epic Fail

Active Contour Model aka Snakes

• A snake is a parametric curve:

$$\mathbf{v}(t) = (x(t); y(t)) \qquad t \in [0, 1]$$

 Typically, it is a spline (original paper), but for sake of simplicity let's assume a piecewise linear curve.

 The snake curve is defined by a set of control point that is defined as:

$$C = \{v_i | i \in [1, n]\} \text{ where } v_i = (x_i, y_i)$$

 A first step, we draw a snake close to the boundary of the object we want to segment.

 Then, we *deform* its control points in order to move them towards the object's boundary.

 Then, we *deform* its control points in order to move them towards the object's boundary.

 Then, we *deform* its control points in order to move them towards the object's boundary.

- How do we deform the control points?
- An energy function $E_{\mathbf{v}}$ is associated with the curve.
- We deform control points by minimizing $E_{\mathbf{v}}$; i.e., we solve an optimization problem.

- How do we define the energy function?
- The energy of a snake has three components:

$$E_{\mathbf{v}} = E_{\text{internal}} + E_{\text{external}} + E_{\text{constraint}}$$

 This energy represents the internal energy of the cure due to bending. It is defined per point as

$$E_{\text{internal}}(\mathbf{v}(t)) = \frac{1}{2} \left(\alpha(t) \left| \frac{d\mathbf{v}(t)}{dt} \right|^2 + \beta(t) \left| \frac{d^2 \mathbf{v}(t)}{d^2 t} \right|^2 \right)$$

$$E_{\text{internal}} = \int_{0}^{1} E_{\text{internal}}(\mathbf{v}(t)) dt$$

 This energy represents the internal energy of the cure due to bending. It is defined per point as

$$E_{\text{internal}}(\mathbf{v}(t)) = \frac{1}{2} \left(\alpha(t) \left| \frac{d\mathbf{v}(t)}{dt} \right|^2 + \beta(t) \left| \frac{d^2 \mathbf{v}(t)}{d^2 t} \right|^2 \right)$$

Elasticity

$$E_{\text{internal}} = \int_{0}^{1} E_{\text{internal}}(\mathbf{v}(t)) dt$$

 This energy represents the internal energy of the cure due to bending. It is defined per point as

$$E_{\text{internal}}(\mathbf{v}(t)) = \frac{1}{2} \left(\alpha(t) \left| \frac{d\mathbf{v}(t)}{dt} \right|^2 + \beta(t) \left| \frac{d^2\mathbf{v}(t)}{d^2t} \right|^2 \right)$$
Elasticity Stiffness

$$E_{\text{internal}} = \int_0^1 E_{\text{internal}}(\mathbf{v}(t))dt$$

• The first term is an elastic energy:

$$\frac{d\mathbf{v}(t)}{dt} \approx \mathbf{v}_{i+1} - \mathbf{v}_i$$

The second term is a bending energy:

$$\frac{d^2\mathbf{v}(t)}{d^2t} \approx \mathbf{v}_{i+1} - 2\mathbf{v}_i + \mathbf{v}_{i-1}$$

The first term is an elastic energy:

$$\frac{d\mathbf{v}(t)}{dt} \approx \mathbf{v}_{i+1} - \mathbf{v}_i$$

The second term is a bending energy:

$$\frac{d^2\mathbf{v}(t)}{d^2t} \approx \mathbf{v}_{i+1} - 2\mathbf{v}_i + \mathbf{v}_{i-1}$$

• The first term is an elastic energy:

$$\frac{d\mathbf{v}(t)}{dt} \approx \mathbf{v}_{i+1} - \mathbf{v}_i$$

The second term is a bending energy:

$$\frac{d^2\mathbf{v}(t)}{d^2t} \approx \mathbf{v}_{i+1} - 2\mathbf{v}_i + \mathbf{v}_{i-1}$$

- This energy determines how well the snake matches with the image locally!
- How can we achieve this?
 - Gradients magnitude

It is defined per point as

$$E_{\text{external}}(\mathbf{v}(t)) = -\|\nabla I(\mathbf{v}(t))\|^2$$

$$E_{\text{external}} = \int_0^1 E_{\text{external}}(\mathbf{v}(t))dt$$

- This energy is meant for interactive systems.
- The user interactively monitors the minimization, and she/he can push/pull vertices using the mouse cursor's position:
 - Repulsion forces or "vulcano": $\frac{1}{r^2}$
 - Spring forces: $-k(\mathbf{x}_1 \mathbf{x}_2)^2$

How do we solve it?

