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The Matching Problem
• We need to find corresponding feature across two 

or more views: 



The Matching Problem
• Why? 

• 3D Reconstruction. 

• Image Registration. 

• Visual Tracking. 

• Object Recognition. 

• etc.



The Matching Problem: 
Automatic Panorama Generation

Input 
Photographs
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Extraction of Features



Features

• A feature is a piece of the input image that is 
relevant for solving a given task.  

• Features can be global or local. 

• We will focus on local features that are more robust 
to occlusions and variations.



Extraction of Local Features

• We can extract different kind of features: 

• Flat regions or Blobs 

• Edges 

• Corners



Harris Corner Detector
• Let’s consider a window, W: 

• how do pixels change in 
W? 

• Let’s compare each pixel 
before and after moving W 
by (u, v) using the sum of 
squared differenced (SSD).

W (u, v)

E(u, v) =
X

x,y2W

✓
I(x+ u, y + v)� I(x, y)

◆2



What a Corners is

Flat Region: 
no change 

in all directions.

Edge: 
no change 

along the edge.

Corner: 
significant change  

in all directions.



Harris Corner Detector: 
Small Motion Assumption

• Let’s apply a first-order approximation, which 
provides good results for small motions: 

I(x+ u, y + v) ⇡ I(x, y) +
@I

@x
u+

@I

@y
v

⇡ I(x, y) +
⇥
Ix Iy

⇤
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Harris Corner Detector: 
Small Motion Assumption

E(u, v) =
X

x,y2W
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I(x+ u, y + v)� I(x, y)

◆2

⇡
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x,y2W
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I(x, y) + Ix(x, y)u+ Iy(x, y)v � I(x, y)
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Harris Corner Detector: 
Small Motion Assumption

E(u, v) ⇡
X

x,y2W

✓
Ix(x, y)

2u2 + 2Ix(x, y)Iy(x, y)uv + Iy(x, y)
2v2

◆

⇡ Au2 + 2Buv + Cv2
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X

x,y2W

Ix(x, y)
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X

x,y2W

Ix(x, y)
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X
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Harris Corner Detector: 
Small Motion Assumption

• The surface (u, v) can be locally approximate by a 
quadratic form: 

E(u, v) ⇡ Au2 + 2Buv + Cv2
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Harris Corner Detector: 
Small Motion Assumption

• E(u,v) can be rewritten as 

E(u, v) ⇡
X

x,y2W

⇥
u v

⇤
·
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Harris Corner Detector: 
Small Motion Assumption

• E(u,v) can be rewritten as 

E(u, v) ⇡
X

x,y2W
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Ellipse Equation: 
E(u, v) = k



Harris Corner Detector: 
Second Moment Matrix

• M reveals information about the distribution of 
gradients around a pixel. 

• The eigenvectors of M identify the directions of 
fastest and slowest change. 

�
� 1

2
max

�
� 1

2
min

Direction of the fastest change

Direction of  
the slowest change



Harris Corner Detector: 
Second Moment Matrix

Eigenvalues and eigenvectors of M define shift directions with the smallest 
and largest change in E: 

• xmax = direction of largest increase in E 
• λmax = amount of increase in direction xmax 

• xmin = direction of smallest increase in E  
• λmin = amount of increase in direction xmin

xmax

xmin



Classification
λ2

λ1

λ2>>λ1

λ1>>λ2

• λ1 and λ2 are large 
• λ1 ~ λ2 

Corner

Edge

Flat Region



Harris Corner Detector: 
Cornerness Measure

• Instead of directly computing the eigenvalues, we 
use a measure that determines the “cornerness” of 
a pixel (i.e., how close to be a corner is): 

• k is an empire constant with values [0.04 0.06].

R = Det(M)� kTr(M)2

Det(M) = �1�2

Tr(M) = �1 + �2



Harris Corner Detector: 
Cornerness Measure

Input Image R



Harris Corner Detector: 
Pruning Corners

• We have to find pixels with large corner response, 
R, i.e., R > T0. 

• Typically, T0 in [0,1] depends on the number of 
points we want to extract; a default value is 0.01.



