3D from Photographs:
Structure From Motion

Dr Francesco Banterle
francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it

Note: in these slides the optical
center is placed back to simplify
drawing and understanding.

3D from Photographs

Automatic
Matching of Ccl?‘g“ etr.an
mages alibratio
Surface Dense
Reconstruction Matching

3D model

3D from Photographs

3D model

Automatic
Matching of
Images

Surface
Reconstruction

Camera

Calibration

Dense
Matching

Camera Pose
Calibration

Camera Pose Calibration

* We have seen methods for estimating the intrinsic
matrix K, and the extrinsic matrix G = [R | #] using a
calibration pattern:

« DLT
* /hang's algorithm

* How do we get the camera’s pose, G, without
patterns?

Camera Pose Calibration

* Let's assume that:
* We have K tfor each photograph.

 \We have matches between images.

A Two-Camera
Example

A Two-Camera Example

/ Camera 2
M
0

O+—0 G

m;
Camera 1

A Two-Camera Example:
Epipolar Geometry

/ Camera 2

O+—0 G

Camera 1

C1(Is called baseline

A Two-Camera Example

e | et's assume that we have K; and Ko.

e [et's assume that G is set in the origin and aligned
with the reference frame. This means:

Gl — [[|O] %Pl :Kl'Gl
P, = K5 - |R|t]

Note that we only need to estimate R and ¢!

A Two-Camera Example

e Jo simplity, let's remove K matrices:

Pl=K;'-P =[]0
P,=K;'-P,=[R|t

* Jo points as well:

ﬁllzKl_1°m1

m2:K2_1°m2

A Two-Camera Example

e Jo simplity, let's remove K matrices:

Pl=K;'-P =[]0
P,=K;'-P,=[R|t

* Jo points as well:

Normalized
coordinates

A Two-Camera Example

* (Given the Longuet-Higgins equation, we know that:
m, - F-m; =0

 F (a3x3 matrix) is called the and
it Is defined as:

0 —13 to
—to 1 0

The Fundamental Matrix

e |[f we do not have K1 and K> and apply the Longuet-
Higgins equation, we obtain:

m, - F-m; =0

 where F (a 3x3 matrix) is called the
. This matrix is linked to E as:

F=K,' -E-K;' + E=K] F-K,

The Fundamental Matrix

e F connects the two cameras "geometry” together.

* |f we have a point m; of I; and we multiply it by F,
we obtain a line equation in where its match, mo,
lies in b:

1=F m; < (hx+ly+13)=0

The Fundamental Matrix

F-m; =0_|

4
4
4
4
\ g
. mj
\ 4
\ 4
4

The Fundamental Matrix

* Note that:
mlT ° FT - I1lo — 0
* [herefore, It we have a point m» of I, and we

multiply it by F' T, we obtain a line equation in where
its match, m, lies in I

1=F' -my < (Lix+ly +13) =0

The Fundamental Matrix

| 2
F'my=0 _.-7

O m

The Fundamental Matrix:
A 3D Example

/ Camera 2
M
® @

—o (&
m%

Camera 1 %

The Fundamental Matrix:
A 3D Example

Intersection C1C> Camera 2
and image plane

&)

Camera 1

Fundamental Matrix:
e A 3D Example

2
Camera
ection C1C> /

lanrfgrismage plane

&)

Camera 1

.......

The Essential Matrix:
8-points algorithm

From: R R
m, - F-m; =0

We can define a linear system A -b = 0 as:

A= : b = vec(F)

(m})" @ (my) "

Given enough matches we can solve the system using the SVD.
How many do we need? , as usual the more the
better!

This method is called ,and it can be applied for
computing F as well (we use pixel coordinates instead of
normalized coordinates).

The Essential Matrix

* [The Kronecker product is defined as

_CL1,1 . B a1 n - B

&271°B a2’n°B
AR B =

am,1 -B ... Um . n B

e where 4 1S m>xn matrix, and B IS a rxs matrix.

The Essential Matrix:
Practice

o Jypically, we compute E indirectly by computing F and
then converting it into E :

E=K, F K,
e Why?

 The main reason iIs that we avoid to multiply K times all
coordinates of points:

e computational efficiency.

* reducing accumulation of numerical errors.

The Essential Matrix:
Practice

f we solve the linear system using pixel coordinates, we may
nave because pixel coordinates, (u, V),
nave large values:

e u €[1,w]
e vE|[lAh]

 where h and w are, respectively, the height and width of the
image.

