
3D from Photographs:
Automatic Matching

of Images
Dr Francesco Banterle

francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it

3D model

3D from Photographs
Automatic

Matching of
Images

Camera
Calibration

Dense
Matching

Photographs

Surface
Reconstruction

3D model

3D from Photographs
Automatic

Matching of
Images

Camera
Calibration

Dense
Matching

Photographs

Surface
Reconstruction

The Matching Problem
• We need to find corresponding feature across two

or more views:

The Matching Problem
• Why?

• 3D Reconstruction.

• Image Registration.

• Visual Tracking.

• Object Recognition.

• etc.

The Matching Problem:
Automatic Panorama Generation

Input
Photographs

The Matching Problem:
Automatic Panorama Generation

Input
Photographs

The Matching Problem:
Automatic Panorama Generation

Input
Photographs Panorama

Extraction of Features

Features

• A feature is a piece of the input image that is
relevant for solving a given task.

• Features can be global or local.

• We will focus on local features that are more robust
to occlusions and variations.

Extraction of Local Features

• We can extract different kind of features:

• Flat regions or Blobs

• Edges

• Corners

Harris Corner Detector
• Let’s consider a window, W:

• how do pixels change in
W?

• Let’s compare each pixel
before and after moving W
by (u, v) using the sum of
squared differenced (SSD).

W (u, v)

E(u, v) =
X

x,y2W

✓
I(x+ u, y + v)� I(x, y)

◆2

What a Corners is

Flat Region:
no change

in all directions.

Edge:
no change

along the edge.

Corner:
significant change

in all directions.

Harris Corner Detector:
Small Motion Assumption

• Let’s apply a first-order approximation, which
provides good results for small motions:

I(x+ u, y + v) ⇡ I(x, y) +
@I

@x
u+

@I

@y
v

⇡ I(x, y) +
⇥
Ix Iy

⇤
·

u
v

�

Harris Corner Detector:
Small Motion Assumption

E(u, v) =
X

x,y2W

✓
I(x+ u, y + v)� I(x, y)

◆2

⇡
X

x,y2W

✓
I(x, y) + Ix(x, y)u+ Iy(x, y)v � I(x, y)

◆2

⇡
X

x,y2W

✓
Ix(x, y)u+ Iy(x, y)v

◆2

⇡
X

x,y2W

✓
Ix(x, y)

2u2 + 2Ix(x, y)Iy(x, y)uv + Iy(x, y)
2v2

◆

Harris Corner Detector:
Small Motion Assumption

E(u, v) ⇡
X

x,y2W

✓
Ix(x, y)

2u2 + 2Ix(x, y)Iy(x, y)uv + Iy(x, y)
2v2

◆

⇡ Au2 + 2Buv + Cv2

A =
X

x,y2W

Ix(x, y)
2 B =

X

x,y2W

Ix(x, y)
2Iy(x, y)

2 C =
X

x,y2W

Iy(x, y)
2

Harris Corner Detector:
Small Motion Assumption

• The surface (u, v) can be locally approximate by a
quadratic form:

E(u, v) ⇡ Au2 + 2Buv + Cv2

⇡
⇥
u v

⇤
·

A B
B C

�
·

u
v

�

A =
X

x,y2W

Ix(x, y)
2 B =

X

x,y2W

Ix(x, y)
2Iy(x, y)

2 C =
X

x,y2W

Iy(x, y)
2

Harris Corner Detector:
Small Motion Assumption

• E(u,v) can be rewritten as

E(u, v) ⇡
X

x,y2W

⇥
u v

⇤
·


I2x(x, y) Ix(x, y)Iy(x, y)
Ix(x, y)Iy(x, y) I2y (x, y)

�
·

u
v

�

⇡
⇥
u v

⇤
·M ·


u
v

�

M =
X

x,y2W


I2x(x, y) Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) I2y (x, y)

�

Harris Corner Detector:
Small Motion Assumption

• E(u,v) can be rewritten as

E(u, v) ⇡
X

x,y2W

⇥
u v

⇤
·


I2x(x, y) Ix(x, y)Iy(x, y)
Ix(x, y)Iy(x, y) I2y (x, y)

�
·

u
v

�

⇡
⇥
u v

⇤
·M ·


u
v

�

M =
X

x,y2W


I2x(x, y) Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) I2y (x, y)

�

Ellipse Equation:
E(u, v) = k

Harris Corner Detector:
Second Moment Matrix

• M reveals information about the distribution of
gradients around a pixel.

• The eigenvectors of M identify the directions of
fastest and slowest change.