Harris Corner Detector: 
Thresholding

R R after thresholding



Harris Corner Detector: 
Pruning Corners

• At this point, we need to suppress/remove values that 
are not maxima. 

T0

x

R



Harris Corner Detector: 
Pruning Corners

• We set a radius (in pixel) for suppressing non-
maxima; e.g., 5-9. 

• We apply to R a maximum filter; it is similar to the 
median filter, but it sets the maximum to pixels: 

• We obtain Rmax. 

• A local pixel is a local maximum if and if: 

Rmax(x, y) = R(x, y) ^ R(x, y) > T0



Harris Corner Detector: 
Non-Maximal Suppression

Non-Maximal SuppressionR after thresholding



Harris Corner Detector: 
Non-Maximal Suppression



Harris Corner Detector: 
Non-Maximal Suppression



Harris Corner Detector: 
Non-Maximal Suppression



Harris Corner: 
Advantages

• Translational invariance: 

• Rotation invariance: 

• Only derivatives are employed: 

• Intensity shift invariance: I’ = I + b 

• Intensity scale invariance: I’ = I a 



Harris Corner: 
Disadvantage

• Not scale invariant! 

All points are 
classified as edges

It is now  
a corner!



The same feature in 
different images can have 

different size!



The Scale Problem

Near Object Far Object



Scale Invariant: 
Stable Corners
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Scale Invariant: 
Stable Corners

x

R

x

R

Original 1/2 scale
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Scale Invariant: 
Unstable Corners
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Scale Invariant: 
Unstable Corners

x

R

x

R

Original 1/2 scale

BAD:
corners may merge!



Scale Invariant: 
A Multi-Scale Approach

• Depending on the content of the image: 

• We need to detect the scale of corner. 

• We need to use its scale to vary the size of the 
window W for computing corners!



Scale Invariant: 
The Signature Function

• A signature function, s, is a function giving us an 
idea of the local content of the image, I, around a 
point with coordinates (x, y) at a given scale σ. 

• An example of signature function is the Difference 
of Gaussians (DoG): 

• where G is a Gaussian kernel.

s(I, x, y,�) = [I ⌦G(�)](x, y)� [I ⌦G(� · 2)](x, y)



Scale Invariant: 
The Signature Function

-

DoG

σ = 1

σ = 2



Scale Invariant: 
The Approach

We need to find the right scale for resizing W for each 
image!



Scale Invariant: 
The Approach

• The signature function, s, can give us an idea of the 
content of the image. 

• Therefore, we need to find a maximum point of s for 
pixel of an input image! 



Scale Invariant: 
The Approach

Let’s build s at the red point!



Scale Invariant: 
The Approach

This is our start!

s

σ
1   2   4   8 
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Scale Invariant: 
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Scale Invariant: 
The Approach

Which is σ for which s is the maximum?

s

σ
1   2   4   8 



Scale Invariant: 
The Approach

It is σ = 4

s

σ
1   2   4   8 



Scale Invariant: 
The Approach

s

σ
1   2   4   8 

s

σ
1   2   4   8 



Extraction of Features

• General overview: 

• Computation of the scale for each pixel using the 
sigma value at which we have the maximum 
value of the signature function. 

• Computation of the Harris Corner using the scale 
to increase the size of the local window.



Feature Descriptors



Feature Descriptors
• Once we found our features (i.e., corners), we need 

to describe in a meaningful and possibly unique 
way. 

• Why? 

• We want compare corners between images in 
order to find correspondences between 
images.



Feature Descriptors

A patch, P, is a  sub-image 
centered in a given point (u, v). 



Feature Descriptors

A patch, P, is a  sub-image 
centered in a given point (u, v). 



Feature Descriptors
• There are many local features descriptors in 

literature: 

• BRIEF/ORB descriptor. 

• SIFT descriptor. 

• SURF descriptor. 

• etc.



Feature Descriptors

• Good properties that we want are invariance to: 

• Illumination changes. 

• Rotation.



