3D from Photographs:
Stereo

Dr Francesco Banterle
francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it

Note: in these slides the optical
center is placed back to simplify
drawing and understanding.

3D from Photographs

Automatic
Matching of Ccl?‘g“ etr.an
mages alibratio
Surface Dense
Reconstruction Matching

3D model

3D from Photographs

Automatic
Matching of Ccfg“ etr.an
mages alibratio
Surface Dense
Reconstruction Matching

3D model

Dense Matching

* Once we have cameras and sparse matching we
can proceed In several ways:

e Stereo.

e Multi-View Stereo.

Stereo

Stereo

* Input: two images, 11 and L, of the same scene
taken from different positions (no pure rotational!)
and their camera matrices (P; and P»):

* Optionally, we can have sparse 3D points or
matched points if this is a SIM input.

* Output: a depth map for each image; i.e., two
depth maps.

Stereo: Example

Qutput

Images from the Middlebury Dataset:
http://vision.middlebury.edu/stereo/data/scenes2005/

Epipolar Geometry

/ Camera 2
M
0

O+—0 G

m;
Camera 1

C1(Is called baseline

Epipolar Geometry

/ Camera 2

‘- (>

Camera 1

C1(Is called baseline

Epipolar Geometry

/ Camera 2
- -

&)

Camera 1

C1(Is called baseline

Epipolar Geometry

/ Camera 2
- -

&)

Camera 1

.......

......

N

| rline
m IS called epipola
(A
C

Epipolar Geometry:
Epipoles

* An epipole is the projection of a C onto the image
plane or the intersection of the baseline with the two
image planes.

* [herefore, it is defined as
e; ~ P; - (4
e, ~ Py -
* Note that, the projection matrices can be viewed as:

P =[Q1lq1] P =|Q2|q2]

Epipolar Geometry:
Epipolar Lines

e The fundamental matrix can be also defined as

F=lelx-Q1-Q3

e and recalling
1=F m; < (hx+ly+13)=0

1=F' -my < (Lix+ly+13) =0

e We have:

m; ~ (Q1-Qy " -my) -t +e
my ~ (Q2- Q7" -my) -t + e

Epipolar Geometry:
Epipolar Lines

e This equation is very important because it implies
that:

* |f we have a point mz In image I, its match, my, Is
located in image I along that line!
* This means that we need to find the match
along a line! 1D search instead of a 2D search
around the whole image!

Epipolar Geometry: Example

Epipolar Geometry: Example 1

Epipolar Geometry: Example 1

Epipolar Geometry: Example 2

Léf’[(I 1)

Epipolar Geometry: Example 2

Ii%ight (1)

Epipolar Geometry: Example 2

Léf’[(I 1)

Epipolar Geometry Example

Epipolar Geometry:
Epipolar Lines

* S0 do we search along that line?
* Not really, it is not very computationally efficient:

* At each check we need to apply bilinear
interpolation and to compute pixel coordinates.

Epipolar Geometry:

|deal Case
M
M =
X

Epipolar Geometry:
|[deal Case

| eft Right

Images from the Middlebury Dataset:
http://vision.middlebury.edu/stereo/data/scenes2005/

Epipolar Geometry:
|[deal Case

| eft Right

Images from the Middlebury Dataset:
http://vision.middlebury.edu/stereo/data/scenes2005/

Epipolar Geometry:
|[deal Case

| eft Right

Images from the Middlebury Dataset:
http://vision.middlebury.edu/stereo/data/scenes2005/

Epipolar Geometry:
The General Case

/ Camera 2
M
0

O+—0 G

m;
Camera 1

Epipolar Geometry:
Rectification

 What do we need to do to transform the general
case into the ideal one?

* \We keep the optical centers where they are.

* We rotate both image planes to go back to the
ideal case.

Epipolar Geometry:
Rectification

% baseline w/

Epipolar Geometry:
Rectification

\ baseline o, /

Epipolar Geometry:
Rectification

* S0 we need to modify P; and P,. Both matrices can
be defined as

Pr=K; - |Ri|—R-Cy
Py =Ky - |Rs| — Ry - Co

e Wwhere

C,=-Q;" - q P; = |Q;|qi]

Epipolar Geometry:
Rectification

* SO we need to compute a new R matrix for both
cameras.