�
� 1

2
max

�
� 1

2
min

Direction of the fastest change

Direction of
the slowest change

Harris Corner Detector:
Second Moment Matrix

Eigenvalues and eigenvectors of M define shift directions with the smallest
and largest change in E:

• xmax = direction of largest increase in E
• λmax = amount of increase in direction xmax

• xmin = direction of smallest increase in E
• λmin = amount of increase in direction xmin

xmax

xmin

Classification
λ2

λ1

λ2>>λ1

λ1>>λ2

• λ1 and λ2 are large
• λ1 ~ λ2

Corner

Edge

Flat Region

Harris Corner Detector:
Cornerness Measure

• Instead of directly computing the eigenvalues, we
use a measure that determines the “cornerness” of
a pixel (i.e., how close to be a corner is):

• k is an empire constant with values [0.04 0.06].

R = Det(M)� kTr(M)2

Det(M) = �1�2

Tr(M) = �1 + �2

Harris Corner Detector:
Cornerness Measure

Input Image R

Harris Corner Detector:
Pruning Corners

• We have to find pixels with large corner response,
R, i.e., R > T0.

• Typically, T0 in [0,1] depends on the number of
points we want to extract; a default value is 0.01.

Harris Corner Detector:
Thresholding

R R after thresholding

Harris Corner Detector:
Pruning Corners

• At this point, we need to suppress/remove values that
are not maxima.

T0

x

R

Harris Corner Detector:
Pruning Corners

• We set a radius (in pixel) for suppressing non-
maxima; e.g., 5-9.

• We apply to R a maximum filter; it is similar to the
median filter, but it sets the maximum to pixels:

• We obtain Rmax.

• A local pixel is a local maximum if and if:

Rmax(x, y) = R(x, y) ^ R(x, y) > T0

Harris Corner Detector:
Non-Maximal Suppression

Non-Maximal SuppressionR after thresholding

Harris Corner Detector:
Non-Maximal Suppression

Harris Corner Detector:
Non-Maximal Suppression

Harris Corner Detector:
Non-Maximal Suppression

Harris Corner:
Advantages

• Translational invariance:

• Rotation invariance:

• Only derivatives are employed:

• Intensity shift invariance: I’ = I + b

• Intensity scale invariance: I’ = I a

Harris Corner:
Disadvantage

• Not scale invariant!

All points are
classified as edges

It is now
a corner!

The same feature in
different images can have

different size!

The Scale Problem

Near Object Far Object

Scale Invariant:
Stable Corners

x

R

x

R

Original 1/2 scale

Scale Invariant:
Stable Corners

x

R

x

R

Original 1/2 scale

GOOD:
isolated corner

Scale Invariant:
Unstable Corners

x

R

x

R

Original 1/2 scale

Scale Invariant:
Unstable Corners

x

R

x

R

Original 1/2 scale

BAD:
corners may merge!

Scale Invariant:
A Multi-Scale Approach

• Depending on the content of the image:

• We need to detect the scale of corner.

• We need to use its scale to vary the size of the
window W for computing corners!

Scale Invariant:
The Signature Function

• A signature function, s, is a function giving us an
idea of the local content of the image, I, around a
point with coordinates (x, y) at a given scale σ.

• An example of signature function is the Difference
of Gaussians (DoG):

• where G is a Gaussian kernel.

s(I, x, y,�) = [I ⌦G(�)](x, y)� [I ⌦G(� · 2)](x, y)

Scale Invariant:
The Signature Function

-

DoG

σ = 1

σ = 2

Scale Invariant:
The Approach

We need to find the right scale for resizing W for each
image!

Scale Invariant:
The Approach

• The signature function, s, can give us an idea of the
content of the image.

• Therefore, we need to find a maximum point of s for
pixel of an input image!

Scale Invariant:
The Approach

Let’s build s at the red point!

Scale Invariant:
The Approach

This is our start!

s

σ
1 2 4 8

Scale Invariant:
The Approach

σ = 1

s

σ
1 2 4 8

Scale Invariant:
The Approach

σ = 2

s

σ
1 2 4 8

Scale Invariant:
The Approach

σ = 4

s

σ
1 2 4 8

Scale Invariant:
The Approach

σ = 8

s

σ
1 2 4 8

Scale Invariant:
The Approach

s

σ
1 2 4 8

Scale Invariant:
The Approach

Which is σ for which s is the maximum?

s

σ
1 2 4 8

Scale Invariant:
The Approach

It is σ = 4

s

σ
1 2 4 8

Scale Invariant:
The Approach

s

σ
1 2 4 8

s

σ
1 2 4 8

Extraction of Features

• General overview:

• Computation of the scale for each pixel using the
sigma value at which we have the maximum
value of the signature function.