The Essential Matrix:
Practice

* For reducing instabilities, we need to bound values

in the range [—\/5, \/5].

* (Given the input n points m;, we compute:

n n
A 1 A 1
UZ—E U U:—E U; m, = |(v;
T < n -
1=1 1=1

s= =3 Vo =@+ (=)

The Essential Matrix:
Practice

* Finally, we shift and scale all n points using the
following:

 We can now solve the linear system without numerical
instabilities (or reducing them).

* Note that this operation, shift and scale, needs to be
done for estimating a homography as well.

Non-Linear Optimization

* As seen before, we need to refine E using a geometric
error, note that we compute E indirectly so we minimize F.

argminZdﬂ(F .m’, m’)? +d.(F' - -m m?)?
S

. where d, is the distance point-line (F' - m? is a line), and
n is the number of matched points.

 Again we can solve it with the Nelder-Mead method
(fminsearch in MATLAB).

Non-Linear Optimization

* As seen before, we need to refine E using a geometric
error, note that we compute E indirectly so we minimize F.

n
arg minz dr , m’)? +d.(F' - -m}, m})?
S
Thisis a line

. where d, is the distance point-line (F' - m? is a line), and
n is the number of matched points.

 Again we can solve it with the Nelder-Mead method
(fminsearch in MATLAB).

Non-Linear Optimization

* As seen before, we need to refine E using a geometric
error, note that we compute E indirectly so we minimize F.

n
argm}n E dr ,mfé)2 +al77(,mf‘1)2
i=1

This is a line This is a line

. where d, is the distance point-line (F' - m? is a line), and
n is the number of matched points.

 Again we can solve it with the Nelder-Mead method
(fminsearch in MATLAB).

Non-Linear Optimization:
First Term of the Energy

Non-Linear Optimization:
Second Term of the Energy

Now we have E, and
so what?

E Factorization

 Once we have estimated E, we would like estimate
R and ¢ to get the pose of the camera:

 As you may notice we have:
e [f]x=SIs an anti-symmetric matrix.

* R is orthogonal matrix.

E Factorization

* (Given a mxn matrix 4, its SVD decomposition is defined
as:

SVD(A)=U-X-V"*
* where:
 UIs an mxm orthogonal matrix.
e XIS a diagonal mxn matrix.

e J/*is the conjugate transpose of an orthogonal matrix.

E Factorization

« Theorem: A 3x3 matrix is an essential matrix it and only if
two singular values are equal and the third is zero.

e This means that:
SVD(E) = U - diag(1,1,0) - V'

 Note that diag(1,1,0) = W - Z, where Wand Z are
defined as:

0 —1 0 0 1 0
W=1]1 0 0/ Z=|-1 0 0
0 0 1 0 0 0

E Factorization

« Lemma: Given R, a rotation matrix, and U and V,
two orthogonal matrices, we have that:

R =det(U-V').U-R-R'

« NOTE: that R’is still a rotation matrix!

E Factorization

e (Given that:

SVD(E) = U - diag(1,1,0)- V'

* \We can have tour possible factorizations of E such
that £E=S5 " R:

S=U-(+2)-U'

R=UW-VorR=U-W'.yv"'

E Factorization:
The Four Cases

E Factorization:
The Four Cases

Both cameras see
the point. It Is
in front of them

E Factorization:
The Four Cases

Both cameras see Both cameras don't see

the point. Itis the point. It is behind them
N front of them

E Factorization:

The Four Cases

E Factorization:
The Four Cases

L eft camera doesn’t
see the point.
It Is behind them

E Factorization:
The Four Cases

| eft camera doesn’t Left camera doesn'’t
see the point. see the point.
't Is behind them It Is behind them

Which Is the correct
configuration®

2

1

Why??

I'he red pointis seen
oy both cameras!

How do we find 1t?

We need to compute all cases.
Then, we determine the case In
which the majority of 3D points are
in front of both cameras!

Triangulation

Triangulation

* Input: » matched 2D feature points in the two
images and their P matrices (P, and P»).

* Output: » 3D points.

Triangulation:

Pure Translational Motion Case
/ o
) M

<
|
:r—\l\z@H

Triangulation

e \We first fix the frame of reference to one of the two
cameras. Then, we know that;

e SO, we can obtain:

Triangulation:
Pure Rotational Motion Case

7 -

M X
M = |’
2
1
h
m; = |
— 1 —
X

There is no displacement —> The same lines for intersection —> no 3D

Triangulation:
The General Case

/ Camera 2
M
0

O+—0 G

m;
Camera 1

Similar to DLT
but different!

