Mesh Repairing and Simplification

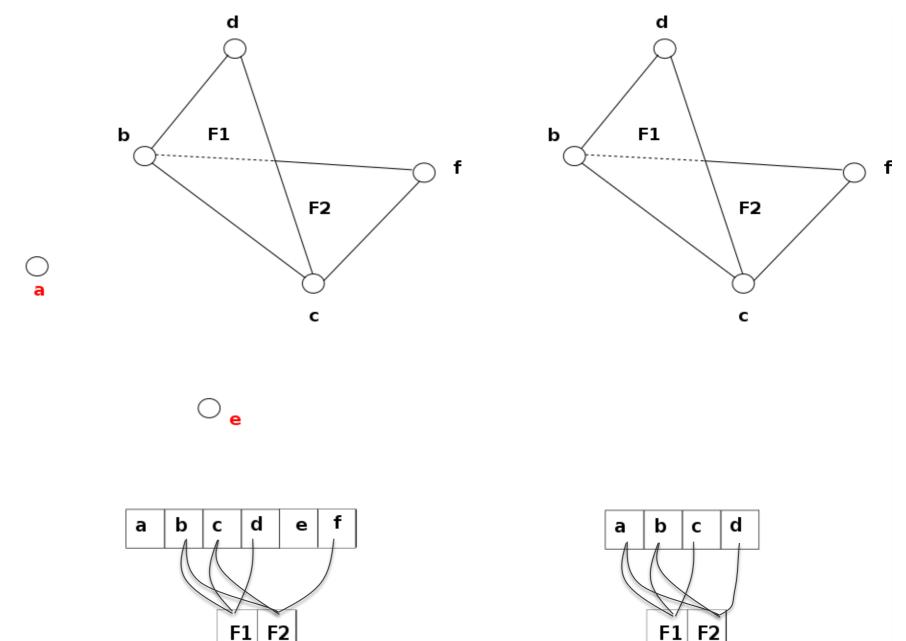
Gianpaolo Palma

Mesh Repairing

- Removal of artifacts from geometric model such that it becomes suitable for further processing
 - Input: a generic 3D model
 - Output: (hopefully)a manifold and watertight model
- It doesn't yet exist an algorithm able to handle all the kind of topological or geometric issue
- We see how to detect and correct these artifacts

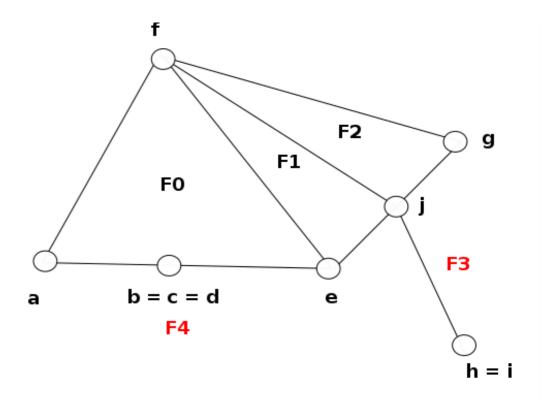
Unreferenced Vertices

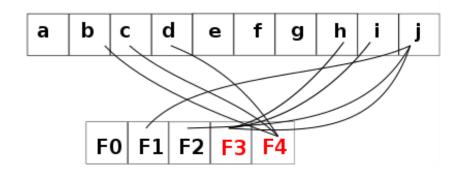
 Delete vertices not referred by any face



Zero Area Faces

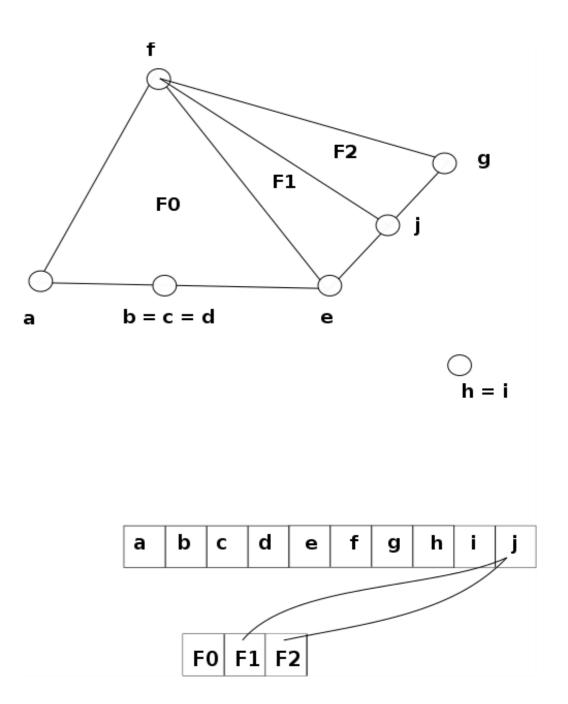
- Causes
 - Duplicate vertices (vertices with the same position)





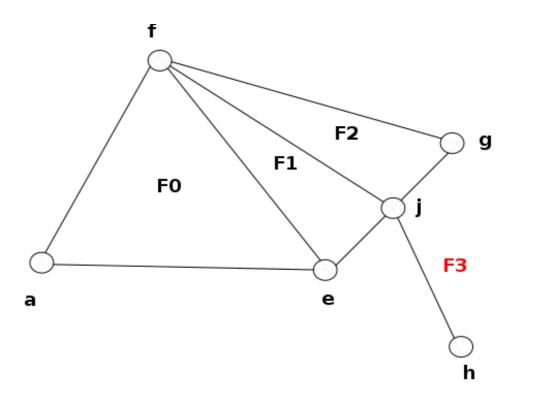
Zero Area Faces

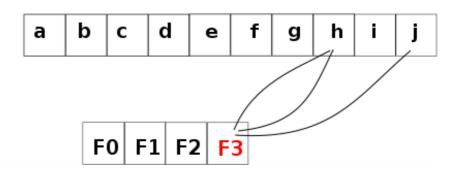
- Causes
 - Duplicate vertices (vertices with the same position)
- Compute the area of all the faces and remove the ones with zero area
- Side Effect
 - Unreferenced vertices