• Computation of the Harris Corner using the scale
to increase the size of the local window.

Feature Descriptors

Feature Descriptors
• Once we found our features (i.e., corners), we need

to describe in a meaningful and possibly unique
way.

• Why?

• We want compare corners between images in
order to find correspondences between
images.

Feature Descriptors

A patch, P, is a sub-image
centered in a given point (u, v).

Feature Descriptors

A patch, P, is a sub-image
centered in a given point (u, v).

Feature Descriptors
• There are many local features descriptors in

literature:

• BRIEF/ORB descriptor.

• SIFT descriptor.

• SURF descriptor.

• etc.

Feature Descriptors

• Good properties that we want are invariance to:

• Illumination changes.

• Rotation.

BRIEF Descriptor

• The descriptor creates a vector of n binary values:

• For efficiency, it is encoded as a number:

BRIEF(P) = b = [0, 1, 0, 0, . . . , 1]>

nb =
nX

I=1

2i�1bi

BRIEF Descriptor
• Given a patch, P, of size S⨉S an element of b is

defined as

• where pi and qi are the coordinates (x, y) of two
random points in P.

bi(qi,pi) =

(
1 if P (pi) < P (qi),

0 otherwise
<latexit sha1_base64="wxVQYpskIuM+GAhTQVc1s4LLhls=">AAACc3icbVFNT9tAEF27QMF8NG0PPdDDQgClEo3sqlJbqUiIXnoMEgGkOLLWm3GyYr02u+O2keVf0H/XGz+DC2fWian4GmmlN2/ezOzMxLkUBn3/ynFfLCwuvVxe8VbX1jdetV6/OTVZoTn0eSYzfR4zA1Io6KNACee5BpbGEs7iix91/OwXaCMydYLTHIYpGyuRCM7QUlHrbxyJTpgynMRJeVlFYv/Oya3zgR54YQxjoUpum5jKC+geDRH+YCkSWtFe56H8+z3mcsbMxftVGHr+/9wMJ6B/CwOVF4IaNcWjVtvv+jOjT0HQgDZprBe1/oWjjBcpKOSSGTMI/ByHJdMouKxrFwZyxi/YGAYWKpaCGZazpVV01zIjmmTaPoV0xt7PKFlqzDSNrbIeyDyO1eRzsUGByddhKVReICg+b5QUkmJG6wvQkdDAUU4tYFwL+1fKJ0wzjvZOnl1C8Hjkp6D/qfut6x9/bh8eNdtYJptkm3RIQL6QQ/KT9EifcHLtvHOos+XcuO/dbXdnLnWdJucteWDux1vsBL0+</latexit><latexit sha1_base64="wxVQYpskIuM+GAhTQVc1s4LLhls=">AAACc3icbVFNT9tAEF27QMF8NG0PPdDDQgClEo3sqlJbqUiIXnoMEgGkOLLWm3GyYr02u+O2keVf0H/XGz+DC2fWian4GmmlN2/ezOzMxLkUBn3/ynFfLCwuvVxe8VbX1jdetV6/OTVZoTn0eSYzfR4zA1Io6KNACee5BpbGEs7iix91/OwXaCMydYLTHIYpGyuRCM7QUlHrbxyJTpgynMRJeVlFYv/Oya3zgR54YQxjoUpum5jKC+geDRH+YCkSWtFe56H8+z3mcsbMxftVGHr+/9wMJ6B/CwOVF4IaNcWjVtvv+jOjT0HQgDZprBe1/oWjjBcpKOSSGTMI/ByHJdMouKxrFwZyxi/YGAYWKpaCGZazpVV01zIjmmTaPoV0xt7PKFlqzDSNrbIeyDyO1eRzsUGByddhKVReICg+b5QUkmJG6wvQkdDAUU4tYFwL+1fKJ0wzjvZOnl1C8Hjkp6D/qfut6x9/bh8eNdtYJptkm3RIQL6QQ/KT9EifcHLtvHOos+XcuO/dbXdnLnWdJucteWDux1vsBL0+</latexit><latexit sha1_base64="wxVQYpskIuM+GAhTQVc1s4LLhls=">AAACc3icbVFNT9tAEF27QMF8NG0PPdDDQgClEo3sqlJbqUiIXnoMEgGkOLLWm3GyYr02u+O2keVf0H/XGz+DC2fWian4GmmlN2/ezOzMxLkUBn3/ynFfLCwuvVxe8VbX1jdetV6/OTVZoTn0eSYzfR4zA1Io6KNACee5BpbGEs7iix91/OwXaCMydYLTHIYpGyuRCM7QUlHrbxyJTpgynMRJeVlFYv/Oya3zgR54YQxjoUpum5jKC+geDRH+YCkSWtFe56H8+z3mcsbMxftVGHr+/9wMJ6B/CwOVF4IaNcWjVtvv+jOjT0HQgDZprBe1/oWjjBcpKOSSGTMI/ByHJdMouKxrFwZyxi/YGAYWKpaCGZazpVV01zIjmmTaPoV0xt7PKFlqzDSNrbIeyDyO1eRzsUGByddhKVReICg+b5QUkmJG6wvQkdDAUU4tYFwL+1fKJ0wzjvZOnl1C8Hjkp6D/qfut6x9/bh8eNdtYJptkm3RIQL6QQ/KT9EifcHLtvHOos+XcuO/dbXdnLnWdJucteWDux1vsBL0+</latexit>

