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Triangle Mesh
List of vertices + List of triangle as triple of vertex references 



Mesh Adjacency Relation
FACE-VERTEX
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VERTEX-VERTEX



Surface Cleaning

• Remove scanning artifact

• Remove bad border 

triangle (triangle mesh)

• Remove outliers (point 

cloud) 
Kriegel et al. “LoOP: Local Outliers 

Probability” CIKM 2009



Surface Cleaning

1. Select border triangles

• Border triangle if an edge 

doesn’t have an adjacent 

face (using FF adjacency)

2. Dilate selection (eventually 

multiple times)

• Add triangles that share and 

edge with the previous 

selection (using FF 

adjacency)

3. Remove selection



Surface Cleaning

BEFORE AFTER



Surface Cleaning
• Outliers removal based on local 

density in point cloud

1. Compute density for each point 

using K-nearest point
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Surface Cleaning
• Outliers removal based on local 

density in point cloud

1. Compute density for each point 

using K-nearest point

2. Comparison with the mean 

density of the neighbor point

3. Probability computation with 

error Gaussian function
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Surface Cleaning
• Outliers removal based on local 

density in point cloud

1. Compute density for each point 

using K-nearest point

2. Comparison with the mean 

density of the neighbor point

3. Probability computation with 

error Gaussian function

4. Remove point with probability 

higher than a threshold 

(typically 0.5)
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Surface Cleaning

BEFORE

AFTER



Smoothing
• Filtering out noise (high frequency components ) 

from a mesh as in image

Mark Pauly

Motivation

• Filter out high frequency components for noise 

removal

Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and 

Curvature Flow, SIGGRAPH 99

[Desbrun et al., SIGGRAPH 99] 



Fourier Transform

• Represent a function as a sum of sines and cosines



Fourier Transform

Spatial

Domain

Frequency

Domain

Fourier Transform

Inverse Transform



Filtering in Spatial Domain

• Smooth a signal by convolution with a kernel 

function (finite support kernel)

Image by Wikipedia 

CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=11003835
https://commons.wikimedia.org/w/index.php?curid=11003835


Filtering in Frequency Domain

• Convolution in spatial domain corresponds to 

multiplication in frequency domain

CONVOLUTION

PRODUCT

Spatial Domain

Frequency Domain

FOURIER 

TRANSFORM
INVERSE FOURIER 

TRANSFORM



Filtering on Mesh?

Spatial Domain

Frequency Domain



Diffusion equation

• Heat equation

• The function becomes 

smoother and smoother for 

increasing values of t

t



Laplacian Smoothing

• Discretization in space and time of the diffusion 

equation



Laplacian Smoothing
• How to smooth a curve? Move each vertex in the 

direction of the mean of the neighbors

Finite difference discretization of second derivative = Laplace operator



Laplacian Smoothing
• How to smooth a curve? Move each vertex in the 

direction of the mean of the neighbors



Laplacian Smoothing on Mesh

• Same as for curve. 

1. For each vertex, it computes the displacement vector towards 

the average of its adjacent vertices. 

2. Move each vertex by a fraction of its displacement vector

• Umbrella operator



Laplacian Smoothing on Mesh



Laplacian Smoothing on Mesh

• Problem - Repeated iterations of Laplacian 

smoothing shrinks the mesh

21

Laplacian smoothing issues

Tante!

Il primo problema e' lo SHRINKING



Taubin Smoothing

• For each iteration performs 2 steps:

1. Shrink. Compute the laplacian and moves the vertices 

by λ times the displacement.

2. Inflate. Compute again the laplacian and moves back 

each vertex by μ times the displacement.

[Taubin et al., SIGGRAPH 95] 



Taubin vs Laplacian

Original Noise Added

100 Steps Taubin

100 Steps Laplacian



Laplace Operator -Problems

• Flat surface should stay the same after smoothing



Laplace Operator Problem

• The result should not depend on triangle sizes

Original Laplacian



Laplace Operator

• Back to curves

• The same weight for both the neighbors, although 

one is closer

• The displacement vector should be null



Laplace Operator

• Use a weighted average to compute the 

displacement vector

• Strait curve will be invariant to smoothing



Laplace Operator on Mesh

• Use a weighted average to compute the 

displacement vector

• Scale-dependent Laplace operator

• Laplace-Beltrami operator

[Desbrun et al., SIGGRAPH 99] 



Scale-dependent Laplace 

Operator
• Substitute regular Laplacian with an operator that 

weights vertices by considering involved edges

with



• Weight that depends on the difference of mean 

curvature (cotangent weight)

Laplace-Beltrami Operator

Cotangent weightOriginal 



Umbrella Operator vs Laplace-

Beltrami

ORIGINAL UMBRELLA LAPLACE-BELTRAMI

Moves vertices 

along normal
Tangential drift



Comparison

INITIAL
UMBRELLA

OPERATOR

SCALE-DEPENDET

LAPLACIAN
LAPLACE-BELTRAMI

OPERATOR

[Desbrun et al., SIGGRAPH 99] 



Numerical Integration

• Write update in matrix form

• Laplacian Matrix



Numerical Integration

• Explicit Euler integration: resolve the system by iterative 

substitution requiring small     for stability

• Implicit Euler integration: resolve the following linear 

system (the system is very large but sparse)



• Eigen-decomposition of Laplacian matrix

Spectral Analysis

Eigenvector are 

the natural 

vibrations

Eigenvalues are 

the natural 

frequencies



Spectral Analysis

• Visualization of the eigenvector of the Laplacian 

matrix 

[Vallet et al., Eurographics 2008]



Spectral Analysis

• Smoothing using the Laplacian eigen-decomposition 

using the first m eigenvectors

• The first functions captures the general shape of the 

functions and the next ones correspond to the details

[Vallet et al., Eurographics 2008]



Spectral Analysis

• Geometry filtering

[Vallet et al., Eurographics 2008]



Spectral Analysis

• Eigenvalues of Laplace matrix ≅ frequencies

• Low-pass filter ≅ reconstruction from eigenvectors 

associated with low frequencies

• Decomposition in frequency bands is used for mesh 

deformation

• often too expensive for direct use in practice!

• difficult to compute eigenvalues efficiently

• For smoothing apply diffusion
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