* | et's see the process for the first camera:

Rl — [I‘l I'o rg}

* (Given that the optical centers do not move, we
have as X axis (r1);

- G -G
|C1 — G

I'1

Epipolar Geometry:
Rectification

 The new Y axis (r») is defined as

ro =r; X Iy

* r*3is the old r3. Why” We are still looking at the
same direction.

 The new Z axis is obviously computed as the cross
oroduct of the twos:

's =171 XI9

Epipolar Geometry:
Rectification

* Once we computed the new P’ for a view (i.e., a
new R), we need to compute the transform from P
to P’. We know that:

m~ P -M
m ~P M
e and that:

M=(Q ' m)-t+C
M=((Q) " m') t+C

Epipolar Geometry:

Rectification
C

Epipolar Geometry:
Rectification

Q Q

Epipolar Geometry:
Rectification

Q Q

Epipolar Geometry:
Rectification

Q Q

Epipolar Geometry:
Rectification

Q Q

Epipolar Geometry:
Rectification

Q Q

Epipolar Geometry
Rectification Example

Epipolar Geometry:
Rectification Example

Dense Matching

* For each pixel at coordinate [x, y] in the left/right
image, we extract a patch p: of size nxn.

* Then, we look along the horizontal line at height y In
the other image the patch p» that is closest to p;.

Dense Matching

Dense Matching

Dense Matching

Dense Matching

Extracted
Patch
(Left Image)

Dense Matching

Extracted
Patch
(Left Image)

Dense Matching

Extracted
Patch
(Left Image)

Dense Matching

Extracted
Patch
(Left Image)

Dense Matching

Extracted
Patch
(Left Image)

Dense Matching

Extracted
Patch
(Left Image)

Dense Matching

Extracted
Patch
(Left Image)

Extracted
Patch
(Left Image)

Dense Matching

Dense Matching

Dense Matching

Extracted
Patch
(Left Image)

Dense Matching

« How do we compute if a patch is closer than
another?

SSD(p1,ps) LLle i,9) = pa(i, §)|17

7,1]1

SAD(p1,p2) LL\pl’&] — p2(2,)]

1=1 5=1

* \We are looking for the closest, so for SSD and SAD
the lower the closer.

Dense Matching

 [There are many other metrics such as normalized
Cross correlation, zero mean normalized cross
correlation, etc.

* Jo Improve the matching quality, we can compute
descriptors for each pixel:

 Computationally expensive, typically not done!

Dense Matching

* |In practice, for dense matching, we do not extract
patches in an explicit way.

* \We formalize the problem as an energy
minimization problem:

argm(}nE(xvy7]17]27d)

 |nthe case of SAD, E is defined as:

E(z,y,d LL\IH +i,y+J) — L(z+i+dy+)|

1=1 5=1

Dense Matching

 Note that SAD(p.,p2) YF‘\pl (3,5) — p2(3,5)| and

1=1 5=1

E(z,y,d) = sz r+i,y+j)—Lz+it+dy+))
1=1 j=1

are the same formulation when:
* D1IS extracted at (x, y) In I

* polIs extracted at (xtd, y) In I

Dense Matching

When we minimize:
argmgnE(x,y,Il,]Q,d)

We compute d, which is the . To compute the
, we need to apply:

b-f
d
where b is the baseline and f'is the tfocal length.

z —

This is done for each pixel in the disparity map in order to
obtain a depth map!

Dense Matching eExample

Disparity Map
for the Left Image

-rom previous example the
disparity map Is very noisy!
How can we improve?

Non-Local Constraints:
Unigueness

* For each point in one image, there should be at

maximum one matching point in the other:

Non-Local Constraints:
Unigueness

* For each point in one image, there should be at

maximum one matching point in the other:

Non-Local Constraints:
Unigueness

* For each point in one image, there should be at

maximum one matching point in the other:

M

™
VRN

S~

— |
~——

Non-Local Constraints:
Unigueness

* For each point in one image, there should be at
maximum one matching point in the other:

Non-Local Constraints:
Correct Ordering

* Corresponding points should be in the same order

IN both views.

Non-Local Constraints:
Correct Ordering

* Corresponding points should be in the same order

IN both views.

Non-Local Constraints:
Correct Ordering

* Corresponding points should be in the same order

IN both views.