BRIEF Descriptor: Example

pi

qi

bi = 0

BRIEF Descriptor: Example

qi

pi

bi = 1

BRIEF Descriptor: Test
• Let’s say we have two descriptor b1 and b2. How do we

check if they are describing the same corner?

• We count the number of different bits in the two vectors
(Hamming distance):

• Higher the closer:

• This is a very computationally efficient distance
function.

DH(b1,b2) =
nX

i=1

¬xor(b1
i
, b2

i
)

BRIEF Descriptor:
Evil Details

• Optimal n is 256; from experiments testing different
lengths: 16, 32, 64, 128, 256, and 512.

• Points distribution:

• Uniform distribution in P.

•

• Points are pre-computed generating a set:

(pi,qi) ⇠ i.i.d. Gaussian

✓
0,

S2

25

◆

A =


p0, p1, . . . pn

q0, q1, . . . qn

�

BRIEF Descriptor
• Advantages:

• Computationally fast.

• Invariant to illumination changes.

• Compact!

• Patent free.

• Disadvantage:

• Rotation is an issue!

BRIEF Descriptor
• Advantages:

• Computationally fast.

• Invariant to illumination changes.

• Compact!

• Patent free.

• Disadvantage:

• Rotation is an issue!

BRIEF Descriptor
• Advantages:

• Computationally fast.

• Invariant to illumination changes.

• Compact!

• Patent free.

• Disadvantage:

• Rotation is an issue!

BRIEF Descriptor
• Advantages:

• Computationally fast.

• Invariant to illumination changes.

• Compact!

• Patent free.

• Disadvantage:

• Rotation is an issue!

ORB Descriptor

• The descriptor is a modified version of BRIEF and it
can handle rotations!

• The first step of the algorithm is to compute the
orientation of the current patch P.

ORB Descriptor:
Patch Orientation

• We compute the patch orientation using Rosin
moments of a patch:

• From this, we define the centroid, C, as

• Now, we can create a vector from corner’s center,
O, to the centroid, C.

C =

✓
m1,0

m0,0
,
m0,1

m0,0

◆

ma,b =
X

x,y2P

xaybP (x, y)