Degenerated Faces

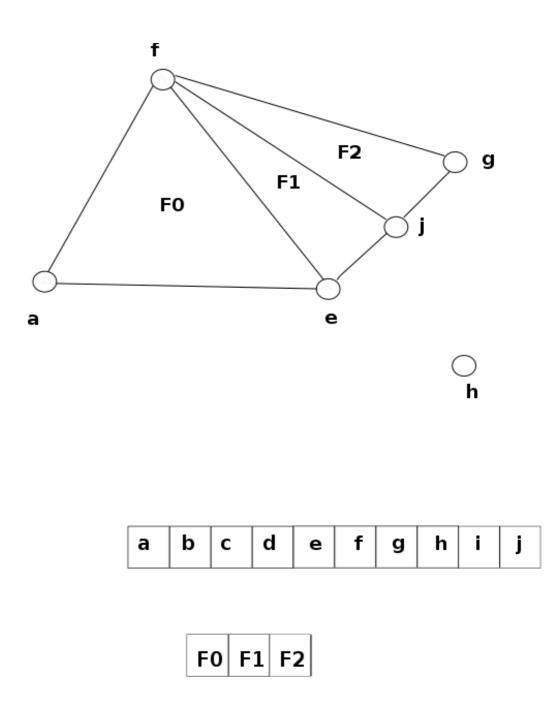
 Faces having at least two vertex pointers referring the same vertex





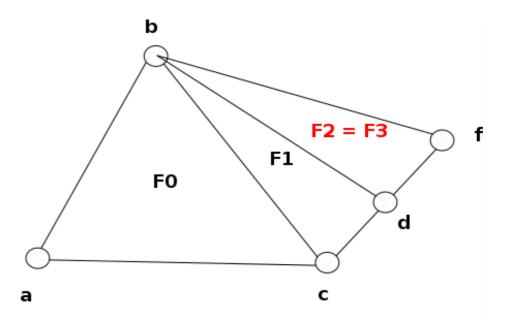
Degenerated Faces

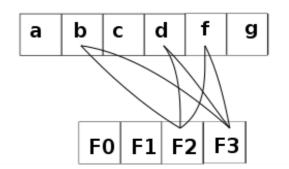
- Faces having at least two vertex pointers referring the same vertex
- Degenerated faces are zero area faces...but not all zero area faces are degenerated faces
- Side effect
 - Unreferenced vertices



Duplicated Faces

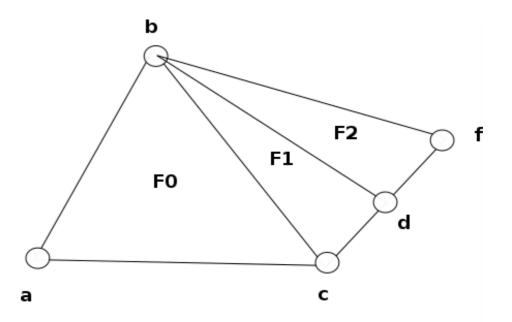
 Merge faces with the same vertex references

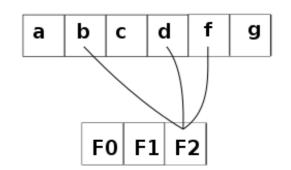




Duplicated Faces

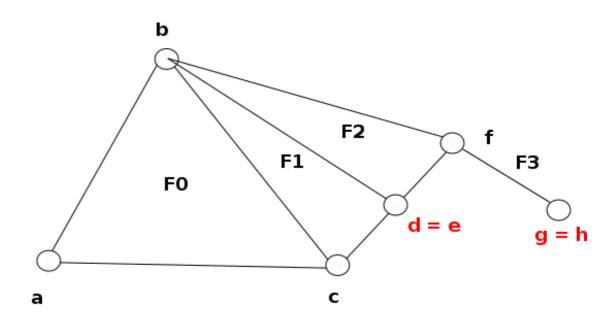
 Merge faces with the same vertex references

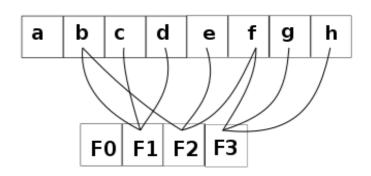




Duplicated Vertices

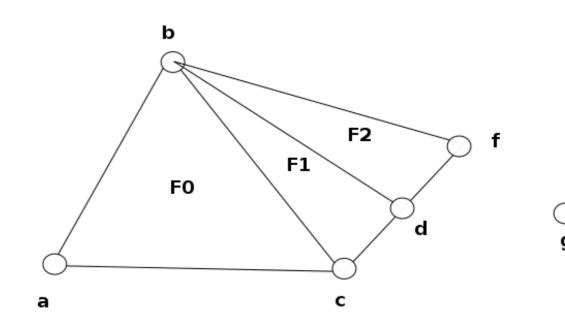
 Vertices with the same coordinates positions

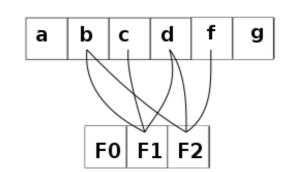




Duplicated Vertices

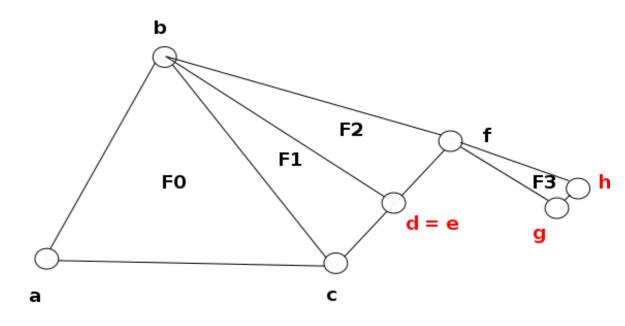
- Vertices with the same coordinates positions
- Merge the vertices and update the references in the incident face
- Side effect
 - Unreferenced vertices and degenerated faces

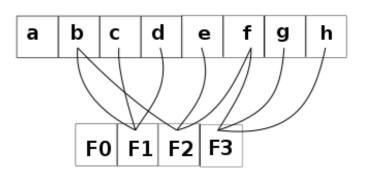




Close Vertices

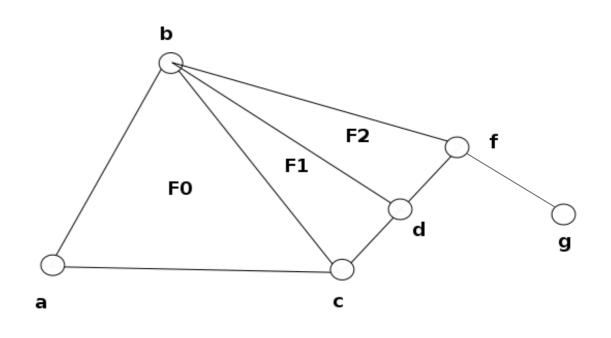
 Merge vertices faraway each other less than a threshold

