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Note: in these slides the optical
center is placed back to simplify
drawing and understanding.
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Dense Matching

* Once we have cameras and sparse matching we
can proceed In several ways:

e Stereo.

e Multi-View Stereo.



Stereo



Stereo

* Input: two images, 11 and L, of the same scene
taken from different positions (no pure rotational!)
and their camera matrices (P; and P»):

* Optionally, we can have sparse 3D points or
matched points if this is a SIM input.

* Output: a depth map for each image; i.e., two
depth maps.



Stereo: Example

Qutput

Images from the Middlebury Dataset:
http://vision.middlebury.edu/stereo/data/scenes2005/
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Epipolar Geometry:
Epipoles

* An epipole is the projection of a C onto the image
plane or the intersection of the baseline with the two
image planes.

* [herefore, it is defined as
e; ~ P; - (4
e, ~ Py -
* Note that, the projection matrices can be viewed as:

P =[Q1lq1] P =|Q2|q2]



Epipolar Geometry:
Epipolar Lines

e The fundamental matrix can be also defined as

F=lelx-Q1-Q3

e and recalling
1=F m; < (hx+ly+13)=0

1=F' -my < (Lix+ly+13) =0

e We have:

m; ~ (Q1-Qy " -my) -t +e
my ~ (Q2- Q7" -my) -t + e



Epipolar Geometry:
Epipolar Lines

e This equation is very important because it implies
that:

* |f we have a point mz In image I, its match, my, Is
located in image I along that line!
* This means that we need to find the match
along a line! 1D search instead of a 2D search
around the whole image!




Epipolar Geometry: Example




Epipolar Geometry: Example 1




Epipolar Geometry: Example 1




Epipolar Geometry: Example 2
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Epipolar Geometry Example




Epipolar Geometry:
Epipolar Lines

* S0 do we search along that line?
* Not really, it is not very computationally efficient:

* At each check we need to apply bilinear
interpolation and to compute pixel coordinates.



Epipolar Geometry:

|deal Case
M
M =
X




Epipolar Geometry:
|[deal Case

| eft Right

Images from the Middlebury Dataset:
http://vision.middlebury.edu/stereo/data/scenes2005/



Epipolar Geometry:
|[deal Case

| eft Right

Images from the Middlebury Dataset:
http://vision.middlebury.edu/stereo/data/scenes2005/



Epipolar Geometry:
|[deal Case

| eft Right

Images from the Middlebury Dataset:
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Epipolar Geometry:
The General Case
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Epipolar Geometry:
Rectification

 What do we need to do to transform the general
case into the ideal one?

* \We keep the optical centers where they are.

* We rotate both image planes to go back to the
ideal case.



Epipolar Geometry:
Rectification
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Epipolar Geometry:
Rectification

* S0 we need to modify P; and P,. Both matrices can
be defined as

Pr=K; - |Ri|—R-Cy
Py =Ky - |Rs| — Ry - Co

e Wwhere

C,=-Q;" - q P; = |Q;|qi]



Epipolar Geometry:
Rectification

* SO we need to compute a new R matrix for both
cameras.

* | et's see the process for the first camera:

Rl — [I‘l I'o rg}

* (Given that the optical centers do not move, we
have as X axis (r1);

- G -G
|C1 — G

I'1



Epipolar Geometry:
Rectification

 The new Y axis (r») is defined as

ro =r; X Iy

* r*3is the old r3. Why” We are still looking at the
same direction.

 The new Z axis is obviously computed as the cross
oroduct of the twos:

's =171 XI9



Epipolar Geometry:
Rectification

* Once we computed the new P’ for a view (i.e., a
new R), we need to compute the transform from P
to P’. We know that:

m~ P -M
m ~P M
e and that:

M=(Q ' m)-t+C
M=((Q) " m') t+C
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Epipolar Geometry
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Epipolar Geometry:
Rectification Example




Dense Matching

* For each pixel at coordinate [x, y] in the left/right
image, we extract a patch p: of size nxn.

* Then, we look along the horizontal line at height y In
the other image the patch p» that is closest to p;.
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Dense Matching

« How do we compute if a patch is closer than
another?

SSD(p1,ps) LLle i,9) = pa(i, §)|17

7,1]1

SAD(p1,p2) LL\pl’&] — p2(2, )]

1=1 5=1

* \We are looking for the closest, so for SSD and SAD
the lower the closer.



Dense Matching

 [There are many other metrics such as normalized
Cross correlation, zero mean normalized cross
correlation, etc.

* Jo Improve the matching quality, we can compute
descriptors for each pixel:

 Computationally expensive, typically not done!



Dense Matching

* |In practice, for dense matching, we do not extract
patches in an explicit way.