Non-Local Constraints:
Correct Ordering

* Corresponding points should be in the same order

IN both views.

Non-Local Constraints:
Correct Ordering

* Corresponding points should be in the same order

IN both views.

Non-Local Constraints:
Correct Ordering

* Corresponding points should be in the same order

IN both views.

Non-Local Constraints:
Correct Ordering

* Corresponding points should be in the same order

IN both views.

Non-Local Constraints:
Ordering Falil

Ci

Non-Local Constraints:
Ordering Falil

»/'\

Non-Local Constraints:
Ordering Falil

»/'\

Ci

Non-Local Constraints:
Ordering Falil

Non-Local Constraints:
Ordering Falil

Non-Local Constraints:
Ordering Falil

Non-Local Constraints:
Ordering Falil

Non-Local Constraints:
Smoothness

* We expect that disparity varies smoothly over the
image, and it only greatly changes at edges.

Non-Local Constraints:
Smoothness

 We can easily add a smoothness constraint Es to the
energy to minimize £ obtaining a new energy to minimize
called E;:

Ey(z,y,d) = E(z,y,d) + \Es(z,y,d)

 where A >0 is the smoothing term, the higher the more the
smoothness is enforced:

e Typically, a value between 10% or 20% of the maximum
diSpari’[y, dmax.

e fA=0thisimplies E;=E

Non-Local Constraints:
Smoothness

 The computation of the disparity map follows (as usual) the
scan order; i.e., from left to right and from top to bottom.

e S0 at the current pixel (x, y), we have already computed
the disparity, D, at these previous locations:

° dl :D(X-l,y'l)
e db=D(x,y-1)
o d3:D(x+ 19y_1)

* da=D(x-1,y)

Non-Local Constraints:
Smoothness

* When defining Es, we can enforce that the next
disparity value is similar to one of the previous
computed ones:

1 1
Es(aj?yvd) — §‘D(x_17?/) _dl —|—§|D(£If,y—1) _d‘

Non-Local Constraints:
Smoothness Example

dr = 8
ds =10

Non-Local Constraints:
Smoothness Example

dr = 8
ds =10

Non-Local Constraints:
Smoothness Example

ds =10

Non-Local Constraints:
Smoothness Example

30

P P>

1 1
Ly = §|d2 — (—40)| + 5\614 — (—40)| =
— 058 — (—40)| 4+ 0.5/10 — (—40)| = 49

by =FEs+AEg =3040.2-49 =
=304 0.2-49 =30 + 9.8 = 39.8

Non-Local Constraints:
Smoothness Example

30

-« A

; !"“ }}

”1 B I das
LA) ¥ 4 Y
: Lepntty i < T
Wy 3 [A
“‘_' B\ ...‘
: . .’/‘ ‘ .»:.»‘ | —
/ E 1] ;-A H u d: b .H.-,-. E
y) & | E B |
|) B e ll__l
{ ey = P P
. | ‘ J ' W 1 2
‘ ;
3 | - .
7 | ‘» o »
l ‘ ’ '
A4 ..Q‘ 3 { "
- »

1 1
Ly = §|d2 — (—40)| + 5\614 — (—40)| =
— 058 — (—40)| 4+ 0.5/10 — (—40)| = 49

E,=E,+)\E,=304+02-49 =
d=-40 —30+02-49 =30+9.8 =39.8

Non-Local Constraints:
Smoothness Example

32

#
— - —
P P>

1 1
Es = gld2 — (—16)| + 5ds — (-16)] =
— 0.5/8 — (—16)| + 0.5]10 — (—16)| = 25

E;=E,+ B, =32+02-25=
d=-16 =32+5=37 A=02

Non-Local Constraints:
Smoothness Example

32

;Mf}f

»4«¢&?3ﬁ*k
Lerndty 30 R \ |
' FeTees E r " ‘\,’(\\
; :\.“-{'x
| ‘ ’l ; ‘ '
Ry N WHRES “"" q L= e
2) - li -
’ < L B & 'l p P
{
| | < 'y i, _ s 1 2
| b
T | m)
‘ ! !
. —

1 1
= 5ld2 = (=16)] + Slds — (=16)[=
— 0.5[8 — (—16)| + 0.5/10 — (—16)| = 25

E,=E,+)\E,=32+0.2-25=
—32+5 =237 A=0.2

Non-Local Constraints:
Smoothness Example

(o)
i,

d = - 40

d=-16

Non-Local Constraints:
Smoothness Example

(P)

d = - 40

Et(g) This Is lower than 39.8!