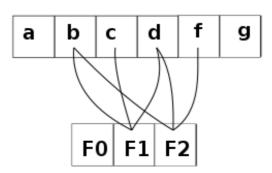




Close Vertices

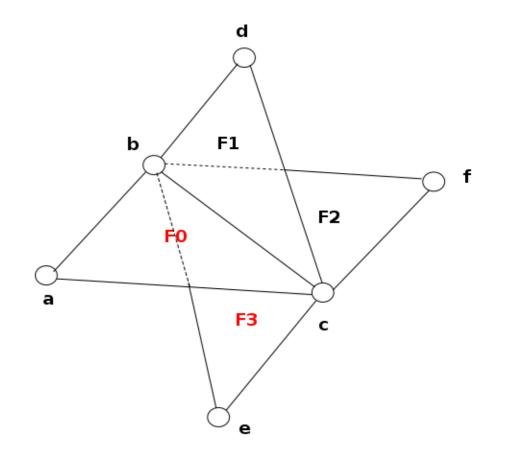
- Merge vertices faraway each other less than a threshold
- Side effect
 - Degenerated faces

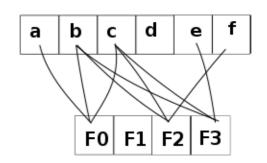




Non 2-manifold Edge

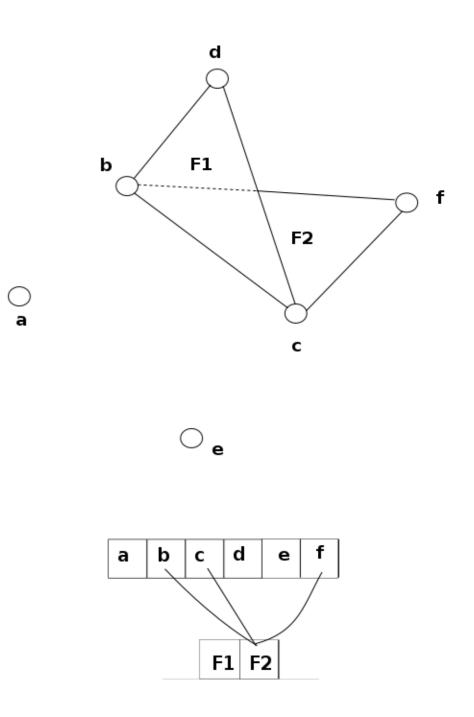
 Edge with more than two incident faces





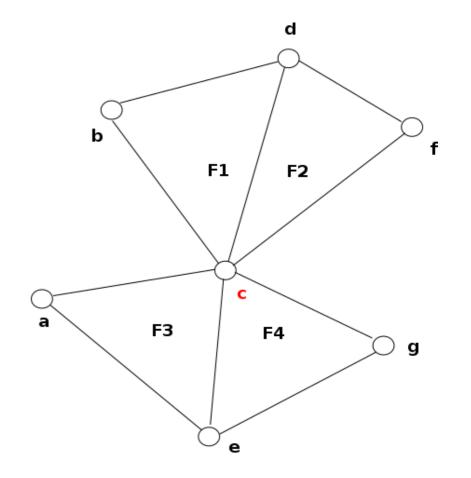
Non 2-manifold Edge

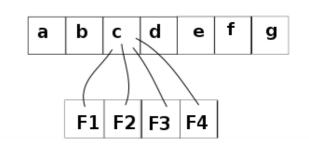
- Edge with more than two incident faces
- Delete face from non-2manifold edges until the edges have at most two faces incident on them (delete iteratively the faces with smaller area)
- Side effect
 - Unreferenced vertices



Non 2-manifold Vertex

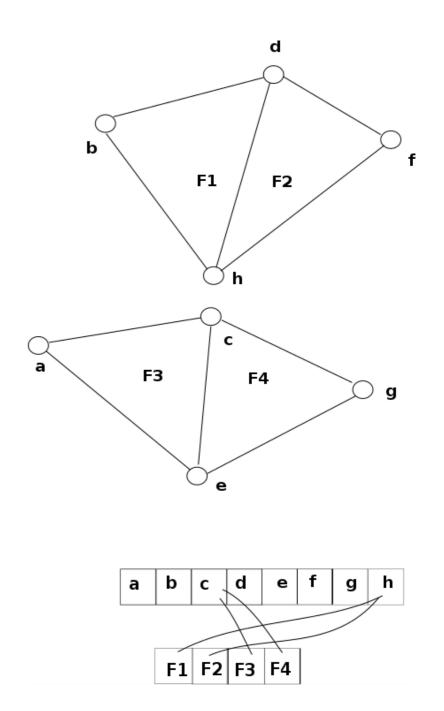
The vertex doesn't have a single complete loop of triangle around it using the FF adjacency





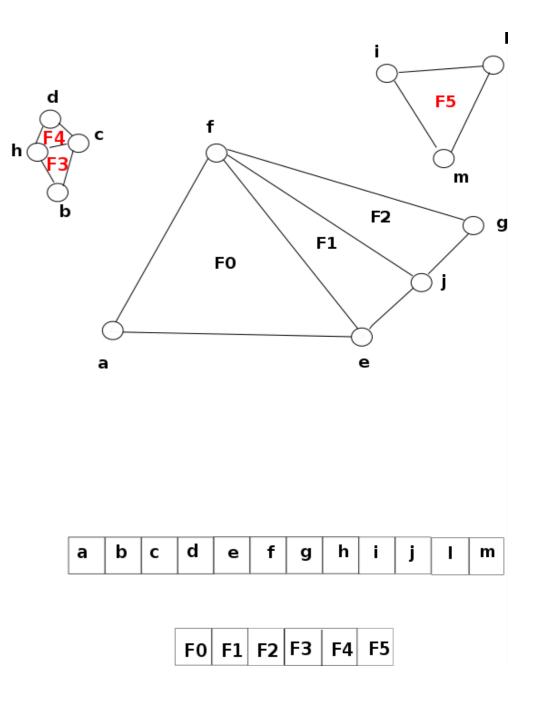
Non 2-manifold Vertex

- The vertex doesn't have a single complete loop of triangle around it using the FF adjacency
- Splits non-2manifold vertices and move them of threshold distance or delete vertex
- Side effect
 - Duplicated vertices