* \We formalize the problem as an energy
minimization problem:

argm(}nE(xvy7]17]27d)

 |nthe case of SAD, E is defined as:

E(z,y,d LL\IH +i,y+J) — L(z+i+dy+ )|

1=1 5=1



Dense Matching

 Note that SAD(p.,p2) YF‘\pl (3,5) — p2(3,5)| and

1=1 5=1

E(z,y,d) = sz r+i,y+j)—Lz+it+dy+))
1=1 j=1

are the same formulation when:
* D1IS extracted at (x, y) In I

* polIs extracted at (xtd, y) In I



Dense Matching

When we minimize:
argmgnE(x,y,Il,]Q,d)

We compute d, which is the . To compute the
, we need to apply:

b-f
d
where b is the baseline and f'is the tfocal length.

z —

This is done for each pixel in the disparity map in order to
obtain a depth map!



Dense Matching eExample

Disparity Map
for the Left Image




-rom previous example the
disparity map Is very noisy!
How can we improve?



Non-Local Constraints:
Unigueness

* For each point in one image, there should be at

maximum one matching point in the other:
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Non-Local Constraints:
Unigueness

* For each point in one image, there should be at
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Non-Local Constraints:
Correct Ordering

* Corresponding points should be in the same order

IN both views.
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Non-Local Constraints:
Smoothness

* We expect that disparity varies smoothly over the
image, and it only greatly changes at edges.




Non-Local Constraints:
Smoothness

 We can easily add a smoothness constraint Es to the
energy to minimize £ obtaining a new energy to minimize
called E;:

Ey(z,y,d) = E(z,y,d) + \Es(z,y,d)

 where A >0 is the smoothing term, the higher the more the
smoothness is enforced:

e Typically, a value between 10% or 20% of the maximum
diSpari’[y, dmax.

e fA=0thisimplies E;=E



Non-Local Constraints:
Smoothness

 The computation of the disparity map follows (as usual) the
scan order; i.e., from left to right and from top to bottom.

e S0 at the current pixel (x, y), we have already computed
the disparity, D, at these previous locations:

° dl :D(X-l,y'l)
e db=D(x,y-1)
o d3:D(x+ 19y_1)

* da=D(x-1,y)



Non-Local Constraints:
Smoothness

* When defining Es, we can enforce that the next
disparity value is similar to one of the previous
computed ones:

1 1
Es(aj?yvd) — §‘D(x_17?/) _dl —|—§|D(£If,y—1) _d‘



Non-Local Constraints:
Smoothness Example
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Non-Local Constraints:
Smoothness Example

30

P P>

1 1
Ly = §|d2 — (—40)| + 5\614 — (—40)| =
— 058 — (—40)| 4+ 0.5/10 — (—40)| = 49

by =FEs+AEg =3040.2-49 =
=304 0.2-49 =30 + 9.8 = 39.8




Non-Local Constraints:
Smoothness Example
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Non-Local Constraints:
Smoothness Example

32

#
— - —
P P>

1 1
Es = gld2 — (—16)| + 5ds — (-16)] =
— 0.5/8 — (—16)| + 0.5]10 — (—16)| = 25

E;=E,+ B, =32+02-25=
d=-16 =32+5=37 A=02



Non-Local Constraints:
Smoothness Example
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Non-Local Constraints:
Smoothness Example

()
o

d = - 40

* D(x,y)=d=-16
Et( ) This Is lower than 39.8!

d=-16



How do we choose
parameters”



Dense Matching:
Choosing n

Nnput n=>3

rn —> more details but more noisel



Dense Matching:
Choosing n

Input n=21
 Larger n —> less noise but less details!



Dense Matching:
Choosing n

* A way to detect the correct a suitable windows size
'S to start with a size n=3.

e |teratively, we Increase n by one up to a maximum

value, and we choose the window that minimizes
this cost function: 4

C'(n) :E—I—Q.Var(Et) | .

a=1>5 B=T7T v=-2




Dense Matching:
Scanning the Line

We do not have to check the whole line!

If we have sparse matches from feature points, we
have a bound to the maximum disparity, dmax.

We compute dmax @s the maximum disparity that we
have In input feature points.

This means: d € |—dmax, dmax]



Dense Matching:
Scanning the Line without dmax




Dense Matching:
Scanning the Line with dmax




Dense Matching:
Limitations

* Faillure cases:
* No textures; e.g., a white wall.
* Specular surfaces; e.g., a mirror or shiny surface.
* Repeated occlusions; a gate.
* Baseline is too short (e.qg., very close cameras)

implies high error in the disparity. This means
that the two images look the same.



Handling Occlusions

* (Given two views, one view cannot “see” everything
that the other does!

* [n many cases we have to handle occlusions!

* |f we generate two disparity/depth maps, we can
use them to test if they are coherent!