d=-16

Non-Local Constraints:
Smoothness Example

()
o

d = - 40

Et(;) This Is lower than 39.8!

d=-16

Non-Local Constraints:
Smoothness Example

()
o

d = - 40

* D(x,y)=d=-16
Et() This Is lower than 39.8!

d=-16

How do we choose
parameters”

Dense Matching:
Choosing n

Nnput n=>3

rn —> more details but more noisel

Dense Matching:
Choosing n

Input n=21
 Larger n —> less noise but less details!

Dense Matching:
Choosing n

* A way to detect the correct a suitable windows size
'S to start with a size n=3.

e |teratively, we Increase n by one up to a maximum

value, and we choose the window that minimizes
this cost function: 4

C'(n) :E—I—Q.Var(Et) | .

a=1>5 B=T7T v=-2

Dense Matching:
Scanning the Line

We do not have to check the whole line!

If we have sparse matches from feature points, we
have a bound to the maximum disparity, dmax.

We compute dmax @s the maximum disparity that we
have In input feature points.

This means: d € |—dmax, dmax]

Dense Matching:
Scanning the Line without dmax

Dense Matching:
Scanning the Line with dmax

Dense Matching:
Limitations

* Faillure cases:
* No textures; e.g., a white wall.
* Specular surfaces; e.g., a mirror or shiny surface.
* Repeated occlusions; a gate.
* Baseline is too short (e.qg., very close cameras)

implies high error in the disparity. This means
that the two images look the same.

Handling Occlusions

* (Given two views, one view cannot “see” everything
that the other does!

* [n many cases we have to handle occlusions!

* |f we generate two disparity/depth maps, we can
use them to test if they are coherent!

Handling Occlusions:
Example

Handling Occlusions:
Example

| eft Right

Handling Occlusions:
Example

| eft Right

Handling Occlusions:
Example

| eft Right

Handling Occlusions:
Example

| eft Right

Handling Occlusions:
Example

\

| eft Right

Handling Occlusions:
Example

\

| eft Right

Handling Occlusions:
Example

\
\

| eft Right

A ‘
b
| i
]
| i
|
]]
a0 |
1 R, L
{ . _i8
T |
T y
N ¥

Handling Occlusions:
Example

y |
" N = |

‘\ \

l +d1((u1, Vi 1))) ‘ l . 1

eft Right
f @ and @are similar, both disparity values are fine.

Handling Occlusions:
Example

I 77:1" h
BN =

| eft Right

Otherwise we have an occlusion and we set to NULL both values.

|
[

Handling Occlusions: Math

 We computed two (d1 and d») such that:

I(ur,v1) = Io(ug + di(ug,v1),v1)

I>(usg,v) = 11 (ug + do(ug, v2), v2)

e Then the check is defined as (where ¢ is a threshold, e.g., 1-2 pixels)
D = dl (ul, ’Ul)
uh =uy + D
D, — dg(ul + D,Ul)
u’l = U9 + D/

valid if lup —uf| <t

\ occlusion otherwise

Multi-View Stereo

Multl-View Stereo

e Input: or more images of the same scene
taken from different positions (nNo pure rotational
motion!) and their camera matrices:

* We can have sparse 3D points if this is an input
from StM.

* Output: either several depth maps (as many as the
input images) or a densified point cloud. In the past
volumes as well.

Multl-View Stereo

* [here are three main approaches:
 Computing depth-maps from n images:

e The same formulation of Stereo, but more
images!

* Volume Carving.

* Propagating the known 3D information of the
sparse point cloud.

Multi-View Stereo:
Stereo Extension

* Stereo is extended to handle multiple views.

* [hese views need to “see” the object or partially
see it, otherwise they fail.

Multi-View Stereo:
Stereo Extension

f 1 B
<
<
/ »
‘ \
' ~ l

Reference

* Select a reference camera:

e The one that has the most number of shared features with all
other cameras.

Multi-View Stereo:
Stereo Extension

/

\

N NN

Rectified

Rectified

Reference

Multi-View Stereo:
Stereo Extension

* Advantages:

* We have a “single” rectification.