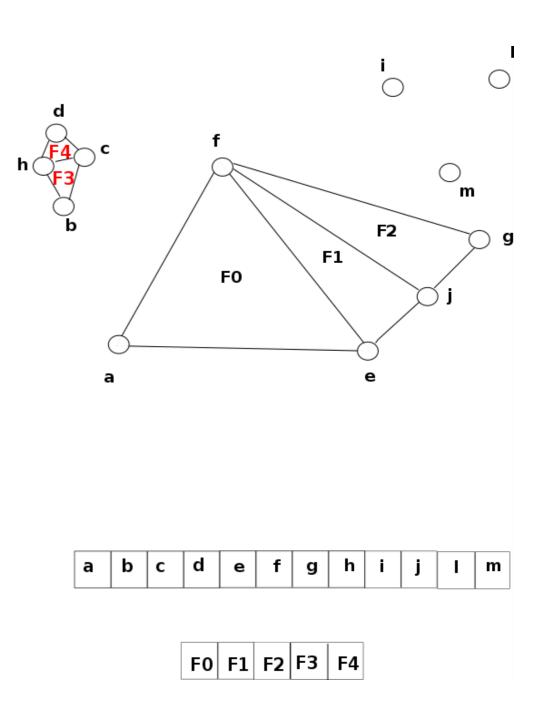
Isolated Pieces

 Clusters of isolated faces that cannot be reached with the navigation using the FF adjacency



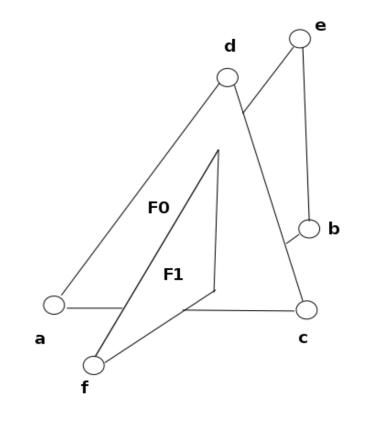
Isolated Pieces

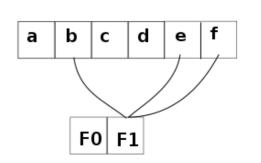
- Clusters of isolated faces that cannot be reached with the navigation using the FF adjacency
- Remove isolated connected components of the mesh composed by less than n faces or with a bbox diagonal less than a threshold
- Side effect
 - Unreferenced vertices



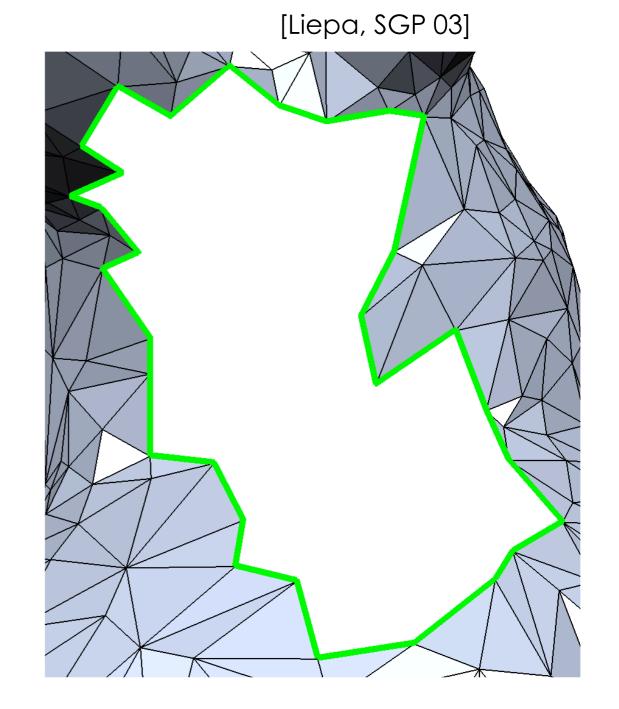
Self Intersecting Face

- Faces into the mesh intersecting with others
- Select the faces, delete them and eventually close the hole



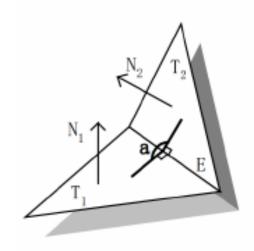


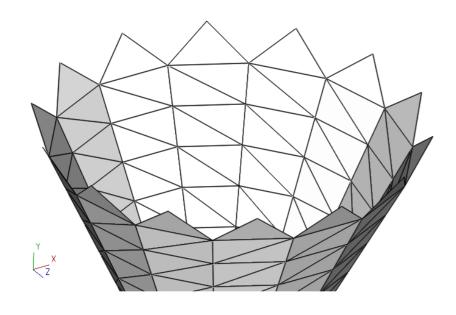
- Missing data
 - 1. Detect holes border
 - Close loop of boundary edge
 - 2. Triangulate hole
 - 3. Mesh Refinement
 - 4. Mesh Fairing



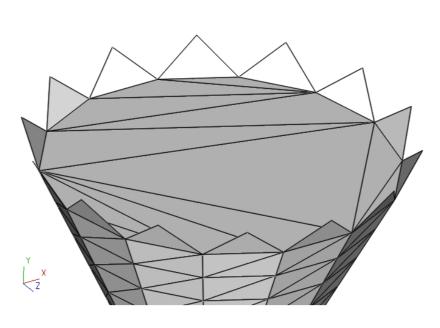
[Liepa, SGP 03]

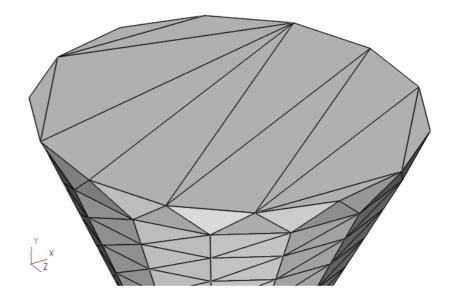
- Triangulate Hole
 - Minimize triangulation area
 - Minimize the maximum dihedral angle





HOLE

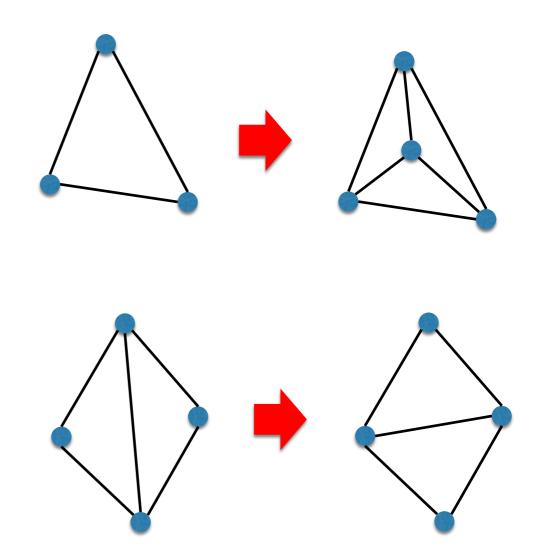




DIHEDRAL ANGLE

[Liepa, SGP 03]