<latexit sha1_base64="l567ytJG5k37le57R4xH6xgiAIU=">AAACEHicbVDLSgMxFM34rPVVdekmWAoVSpmKoC6EohuXIzi20JkOmTRtQ5PMkGSkw9BfcOOvuHGh4talO//G9LHQ1gMXTs65l9x7wphRpW3721paXlldW89t5De3tnd2C3v79ypKJCYujlgkmyFShFFBXE01I81YEsRDRhrh4HrsNx6IVDQSdzqNic9RT9AuxUgbKSiUeZChSjiCl9BTiXkMKyn0qIDOCA7bKG2H0Ckb7TgoFO2qPQFcJLUZKYIZnKDw5XUinHAiNGZIqVbNjrWfIakpZmSU9xJFYoQHqEdahgrEifKzyUUjWDJKB3YjaUpoOFF/T2SIK5Vys3eJI91X895Y/M9rJbp77mdUxIkmAk8/6iYM6giO44EdKgnWLDUEYUnNrhD3kURYmxDzJoTa/MmLxD2pXlTt29Ni/WqWRg4cgiNQBjVwBurgBjjABRg8gmfwCt6sJ+vFerc+pq1L1mzmAPyB9fkDQMublA==</latexit><latexit sha1_base64="l567ytJG5k37le57R4xH6xgiAIU=">AAACEHicbVDLSgMxFM34rPVVdekmWAoVSpmKoC6EohuXIzi20JkOmTRtQ5PMkGSkw9BfcOOvuHGh4talO//G9LHQ1gMXTs65l9x7wphRpW3721paXlldW89t5De3tnd2C3v79ypKJCYujlgkmyFShFFBXE01I81YEsRDRhrh4HrsNx6IVDQSdzqNic9RT9AuxUgbKSiUeZChSjiCl9BTiXkMKyn0qIDOCA7bKG2H0Ckb7TgoFO2qPQFcJLUZKYIZnKDw5XUinHAiNGZIqVbNjrWfIakpZmSU9xJFYoQHqEdahgrEifKzyUUjWDJKB3YjaUpoOFF/T2SIK5Vys3eJI91X895Y/M9rJbp77mdUxIkmAk8/6iYM6giO44EdKgnWLDUEYUnNrhD3kURYmxDzJoTa/MmLxD2pXlTt29Ni/WqWRg4cgiNQBjVwBurgBjjABRg8gmfwCt6sJ+vFerc+pq1L1mzmAPyB9fkDQMublA==</latexit><latexit sha1_base64="l567ytJG5k37le57R4xH6xgiAIU=">AAACEHicbVDLSgMxFM34rPVVdekmWAoVSpmKoC6EohuXIzi20JkOmTRtQ5PMkGSkw9BfcOOvuHGh4talO//G9LHQ1gMXTs65l9x7wphRpW3721paXlldW89t5De3tnd2C3v79ypKJCYujlgkmyFShFFBXE01I81YEsRDRhrh4HrsNx6IVDQSdzqNic9RT9AuxUgbKSiUeZChSjiCl9BTiXkMKyn0qIDOCA7bKG2H0Ckb7TgoFO2qPQFcJLUZKYIZnKDw5XUinHAiNGZIqVbNjrWfIakpZmSU9xJFYoQHqEdahgrEifKzyUUjWDJKB3YjaUpoOFF/T2SIK5Vys3eJI91X895Y/M9rJbp77mdUxIkmAk8/6iYM6giO44EdKgnWLDUEYUnNrhD3kURYmxDzJoTa/MmLxD2pXlTt29Ni/WqWRg4cgiNQBjVwBurgBjjABRg8gmfwCt6sJ+vFerc+pq1L1mzmAPyB9fkDQMublA==</latexit>

ORB Descriptor:
Patch Orientation

O

C

~OC

ORB Descriptor:
Patch Orientation

• From this vector, the orientation of the patch can be
computed simply as

• From this, we can rotate points stored in A as

• where R𝜃 is a 2D rotation matrix.

✓ = atan2(m0,1,m1,0)

A✓ = R✓ ·A

ORB Descriptor

ORB Descriptor
• Advantages:

• Computationally fast.

• Invariant to illumination changes.

• Compact!

• Invariant to rotation.

• Patent free.

• Disadvantage:

• Not robust as SIFT.

SIFT Descriptor

• It is the state-of-the-art descriptor.

• It was introduced in 1999, but it is still the king.

SIFT Descriptor:
Patch Orientation

• The first step is to compute the orientation of P.

• We compute the horizontal (Px) and vertical (Py)
gradients of the P.

• For each pixel at coordinates (i, j) in the patch we
compute its orientation and magnitude:

m(i, j) =
q

Px(i, j)2 + Py(i, j)2
<latexit sha1_base64="tasnvtKJ6CWatGPMUykmsI6J03s=">AAACDnicbZDLSsNAFIYn9VbrLerSzWBRKkpJiqAuhKIblxGMLbQxTKaTduzk4sxEDKFv4MZXceNCxa1rd76NSZqFtv4w8PGfczhzfidkVEhN+1ZKM7Nz8wvlxcrS8srqmrq+cS2CiGNi4oAFvO0gQRj1iSmpZKQdcoI8h5GWMzzP6q17wgUN/CsZh8TyUN+nLsVIppat7no1enC7B09hV9xxmRj2Q27cNPYNOy5wVLHVqlbXcsFp0AuogkKGrX51ewGOPOJLzJAQHV0LpZUgLilmZFTpRoKECA9Rn3RS9JFHhJXk94zgTur0oBvw9PkS5u7viQR5QsSek3Z6SA7EZC0z/6t1IukeWwn1w0gSH48XuRGDMoBZOLBHOcGSxSkgzGn6V4gHiCMs0wizEPTJk6fBbNRP6trlYbV5VqRRBltgG9SADo5AE1wAA5gAg0fwDF7Bm/KkvCjvyse4taQUM5vgj5TPH9x7mZY=</latexit><latexit sha1_base64="tasnvtKJ6CWatGPMUykmsI6J03s=">AAACDnicbZDLSsNAFIYn9VbrLerSzWBRKkpJiqAuhKIblxGMLbQxTKaTduzk4sxEDKFv4MZXceNCxa1rd76NSZqFtv4w8PGfczhzfidkVEhN+1ZKM7Nz8wvlxcrS8srqmrq+cS2CiGNi4oAFvO0gQRj1iSmpZKQdcoI8h5GWMzzP6q17wgUN/CsZh8TyUN+nLsVIppat7no1enC7B09hV9xxmRj2Q27cNPYNOy5wVLHVqlbXcsFp0AuogkKGrX51ewGOPOJLzJAQHV0LpZUgLilmZFTpRoKECA9Rn3RS9JFHhJXk94zgTur0oBvw9PkS5u7viQR5QsSek3Z6SA7EZC0z/6t1IukeWwn1w0gSH48XuRGDMoBZOLBHOcGSxSkgzGn6V4gHiCMs0wizEPTJk6fBbNRP6trlYbV5VqRRBltgG9SADo5AE1wAA5gAg0fwDF7Bm/KkvCjvyse4taQUM5vgj5TPH9x7mZY=</latexit><latexit sha1_base64="tasnvtKJ6CWatGPMUykmsI6J03s=">AAACDnicbZDLSsNAFIYn9VbrLerSzWBRKkpJiqAuhKIblxGMLbQxTKaTduzk4sxEDKFv4MZXceNCxa1rd76NSZqFtv4w8PGfczhzfidkVEhN+1ZKM7Nz8wvlxcrS8srqmrq+cS2CiGNi4oAFvO0gQRj1iSmpZKQdcoI8h5GWMzzP6q17wgUN/CsZh8TyUN+nLsVIppat7no1enC7B09hV9xxmRj2Q27cNPYNOy5wVLHVqlbXcsFp0AuogkKGrX51ewGOPOJLzJAQHV0LpZUgLilmZFTpRoKECA9Rn3RS9JFHhJXk94zgTur0oBvw9PkS5u7viQR5QsSek3Z6SA7EZC0z/6t1IukeWwn1w0gSH48XuRGDMoBZOLBHOcGSxSkgzGn6V4gHiCMs0wizEPTJk6fBbNRP6trlYbV5VqRRBltgG9SADo5AE1wAA5gAg0fwDF7Bm/KkvCjvyse4taQUM5vgj5TPH9x7mZY=</latexit>

✓(i, j) = atan2

✓
Py(i, j), Px(i, j)