 $E_{\mathbf{v}} = E_{\text{internal}} + E_{\text{external}} + E_{\text{constraint}}$

$$\mathbf{x}_{j}^{i+1} = \mathbf{x}_{j}^{i} - \alpha \frac{\partial}{\partial \mathbf{x}_{j}} f(\mathbf{x}^{i})$$

- We need to start with a g
- It will find a local minimum!
- f has to be differentiable.
- \mathbf{x}^0 is a "good" guess.

$$\mathbf{x}_{j}^{i+1} = \mathbf{x}_{j}^{i} - \alpha \frac{\partial}{\partial \mathbf{x}_{j}} f(\mathbf{x}^{i})$$

- We need to start with a g
- It will find a local minimum!
- f has to be differentiable.
- \mathbf{x}^0 is a "good" guess.

$$\mathbf{x}_{j}^{i+1} = \mathbf{x}_{j}^{i} - \alpha \frac{\partial}{\partial \mathbf{x}_{j}} f(\mathbf{x}^{i})$$

- We need to start with a g
- It will find a local minimum!
- f has to be differentiable.
- \mathbf{x}^0 is a "good" guess.

$$\mathbf{x}_{j}^{i+1} = \mathbf{x}_{j}^{i} - \alpha \frac{\partial}{\partial \mathbf{x}_{j}} f(\mathbf{x}^{i})$$

- We need to start with a g
- It will find a local minimum!
- f has to be differentiable.
- \mathbf{x}^0 is a "good" guess.

$$\mathbf{x}_{j}^{i+1} = \mathbf{x}_{j}^{i} - \alpha \frac{\partial}{\partial \mathbf{x}_{j}} f(\mathbf{x}^{i})$$

- We need to start with a g
- It will find a local minimum!
- f has to be differentiable.
- \mathbf{x}^0 is a "good" guess.

Snakes: Gradient Descent

- What is our \mathbf{x}^0 in the snake minimization?
- We need to click a few points in the image around our object of interest!

Snakes An Example

Snakes

- Extension to the 3D case:
 - Instead of a curve we have a parametric surface; e.g., we can start using a sphere.
- Disadvantages:
 - We may have an over-smooth boundaries when using splines
 - How many *n* control points?
 - Not trivial to avoid self-intersection!

- Stroke-based algorithms are based on the idea to define with a stroke what is foreground (i.e., our object of interest) and what is background.
- These strokes are roughly painted.
 - However, they have to be placed in areas where we are 100% sure how to classify the image.

+1

_

+1

-1

- Grow-cut is a stroke-based method.
- The idea is to propagate the label of the current pixels if its neighbors are "similar".

For each pixel, we have:

$$< l_i; \theta_i; C_i >$$

Initialization for pixels not covered by a stroke (s):

$$l_i = 0; \quad \theta_i = 0; \quad C_i = I(x_i, y_i) \quad \forall i \ s(x_i; y_i) = 0$$

• Initialization for pixels covered by a stroke (s):

$$l_i = s(x_i, y_i); \quad \theta_i = 1; \quad C_i = I(x_i, y_i) \quad \forall i \ s(x_i; y_i) \neq 0$$

For each pixel, we have:

Strength
$$< l_i; \theta_i; C_i >$$
 Label Intensity

Initialization for pixels not covered by a stroke (s):

$$l_i = 0; \quad \theta_i = 0; \quad C_i = I(x_i, y_i) \quad \forall i \ s(x_i; y_i) = 0$$

Initialization for pixels covered by a stroke (s):

$$l_i = s(x_i, y_i); \quad \theta_i = 1; \quad C_i = I(x_i, y_i) \quad \forall i \ s(x_i; y_i) \neq 0$$

Stroke-Based: A Single Grow-Cut Pass

- For each pixel *i*:
 - We copy the previous status:

$$< l_i^{t+1}, \theta_i^{t+1}; I_i^{t+1} > = < l_i^t, \theta_i^t; I_i^t >$$

- For each neighbor *j* of *i*:
 - if $g(\|C_i^t C_j^t\|_2)\theta_j^t > \theta_i^t$ then

$$l_i^{t+1} = l_j^t$$

$$\theta_i^{t+1} = g(\|C_i^t - C_j^t\|_2) \cdot \theta_j^t$$

Stroke-Based: A Single Grow-Cut Pass

Note that g is a decreasing function:

$$g(x) = 1 - x$$

- This means that if the two pixels, which we compare, are close in intensity/color values they should have the same label !.
- They should also share the same label the neighbors have a higher strength!

- Stopping criteria:
 - This process is iterated until either convergence;
 i.e., no changes in the labels!
 - Labels have been propagated for enough iterations; e.g., the number of pixels of the diagonal. This trick is helpful for reducing the total computational time.

Iteration = 10

Iteration = 40

Iteration = 321

- This algorithm can be extended to 3D in a straightforward way, and it can be parallelized on the GPU.
- Disadvantages:
 - It is computationally slow!

that's all folks!