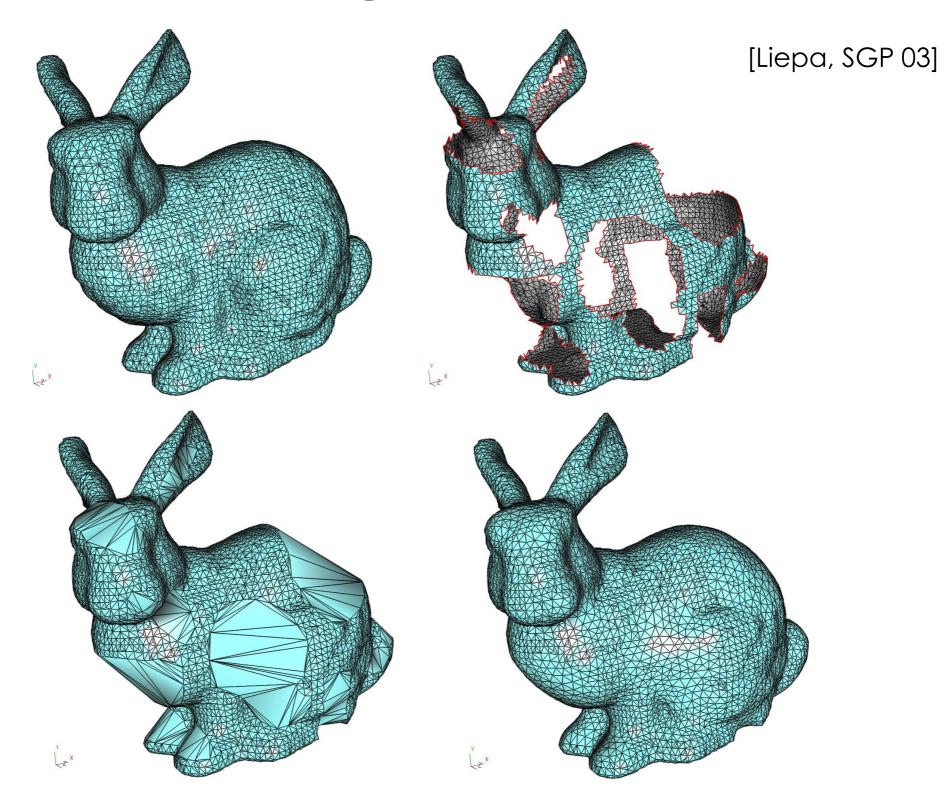
- Mesh refinement
 - Refine the triangulation to match the triangulation of the surrounding triangles
 - Relaxing interior edges to maintain a Delaunay-like triangulation (edge flip)



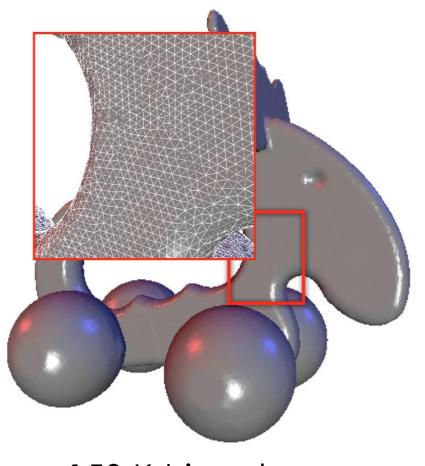
[Liepa, SGP 03]

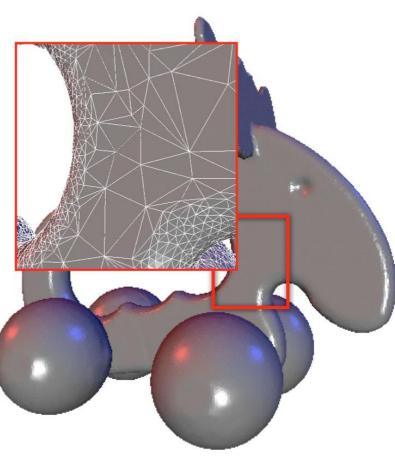
- Mesh Fairing
 - Making a surface smooth by minimizing a fairness functional
 - Set a linear system where for non-boundary vertices we constrain that $U^2(\mathbf{p}_i) = 0$

$$U(\mathbf{p}_i) = \mathbf{p}_i + \frac{1}{W} \sum_{j \in N_i} w_{ij}(\mathbf{p}_j - \mathbf{p}_i)$$
$$U^2(\mathbf{p}_i) = U(\mathbf{p}_i) + \frac{1}{W} \sum_{j \in N_i} w_{ij}(U(\mathbf{p}_j) - U(\mathbf{p}_i))$$