Triangulation: Eigen Method

-
| _ p/-M
P1 u_pTM

5 3

| thoo
Triangulation: Eigen Me

.M
1.
u_ ToPI
pil\/I
2.
U= =T

known!

Triangulation: Eigen Method

known! unknown!

Triangulation: Eigen Method

e This |leads to:

(pl—u-pl)T-M:O
(pQ—U°p1)T'M:O
e (Given that:
_(Pi): U
P = | (p3) m; = |v;
(ph) ' 1

Triangulation: Eigen Method

e \We obtain:

(pl — w1 -p3)"

(P> —v1°P3) | n— o
(p? —u2-p3) "’ B
(P% % P%)T

e For /[cameras, this leads to:

(P% — Uy 'Pé)T
(P% — Uy - P}’))T

(P} —uy -ph) T
(Plz — Uy - Pé)T

Triangulation: Eigen Method

* Again, we solve this linear system using SVD; i.e., the kernel of V-

* Again, we minimized an algebraic error without a geometric
meaning!

* Again, we use this initial solution for a non-linear method that
minimizes a geometric error. Here for each 3D points M, we
minimize:

J T M T . M 2
arg mmij(ut7 p1) + (vj — (pj)T)
-M (p3) " - M

* where [is the number of cameras. [u;, v, 1] is corner in the [-th
camera (i.e., it is “the photograph” of M).

o .

Triangulation: Eigen Method Example

(triangulated) % Camera 2
S .

Camera 1 ’

_ O Projected M(triangulated)
2O O Corner m;

Triangulation: Eigen Method Example

M (real)
(trlangulated) KC mera 2

O Projected M(triangulated)
‘ Corner m;

Camera 1

Triangulation: Eigen Method Example

Camera 1

M (triangulated)

M (real)

°

/CH

NOTE: with the
Geometric
minimization,

we force the green
point to be the same
as the red one.

‘ Projected M (triangulated)
© Corner m;

Structure
from
Vlotion

Structure from Motion

* Input: » matched points (corners computed with
the Harris algorithm) between two images, and K;
and K> for the two cameras.

 Output: » 3D points, and G and Gz (i.e., for each
camera).

Structure from Motion

e [he algorithm is;

e Estimation of E.
e Factorization of £ to obtain G.

* [riangulation of the » matched points using Pi
and P».

So far we have only used
only a two cameras!

Structure from Motion:
Multi-View

 \We compute G for different views using the
previous algorithm.

* We use a view for computing the
different G matrices. For example, we can use the
first image or another criteria.

Structure from Motion:
Multi-View Example

\/\> ObJeCt

Structure from Motion:
Multi-View Example

\/\> ObJeCt

] e

. P
P : @ Reference

Structure from Motion:
Multi-View Example

Object

) Reference

We compute G12

Structure from Motion:
Multi-View Example

> Object
\/\ <7

P

) Reference

We compute Gi3

Structure from Motion:
Multi-View

 Note that we could compute G matrices incrementally. For
the previous example that means:

* First, we compute G2 and Gas.

e Second, we compute absolute G matrices (where the
reference point is the first view). In this simple case, we
need to compute Gz as:

+ G153 =Gy, Gy

* Note that in doing, especially with many cameras, we may
incur in accumulation error that leads to drift.

Structure from Motion:
Drift Example

Obiect v
N /o

; 2 Camera Path
with Drift

Correct
Camera Path

Note that, we need to change the
reference after a while because it
will be not be anymore valid

Structure from Motion:
Invalid Reference example

/]

S

P

) Reference

Structure from Motion:
Invalid Reference example

/ Py
P1is not a valid reference

For P4 because the do not
share features!

At this point we need to
move the reference to have

some shared features; e.g.,
Ps.

/]

N

P

) Reference

Hang on, was It a good
reference the one before”?

Hang on, what can
possibly go wrong?

We are still accumulating error (we
need to change the reference after
a while), and we will drift from the
solution!

Structure from Motion:
Bundle Adjustment

* Jo avoid error accumulation, we minimize in a non-
inear way at the same time both poses estimation
and 3D points generation:

L . INT . M 2 . INT . M[* 2
arg min >4>4<u; (pl.)) + (v; (pQ.))

pam S SV (py) T M (p})T M’

P =K - [Rt]

e where [Is the number of cameras, and »n is the
number of points.