Handling Occlusions:
Example




Handling Occlusions:
Example

| eft Right



Handling Occlusions:
Example

| eft Right



Handling Occlusions:
Example

| eft Right



Handling Occlusions:
Example

| eft Right



Handling Occlusions:
Example

\

| eft Right



Handling Occlusions:
Example

\

| eft Right



Handling Occlusions:
Example

\
\

| eft Right

A ‘
b
| i
]
| i
|
] ]
a0 |
1 R, L
{ . _i8
T |
T y
N ¥



Handling Occlusions:
Example

y |
" N = |

‘\ \

l +d1((u1, Vi 1)) ) ‘ l . 1

eft Right
f @ and @are similar, both disparity values are fine.




Handling Occlusions:
Example

I 77:1" h
BN =

| eft Right

Otherwise we have an occlusion and we set to NULL both values.

|
[



Handling Occlusions: Math

 We computed two (d1 and d») such that:

I(ur,v1) = Io(ug + di(ug,v1),v1)

I>(usg,v) = 11 (ug + do(ug, v2), v2)

e Then the check is defined as (where ¢ is a threshold, e.g., 1-2 pixels)
D = dl (ul, ’Ul)
uh =uy + D
D, — dg(ul + D,Ul)
u’l = U9 + D/

valid if lup —uf| <t

\ occlusion otherwise



Multi-View Stereo



Multl-View Stereo

e Input: or more images of the same scene
taken from different positions (nNo pure rotational
motion!) and their camera matrices:

* We can have sparse 3D points if this is an input
from StM.

* Output: either several depth maps (as many as the
input images) or a densified point cloud. In the past
volumes as well.



Multl-View Stereo

* [here are three main approaches:
 Computing depth-maps from n images:

e The same formulation of Stereo, but more
images!

* Volume Carving.

* Propagating the known 3D information of the
sparse point cloud.



Multi-View Stereo:
Stereo Extension

* Stereo is extended to handle multiple views.

* [hese views need to “see” the object or partially
see it, otherwise they fail.



Multi-View Stereo:
Stereo Extension
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Reference

* Select a reference camera:

e The one that has the most number of shared features with all
other cameras.



Multi-View Stereo:
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Multi-View Stereo:
Stereo Extension

* Advantages:

* We have a “single” rectification.

* Disadvantages:

* All views need to “see” the same part of the

object. This limits the whole thing to a group of
cameras/views.



Multi-View Stereo:
Space Carving

e Space carving is an algorithm with a volumetric-
approach:

* We compute the bounding box (BB) of
triangulated 3D points.

* We generate a 3D volume out of BB.

* We carve voxel Iin the volume according to views.



Multi-View Stereo:
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Multi-View Stereo:
Space Carving

. The voxel is projected
onto the calibrated camera:
l.e., onto its image-plane



Multi-View Stereo:
Space Carving

~ C For each camera, we fetch the
color from its photo at the
location given by the projected
voxel on its image plane.



Multi-View Stereo:
Space Carving




Multi-View Stereo:
Space Carving
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Photo-consistency!



A voxel Is photo consistent when all
colors of its projections onto all
image-planes of “visible” cameras
appear to be similar.




Multi-View Stereo:
Space Carving
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Multi-View Stereo:
Space Carving
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Multi-View Stereo:
Space Carving




Who sees the problem
here”’



A voxel could be
occluded, so It cannot be
onhoto-consistent!



Multi-View Stereo:
Space Carving
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Multi-View Stereo:
Space Carving




Multi-View Stereo:
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Multi-View Stereo:
Space Carving

This occludes| |,
we may remove ||
that Is real!




Multi-View Stereo:
Space Carving

 The idea is to iterate for all six directions (back to
front, and front to back) along X, Y, and Z axis.

e For each direction;

* We sweep voxels using a plane, and every time
we move the plane we determine visible views.



Multi-View Stereo:
Space Carving - Visibility
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Multi-View Stereo:
Space Carving - Visibility
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This process needs to be done
again for the other direction and
for Y and Z axes (both direction)!



Multi-View Stereo:
Space Carving

* Once we have removed voxels, which are no
photo-consistent, we run marching cubes to get the
final model!



Multi-View Stereo:
Space Carving Result

Photographs 3D Model

Images courtesy of Kutulakos and Seitz



Multi-View Stereo:
Space Carving

* Advantages:

* Simple and easy to implement.

* Disadvantages:

* |t requires a lot of memory tor high-quality
models.
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3D Reconstruction

* How do we merge all these dense points?
* Marching cubes.

e Poisson reconstruction.



3D Reconstruction

 Marching cubes:
* Advantages:
e |tis fast and easy to implement.
e |t does not require to compute normals.
* Disadvantages:
* |t requires to discretize the space using many voxels!

e Poor results.



3D Reconstruction

* Poisson Reconstruction:
* Advantages:
* |t creates high-quality results.
* |t can close holes.
* Disadvantages:
 We need to compute normals.

e |t requires both memory and time.



that’s all folks!