 Reduce the amount of polygons of a mesh with minimal effect on the geometry





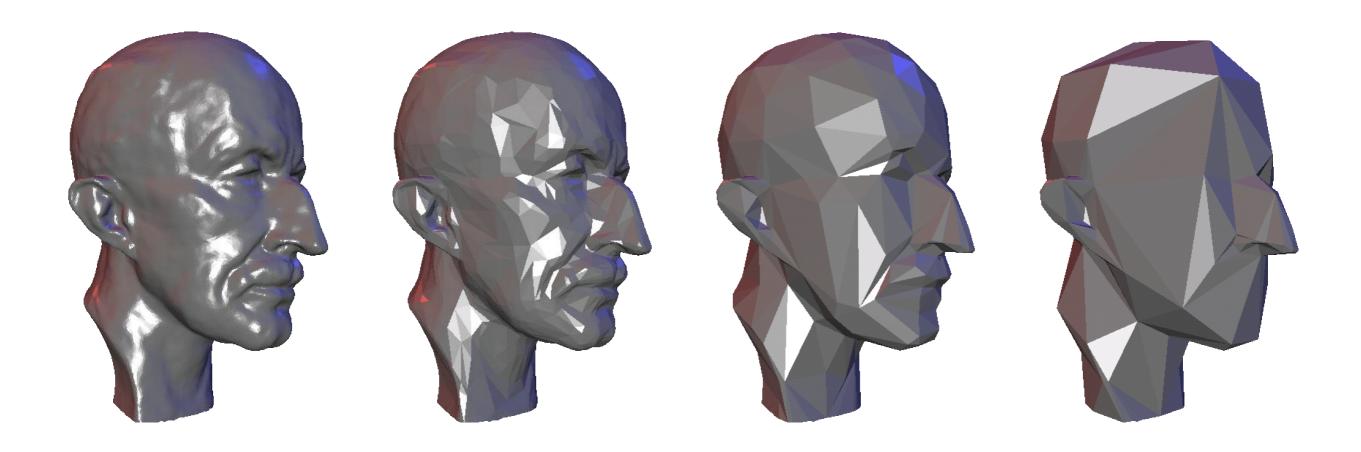
150 K triangles

80 K triangles

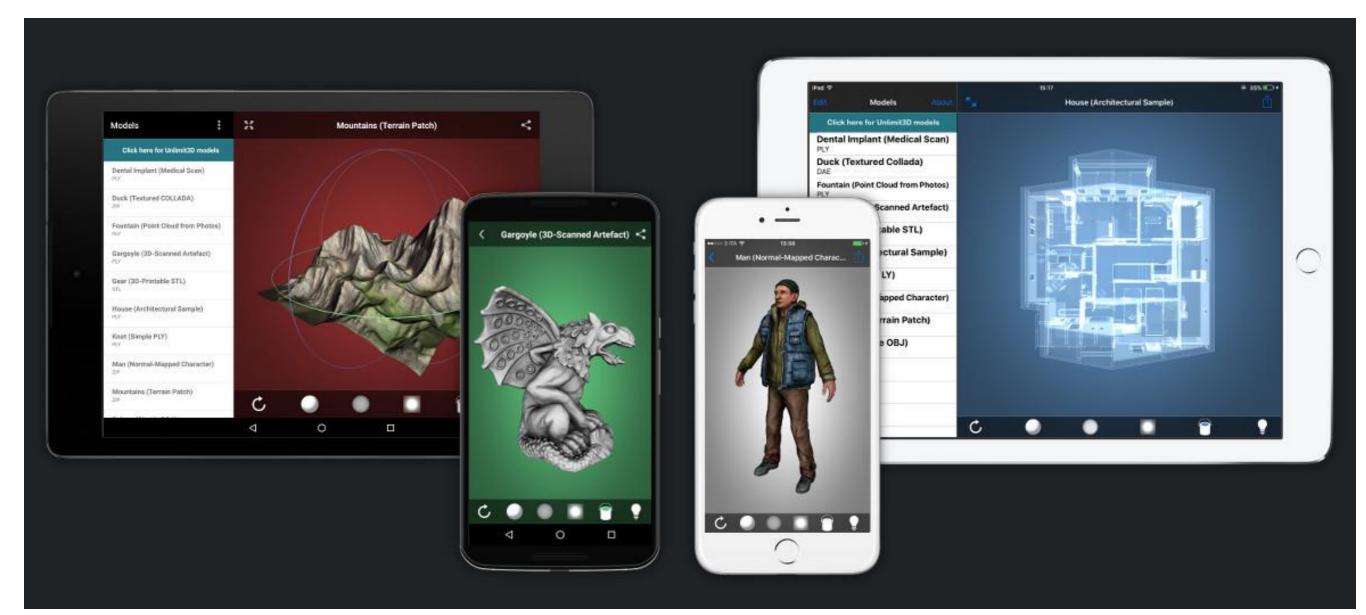
 Erase redundant information with minimal effect on the geometry (in case of iso-surface extraction)



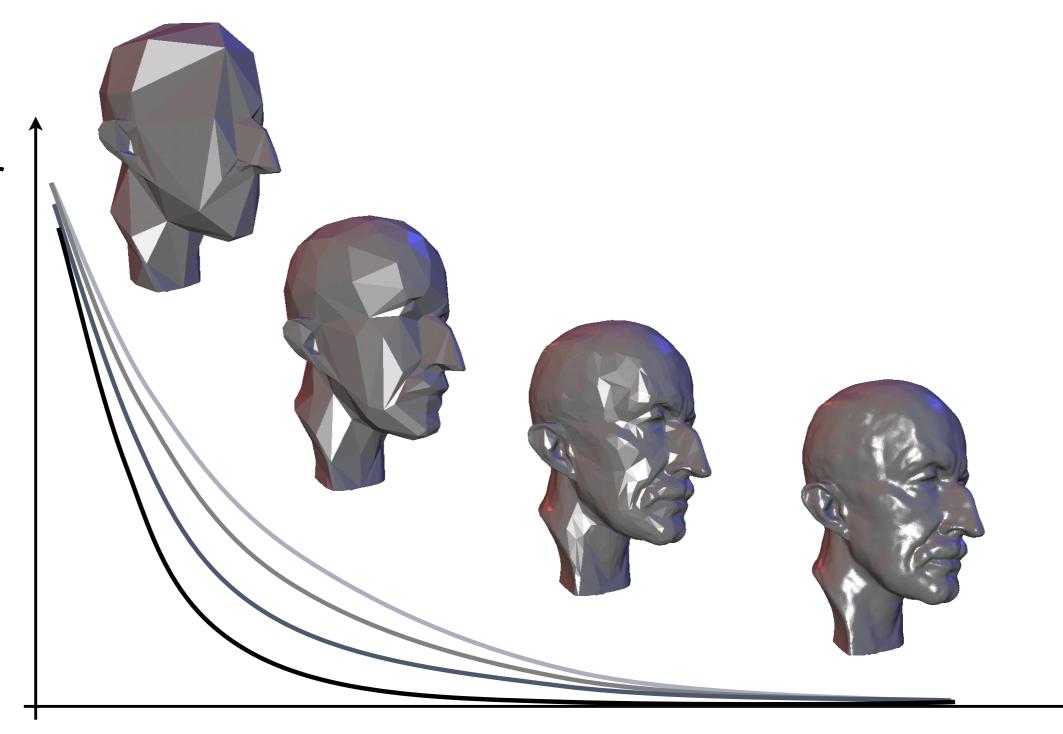
- Multi-resolution hierarchies for
 - Efficient geometry processing
 - Level-of-detail (LOD) rendering