* Disadvantages:

* All views need to “see” the same part of the

object. This limits the whole thing to a group of
cameras/views.

Multi-View Stereo:
Space Carving

e Space carving is an algorithm with a volumetric-
approach:

* We compute the bounding box (BB) of
triangulated 3D points.

* We generate a 3D volume out of BB.

* We carve voxel Iin the volume according to views.

Multi-View Stereo:
Space Carving

V g N
N

Multi-View Stereo:
Space Carving

V gy N
N

Multi-View Stereo:
Space Carving

. The voxel is projected
onto the calibrated camera:
l.e., onto its image-plane

Multi-View Stereo:
Space Carving

~ C For each camera, we fetch the
color from its photo at the
location given by the projected
voxel on its image plane.

Multi-View Stereo:
Space Carving

Multi-View Stereo:
Space Carving

. a b C
O=0=0

Photo-consistency!

A voxel Is photo consistent when all
colors of its projections onto all
image-planes of “visible” cameras
appear to be similar.

Multi-View Stereo:
Space Carving

Multi-View Stereo:
Space Carving

Multi-View Stereo:
Space Carving

Multi-View Stereo:
Space Carving

Multi-View Stereo:
Space Carving

<

07z 70

The voxel Is removed

V oag
N

Multi-View Stereo:
Space Carving

Who sees the problem
here”’

A voxel could be
occluded, so It cannot be
onhoto-consistent!

Multi-View Stereo:
Space Carving

| | Real value
; || Real value

Multi-View Stereo:
Space Carving

Multi-View Stereo:
Space Carving

Multi-View Stereo:
Space Carving

This occludes| |,
we may remove ||
that Is real!

Multi-View Stereo:
Space Carving

 The idea is to iterate for all six directions (back to
front, and front to back) along X, Y, and Z axis.

e For each direction;

* We sweep voxels using a plane, and every time
we move the plane we determine visible views.

Multi-View Stereo:
Space Carving - Visibility

V g N
2

Multi-View Stereo:
Space Carving - Visibility

o~

~

Multi-View Stereo:
Space Carving - Visibility

® hidden
© visible
L I% Direction
For viole

t voxels, we compute
photo-consistency with camera

7 that are visible from the

Multi-View Stereo:
Space Carving - Visibility

V sl
~

Multi-View Stereo:
Space Carving - Visibility

® hidden
© visible
L H% Direction
For violet voxels, we compute
photo-consistency with camera

7 that are visible from the

Multi-View Stereo:
Space Carving - Visibility

7 e
~

Multi-View Stereo:
Space Carving - Visibility

® hidden

© visible
{ @E—» Direction
For viole

t voxels, we compute
photo-consistency with camera

7 that are visible from the

Multi-View Stereo:
Space Carving - Visibility

7 g2 L.
~

Multi-View Stereo:
Space Carving - Visibility

® hidden

© visible

{ @I—» Direction
For viole

t voxels, we compute
photo-consistency with camera

7 that are visible from the

This process needs to be done
again for the other direction and
for Y and Z axes (both direction)!

Multi-View Stereo:
Space Carving

* Once we have removed voxels, which are no
photo-consistent, we run marching cubes to get the
final model!

Multi-View Stereo:
Space Carving Result

Photographs 3D Model

Images courtesy of Kutulakos and Seitz

Multi-View Stereo:
Space Carving

* Advantages:

* Simple and easy to implement.

* Disadvantages:

* |t requires a lot of memory tor high-quality
models.

3D from Photographs

Automatic
Matching of Ccl?‘g“ etr.an
mages alibratio
Surface Dense
Reconstruction Matching

3D model

3D from Photographs

Automatic
Matching of Ccfg“ etr.an
Images allpratio

Surface

Dense

Reconstruction Matching

3D model

3D Reconstruction

* How do we merge all these dense points?
* Marching cubes.

e Poisson reconstruction.

3D Reconstruction

 Marching cubes:
* Advantages:
e |tis fast and easy to implement.
e |t does not require to compute normals.
* Disadvantages:
* |t requires to discretize the space using many voxels!

e Poor results.

3D Reconstruction

* Poisson Reconstruction:
* Advantages:
* |t creates high-quality results.
* |t can close holes.
* Disadvantages:
 We need to compute normals.

e |t requires both memory and time.

that’s all folks!