Structure from Motion:
Bundle Adjustment

* Typically, the method is difficult to minimize as a
whole thing. This is because there are many
parameters to minimize.

e A two-step approach:

* First, minimize (or viceversa) all extrinsic
parameters (G) without moditying the 3D points.

* Then, minimize (or viceversa) 3D points
coordinates without modifying G.

Structure from Motion

Structure from Motion:
Example

Structure from Motion:
Example

Structure From Motion:
Multi-View

* To obtain something of interesting:

* we need to feed into the system hundreds of
images.

* we need to manage thousands of features
(corners)!

* Even the two-step approach would struggle a bit.

Structure from Motion:
Multi-View

* o make the problem computational tractable, we can notice this:

1,2,3,4,5,6,7,8, and 9 are points
A,B,C, and D are cameras

the point is seen in a camera

Structure from Motion:
Multi-View

e The idea Is to divide the scene Iinto clusters.
* For each cluster we compute StM.

e \We combine all 3D reconstructions and camera
poses together.

Structure from Motion:
Multi-View

Cluster A Cluster B

Structure from Motion:
Conclusions

* Advantages:

|t requires only photographs/videos: cheap and fast.
 We can recover color information from photographs!

 Disadvantages:

e The output model may be skewed; it is hard to keep two

things going at the same time (3D points and cameras’
DOSES).

 We do not have the scale of the 3D scene:; we need some
reference measures.

Structure from Motion:
Scale

e This scale factor is due to the fact we
do not know the real scale.

* if we took a photograph of:

* 2 object from the
camera.

* 2 object the camera.

Structure from Motion:
Scale Example

Case 1 Case 2

One more thing...

We have some wrong matches!

RANSAC

« Random sample consensus (RANSAC) is an
terative method for estimating the parameters of a
model in a robust way.

 The main idea is to get a subset of the set of

samples and to estimate the model with this
subset:

* We estimate the model using the best subset of
samples!

RANSAC

e Input: a set of n samples S, and a model r.

« Output: parameters, P, for the model ., and the
subset of S that was used to compute P.

RANSAC

- e=4wand S, =Y
e For each Iteration:
e S; c Swhere §;i1s random.

e Estimate P;for z using S;

 Compute the error e; for P;
e If e; <ethen

e e=¢; and S=§;

RANSAC

« e=+4o0 and S, =
e For each Iteration:

« Sic Swhere S;israndom. Note that S never changes!
o Estimate P;tor = using S;

 Compute the error e; for P;

* if e; <ethen

e e=¢; and S=§;

RANSAC: Example

z: a straight line

S;and Sy

RANSAC: Example

z: a straight line

S;and Sy

® O
teration O O @

e = +o0

RANSAC: Example

z: a straight line

S;and Sy

lteration 1
e = +o0

RANSAC: Example

z: a straight line

S;and Sy

lteration 1
e = +o0

RANSAC: Example

z: a straight line

S;and Sy

lteration 1
e = +o0

RANSAC: Example

z: a straight line

S;and Sy

lteration 2
e=10

RANSAC: Example

z: a straight line

S;and Sy

lteration 2
e=10

RANSAC: Example

z: a straight line

S;and Sy

lteration 2
e=10

RANSAC: Example

z: a straight line

S;and Sy

teration 2 O ¢

e=10

RANSAC: Example

z: a straight line

S;and Sy

 Jal
teration 2 O ¢

e=1

and we continue for »
terations...

how many"

RANSAC: lterations

* n has to be large; i.e., we need to have at least one
subset containing only inliers Siatiers:

|Soutliers‘) C) "
P(|S;] = ¢ :1—(1—(1
(18 = r

S; € Sinliers

e \We are interested for P=1.

RANSAC

 When do we need to use it?

» Estimation of the fundamental/essential matrix.

e Estimation of a homography in the general case.
 When we do not need it for:

« DLT and Zhang's algorithm:

e corners are extracted in an accurate way using a
calibration pattern!

RANSAC:
Fundamental Matrix Estimation

* The algorithm is modified a bit:

* \We count the inliers of each set given a threshold:

* tor takes Into account this constraint:
mlT y FT - Iy = 0
e |f we have a set with more inliers of the previous
one It Is accepted.

 \We compute the F using only the inliers!

that’s all folks!