Adaptation to hardware capabilities



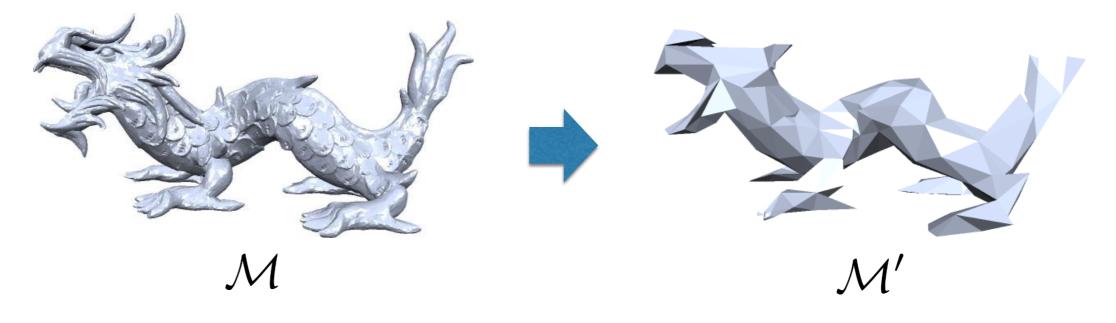
Size-Quality Tradeoff



error

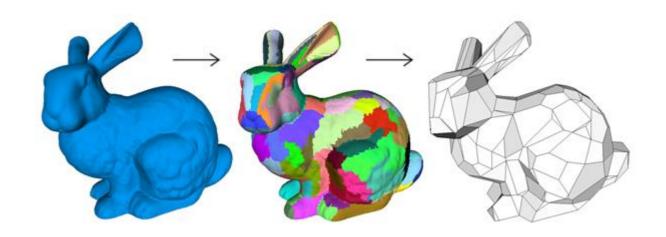
Problem Statement

- Given $\mathcal{M}=(\mathcal{V},\mathcal{F}), \mbox{ find } \mathcal{M}'=(\mathcal{V}',\mathcal{F}')$ such that
 - + $|\mathcal{V}'| = n < |\mathcal{V}|$ and $\|\mathcal{M}' \mathcal{M}\|$ is minimal, or
 - $\|\mathcal{M}' \mathcal{M}\| < \epsilon$ and $|\mathcal{V}'|$ is minimal
- Reduce the amount of vertices minimizing the error, or keep the error below a threshold and minimize the number of vertices



Mesh Decimation Methods

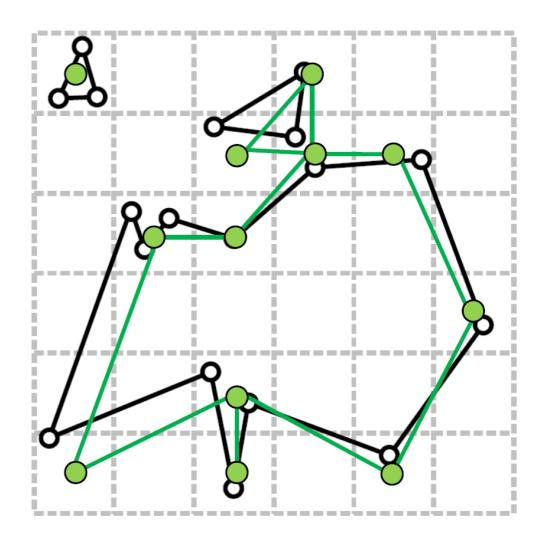
- Vertex clustering
- Incremental decimation
- Resampling
- Mesh approximation



Vertex Clustering

[Rossignac et al., MCG 93]

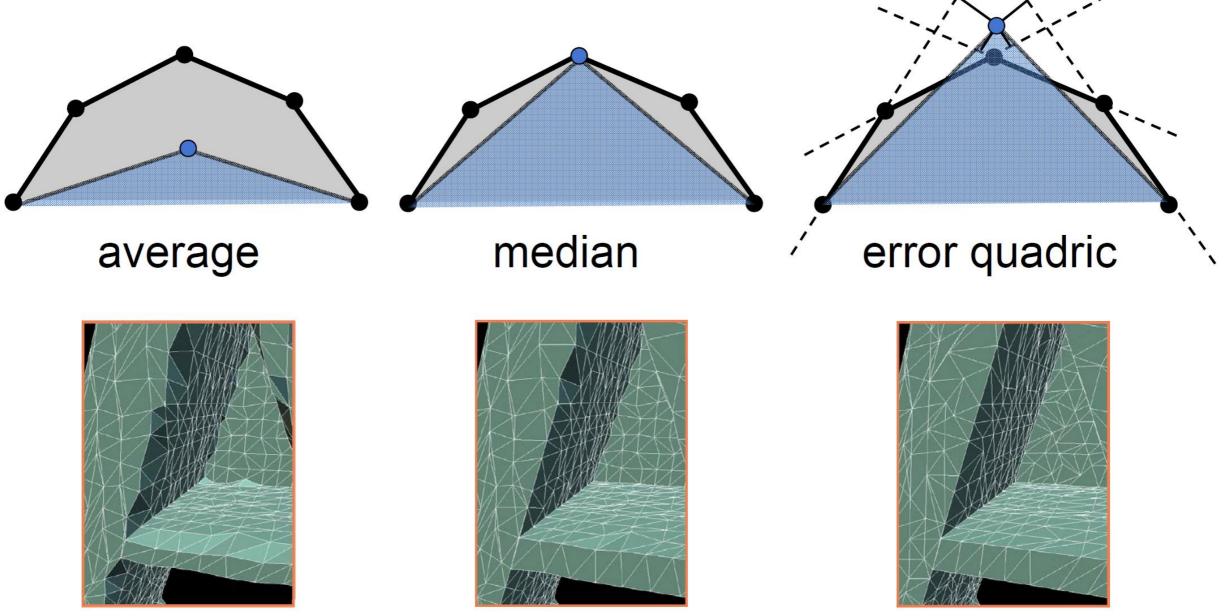
- Cluster Generation
 - Uniform 3D grid
 - Map vertices to cluster cells



Vertex Clustering

[Rossignac et al., MCG 93]

- Cluster Generation
- Computing a representative



Quadric Error Metrics

- Minimize distance to neighboring triangles' planes
- Squared distance to plane

$$\mathbf{p} = (x, y, z, 1)^T$$

$$ax + by + cz + d = 0 \quad \Longrightarrow \quad \mathbf{q} = (a, b, c, d)^T$$

$$dist(\mathbf{p}, \mathbf{q})^{2} = (ax + by + cz + d)^{2} = (\mathbf{q}^{T} \mathbf{p})^{2} = (\mathbf{p}^{T} \mathbf{q})(\mathbf{q}^{T} \mathbf{p})$$
$$= \mathbf{p}^{T}(\mathbf{q}\mathbf{q}^{T})\mathbf{p} = \mathbf{p}^{T}\mathbf{Q}_{\mathbf{q}}\mathbf{p}$$
$$\mathbf{Q}_{\mathbf{q}} = \begin{bmatrix} a^{2} & ab & ac & ad \\ ab & b^{2} & bc & bd \\ ac & bc & c^{2} & cd \end{bmatrix}$$

 $ad bd cd d^2$

Quadric Error Metrics

 Sum of distances of the vertex from the plane of all the incident faces planes

$$\sum_{i} dist(\mathbf{p}, \mathbf{q}_{i})^{2} = \sum_{i} \mathbf{p}^{T} \mathbf{Q}_{\mathbf{q}_{i}} \mathbf{p} = \mathbf{p}^{T} \left(\sum_{i} \mathbf{Q}_{\mathbf{q}_{i}} \right) \mathbf{p} = \mathbf{p}^{T} \mathbf{Q}_{\mathbf{p}} \mathbf{p}$$