◆

<latexit sha1_base64="Fopl2WiU0PzBz7xmdnpF3Q/j4+A=">AAACJHicbVBNSyNBFOxx3VWzX7Pr0UtjWIggYRIWVHBB1ovHCMYEMiG86bwkvfb0DN1vJGHIn9nL/pW9eDDiwYu/xc4kB40WNBRV9Xj9KkqVtBQED97au/X3HzY2t0ofP33+8tX/9v3SJpkR2BSJSkw7AotKamySJIXt1CDEkcJWdHU691vXaKxM9AVNUuzGMNRyIAWQk3r+cUgjJKjI/T97/BcPCceUA4GuT8NIDoeqwhu9SWHvOzZeBAvL7PX8clANCvDXpLYkZbZEo+fPwn4ishg1CQXWdmpBSt0cDEmhcFoKM4spiCsYYsdRDTHabl5cOeU/nNLng8S4p4kX6vOJHGJrJ3HkkjHQyK56c/Etr5PR4LCbS51mhFosFg0yxSnh88p4XxoUpCaOgDDS/ZWLERgQ5IotuRJqqye/Js169aganP8sn/xetrHJdtguq7AaO2An7Iw1WJMJ9pf9Z7ds5v3zbrw7734RXfOWM9vsBbzHJ+Juopg=</latexit><latexit sha1_base64="Fopl2WiU0PzBz7xmdnpF3Q/j4+A=">AAACJHicbVBNSyNBFOxx3VWzX7Pr0UtjWIggYRIWVHBB1ovHCMYEMiG86bwkvfb0DN1vJGHIn9nL/pW9eDDiwYu/xc4kB40WNBRV9Xj9KkqVtBQED97au/X3HzY2t0ofP33+8tX/9v3SJpkR2BSJSkw7AotKamySJIXt1CDEkcJWdHU691vXaKxM9AVNUuzGMNRyIAWQk3r+cUgjJKjI/T97/BcPCceUA4GuT8NIDoeqwhu9SWHvOzZeBAvL7PX8clANCvDXpLYkZbZEo+fPwn4ishg1CQXWdmpBSt0cDEmhcFoKM4spiCsYYsdRDTHabl5cOeU/nNLng8S4p4kX6vOJHGJrJ3HkkjHQyK56c/Etr5PR4LCbS51mhFosFg0yxSnh88p4XxoUpCaOgDDS/ZWLERgQ5IotuRJqqye/Js169aganP8sn/xetrHJdtguq7AaO2An7Iw1WJMJ9pf9Z7ds5v3zbrw7734RXfOWM9vsBbzHJ+Juopg=</latexit><latexit sha1_base64="Fopl2WiU0PzBz7xmdnpF3Q/j4+A=">AAACJHicbVBNSyNBFOxx3VWzX7Pr0UtjWIggYRIWVHBB1ovHCMYEMiG86bwkvfb0DN1vJGHIn9nL/pW9eDDiwYu/xc4kB40WNBRV9Xj9KkqVtBQED97au/X3HzY2t0ofP33+8tX/9v3SJpkR2BSJSkw7AotKamySJIXt1CDEkcJWdHU691vXaKxM9AVNUuzGMNRyIAWQk3r+cUgjJKjI/T97/BcPCceUA4GuT8NIDoeqwhu9SWHvOzZeBAvL7PX8clANCvDXpLYkZbZEo+fPwn4ishg1CQXWdmpBSt0cDEmhcFoKM4spiCsYYsdRDTHabl5cOeU/nNLng8S4p4kX6vOJHGJrJ3HkkjHQyK56c/Etr5PR4LCbS51mhFosFg0yxSnh88p4XxoUpCaOgDDS/ZWLERgQ5IotuRJqqye/Js169aganP8sn/xetrHJdtguq7AaO2An7Iw1WJMJ9pf9Z7ds5v3zbrw7734RXfOWM9vsBbzHJ+Juopg=</latexit>

SIFT Descriptor:
Patch Orientation

• A histogram, H, of directions (18 bins) is created for each
orientation taking into account magnitude.

• Let’s say we have a gradient with m = 10 and θ = 45°. How
do we insert it in the histogram H?

• First, we compute the index of the bin to update:

• Then, we update H as

• We repeat this process for all gradients in the patch!

H(i) = H(i) + 10

i =

�
45

20

⌫
= 2

SIFT Descriptor:
Patch Orientation

• Finally, we get this (a toy example with 8 bins!):

• The patch orientation, θ, is given by the highest peak:

• If we have two equal peaks, we take the as winner the first
one in histogram.

SIFT Descriptor:
Patch Orientation

• Finally, we get this (a toy example with 8 bins!):

• The patch orientation, θ, is given by the highest peak:

• If we have two equal peaks, we take the as winner the first
one in histogram.

SIFT Descriptor
• Once we have the θ, we rotate all gradients in the

patch using θ.

• This ensures to be rotation invariant!

• At this point, we divide the patch into 4x4 blocks.
For each block, we compute a histogram of
directions.

• The final SIFT descriptor is the concatenation
(flattening) of all these histograms.

SIFT Descriptor: Example
Dividing the Patch into 2x2 Blocks

Note: when we compute gradients, we rotate them
using the computed orientation!

Image Gradients Keypoint descriptor

SIFT Descriptor: Test
• We test the differences as distance between

histograms:

• Lower the closer:

• This is the opposite compared to BRIEF/ORB.

D2(h
1,h2) =

vuut
nX

i=1

(h1
i � h2

i)
2

SIFT Descriptor
• Advantages:

• Invariant to illumination changes.

• Invariant to rotation.

• Disadvantages:

• Slower than BRIEF/ORB.

• More memory than binary methods.

• Patented!

Matching Images

Matching
• Input: two descriptor lists (with different lengths),

desc1 and desc2, respectively of image I1 and I2.

• Output: two arrays with indices of matches for
each list.