 Point that minimizes the error, setting the partial derivative to zero

 $\mathbf{p}^{T}\mathbf{Q}_{\mathbf{p}}\mathbf{p} = a^{2}x^{2} + b^{2}y^{2} + c^{2}z^{2} + 2abxy + 2acxz + 2bczy + 2adx + 2bdy + 2cdy + d^{2} = 0$

$$\begin{cases} \frac{\partial}{\partial x} = a^2x + aby + acz + ad = 0\\ \frac{\partial}{\partial y} = abx + b^2y + bcz + bd = 0\\ \frac{\partial}{\partial z} = acx + bcy + c^2z + cd = 0 \end{cases}$$

Vertex Clustering

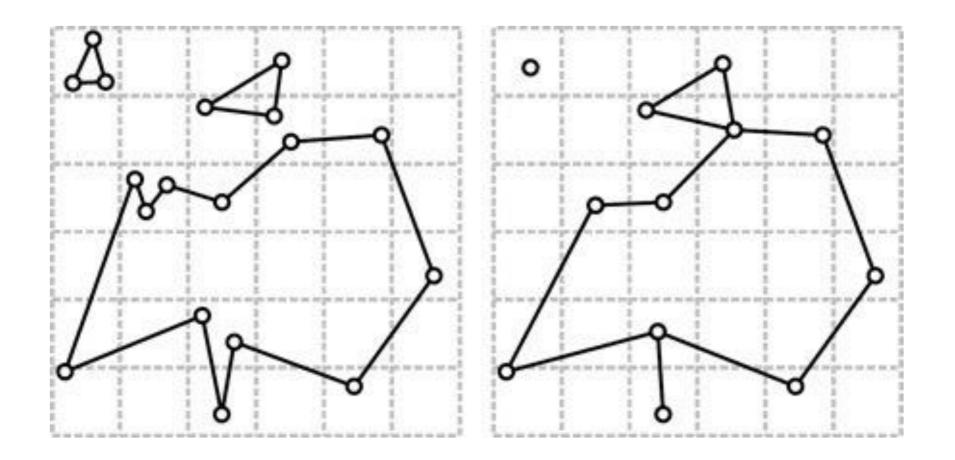
[Rossignac et al., MCG 93]

- Cluster Generation
- Computing a representative
- Mesh generation
 - Clusters $\mathbf{p} \leftrightarrow \{\mathbf{p}_0, \dots, \mathbf{p}_n\}$ $\mathbf{q} \leftrightarrow \{\mathbf{q}_0, \dots, \mathbf{q}_m\}$
 - Connect (\mathbf{p}, \mathbf{q}) if there was an edge $(\mathbf{p}_i, \mathbf{q}_j)$

Vertex Clustering

[Rossignac et al., MCG 93]

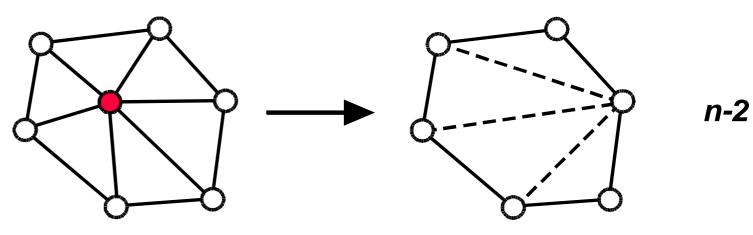
- Does not preserve topology (faces may degenerate to edges, genus may change, non-manifold geometry)
- Approximation depends on grid resolution



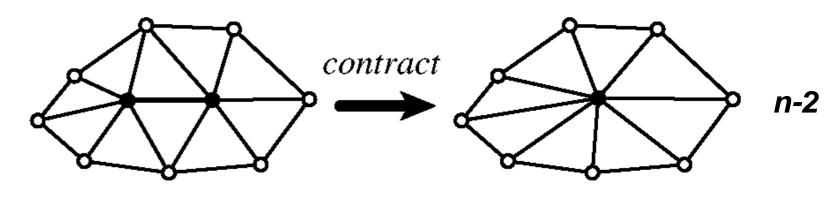
Incremental Decimation

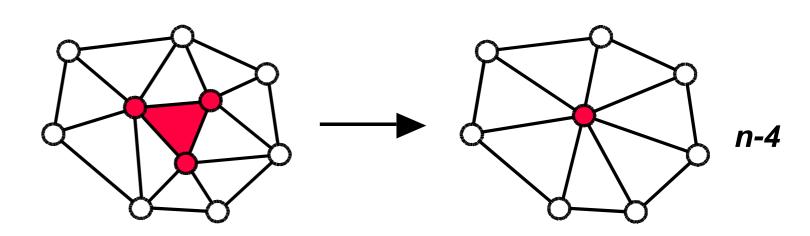
- Based on Local Updates Operations
- All of the methods such that:
 - Simplification proceeds as a sequence of small changes of the mesh (in a greedy way)
 - Each update reduces mesh size and [~monotonically] decreases the approximation precision

Local Operation



- Vertex removal
- Edge collapse
- Triangle collapse





General Setup

Repeat:

Pick a profitable operation

Apply local operator

Until no further reduction possible

Greedy Optimization

For each region

Evaluate quality after simulated operation Put the operation in a queue(quality, region)

Repeat:

Pick best operation from the heap

Execute the operation

Update queue

Until no further reduction possible

Global Error control

For each region

Evaluate quality after simulated operation Put the operation in a queue(quality, region)

Repeat:

Pick best operation from the heap

If introduced error < ϵ

Execute the operation

Update queue

Until no further reduction possible

Quadric Edge Collapse

Initialization

[Garland et al., SIGGRAPH 97]

- Assign each vertex the quadric built from all its incident triangles' planes
- Decimation
 - Collapse the edge $(\mathbf{p}_1, \mathbf{p}_2) \rightarrow \mathbf{p}_3$ where \mathbf{p}_3 is the point the minimize the quadric error using the quadric $\mathbf{Q}_{\mathbf{p}_3} = \mathbf{Q}_{\mathbf{p}_1} + \mathbf{Q}_{\mathbf{p}_2}$
 - The point \mathbf{p}_3 receives the quadric error $\mathbf{Q}_{\mathbf{p}_1} + \mathbf{Q}_{\mathbf{p}_2}$
 - We start to collapse the edge that introduce less approximation in the shape

References

- Liepa, Peter. "Filling holes in meshes." *Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing*. Eurographics Association, 2003.
- Rossignac, Jarek, and Paul Borrel. "Multi-resolution 3D approximations for rendering complex scenes." *Modeling in computer graphics*. Springer Berlin Heidelberg, 1993. 455-465.
- Garland, Michael, and Paul S. Heckbert. "Surface simplification using quadric error metrics." *Proceedings of the 24th annual conference on Computer graphics and interactive techniques*. ACM Press/Addison-Wesley Publishing Co., 1997.