• For desc1:

• For desc2:

m1 = [10, 23, . . . , 1]>

m2 = [100, 4, . . . , 2]>

Matching: Example
• Let’s say we have 5 descriptors in desc1

• Let’s say we have 7 descriptors in desc2

• Output:

• m1 = [3, 5, 6, 7, 1]

• m2 = [2, 3, 4, 5, 1, 1, 3]

Matching: Example

• m1 = [3, 5, 6, 7, 1]

• This means that the 1st descriptor in desc1 is matched with the 3rd in desc2.

• This means that the 2nd descriptor in desc1 is matched with the 5th in desc2.

• This means that the 3rd descriptor in desc1 is matched with the 6th in desc2.

• This means that the 4th descriptor in desc1 is matched with the 7th in desc2.

• This means that the 5th descriptor in desc1 is matched with the 1st in desc2.

Matching: Example
• m2 = [2, 3, 4, 5, 1, 1, 3]

• This means that the 1st descriptor in desc2 is matched with the 2nd in desc1.

• This means that the 2nd descriptor in desc2 is matched with the 3rd in desc1.

• This means that the 3rd descriptor in desc2 is matched with the 4th in desc1.

• This means that the 4th descriptor in desc2 is matched with the 5th in desc1.

• This means that the 5th descriptor in desc2 is matched with the 1st in desc1.

• This means that the 6th descriptor in desc2 is matched with the 1st in desc1.

• This means that the 7th descriptor in desc2 is matched with the 3rd in desc1.

Matching:
Brute Force Algorithm

• A simple method to find a matched descriptor in
desc2 for each descriptor in desc1:

• For each descriptor d1,i in desc1 to test all
descriptors desc2 and to keep as matched the
closest (in terms of distance).

Matching:
Brute Force Algorithm

For each descriptor d1,i in desc1:

matched = -1;

dist_matched = BOTTOM;

For each descriptor d2, j in desc2:

if Closer(D(d1,i , d2, j), dist_matched)

matched = j;

dist_matched = D(di , di);

endif

Matching:
Brute Force Algorithm

For each descriptor d1,i in desc1:

matched = -1;

dist_matched = BOTTOM;

For each descriptor d2, j in desc2:

if Closer(D(d1,i , d2, j), dist_matched)

matched = j;

dist_matched = D(di , di);

endif

Matching:
Brute Force Algorithm

For each descriptor d1,i in desc1:

matched = -1;

dist_matched = BOTTOM;

For each descriptor d2, j in desc2:

if Closer(D(d1,i , d2, j), dist_matched)

matched = j;

dist_matched = D(di , di);

endif

BOTTOM = +Inf for SIFT
BOTTOM = 0 for BRIEF/ORB

Matching:
Brute Force Algorithm

• Advantage:

• It is exhaustive and finds the best solution!

• Disadvantage:

• This method is very slow:

• Let’s say we have n descriptors in desc2 and n
in desc2. In the worst case, we need to
compare descriptors n2/2.

Matching:
Improving Efficiency

• How can we improve (approximating results)?

• Hashing:

• We create k bucket.

• Each descriptor d2,i of I2 s assigned to a bucket using a function f ,
called hash function. This is defined as:

f: descriptor —> [1, k] (positive integer numbers!)

• This means that f cover generates a number in [1, k] given a
descriptor.

• For example, an f for BRIEF/ORB, where the descriptor is a 256-bit
number, is the modulo operation.

Matching:
Improving Efficiency

1 2 k…

…

f

Matching:
Improving Efficiency

1 2 k…

…

desc1

f

Matching:
Improving Efficiency

1 2 k…

…
desc1

f

Matching:
Improving Efficiency

1 2 k…

…

desc2

f

desc1

Matching:
Improving Efficiency

1 2 k…

…

f

desc1
desc2

Matching:
Improving Efficiency

1 2 k…

…

desc3

f

desc1
desc2

Matching:
Improving Efficiency

1 2 k…

…
desc3

f

desc1
desc2

etc.

Matching:
Improving Efficiency

• Now, we have all descriptors of I2 into buckets.

• To find a match for a descriptor d1,i of I1, we apply f
to d1,i. In this way, we obtain a bucket number, let’s
call it T.

• We run the brute force method for T.

Matching:
Improving Efficiency

• Advantages:

• It is faster, we run the brute force method for a subset
of descriptors.

• Disadvantages:

• It is not exact, it is approximate; i.e., we test only a
sub-set of descriptors.

• If f is not well crafted, we may have distant
descriptors in the same bucket.

Matching: Example

Matching

• Once we have know matches between images, we
can understand which images are near each
others!

• This is important for stable algorithms for
triangulation of points and determining cameras’
poses!

that’s all folks!