BRIEF Descriptor

• The descriptor creates a vector of n binary values: 

• For efficiency, it is encoded as a number:

BRIEF(P ) = b = [0, 1, 0, 0, . . . , 1]>

nb =
nX

I=1

2i�1bi



BRIEF Descriptor
• Given a patch, P, of size S⨉S an element of b is 

defined as 

• where pi and qi are the coordinates (x, y) of two 
random points in P.

bi(qi,pi) =

(
1 if P (pi) < P (qi),

0 otherwise
<latexit sha1_base64="wxVQYpskIuM+GAhTQVc1s4LLhls="></latexit><latexit sha1_base64="wxVQYpskIuM+GAhTQVc1s4LLhls="></latexit><latexit sha1_base64="wxVQYpskIuM+GAhTQVc1s4LLhls=">AAACc3icbVFNT9tAEF27QMF8NG0PPdDDQgClEo3sqlJbqUiIXnoMEgGkOLLWm3GyYr02u+O2keVf0H/XGz+DC2fWian4GmmlN2/ezOzMxLkUBn3/ynFfLCwuvVxe8VbX1jdetV6/OTVZoTn0eSYzfR4zA1Io6KNACee5BpbGEs7iix91/OwXaCMydYLTHIYpGyuRCM7QUlHrbxyJTpgynMRJeVlFYv/Oya3zgR54YQxjoUpum5jKC+geDRH+YCkSWtFe56H8+z3mcsbMxftVGHr+/9wMJ6B/CwOVF4IaNcWjVtvv+jOjT0HQgDZprBe1/oWjjBcpKOSSGTMI/ByHJdMouKxrFwZyxi/YGAYWKpaCGZazpVV01zIjmmTaPoV0xt7PKFlqzDSNrbIeyDyO1eRzsUGByddhKVReICg+b5QUkmJG6wvQkdDAUU4tYFwL+1fKJ0wzjvZOnl1C8Hjkp6D/qfut6x9/bh8eNdtYJptkm3RIQL6QQ/KT9EifcHLtvHOos+XcuO/dbXdnLnWdJucteWDux1vsBL0+</latexit>



BRIEF Descriptor: Example

pi

qi

bi =  0



BRIEF Descriptor: Example

qi

pi

bi =  1



BRIEF Descriptor: Test
• Let’s say we have two descriptor b1 and b2. How do we 

check if they are describing the same corner? 

• We count the number of different bits in the two vectors 
(Hamming distance): 

• Higher the closer: 

• This is a very computationally efficient distance 
function.

DH(b1,b2) =
nX

i=1

¬xor(b1
i
, b2

i
)



BRIEF Descriptor: 
Evil Details

• Optimal n is 256; from experiments testing different 
lengths: 16, 32, 64, 128, 256, and 512. 

• Points distribution: 

• Uniform distribution in P. 

•   

• Points are pre-computed generating a set: 

(pi,qi) ⇠ i.i.d. Gaussian

✓
0,

S2

25

◆

A =


p0, p1, . . . pn

q0, q1, . . . qn

�



BRIEF Descriptor
• Advantages: 

• Computationally fast. 

• Invariant to illumination changes. 

• Compact! 

• Patent free. 

• Disadvantage: 

• Rotation is an issue!
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BRIEF Descriptor
• Advantages: 

• Computationally fast. 

• Invariant to illumination changes. 

• Compact! 

• Patent free. 

• Disadvantage: 

• Rotation is an issue!



ORB Descriptor

• The descriptor is a modified version of BRIEF and it 
can handle rotations! 

• The first step of the algorithm is to compute the 
orientation of the current patch P.



ORB Descriptor: 
Patch Orientation

• We compute the patch orientation using Rosin 
moments of a patch: 

• From this, we define the centroid, C, as 

• Now, we can create a vector from corner’s center, 
O, to the centroid, C.

C =

✓
m1,0

m0,0
,
m0,1

m0,0

◆

ma,b =
X

x,y2P

xaybP (x, y)
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ORB Descriptor: 
Patch Orientation

O

C

~OC



ORB Descriptor: 
Patch Orientation

• From this vector, the orientation of the patch can be 
computed simply as 

• From this, we can rotate points stored in A as 

• where R𝜃 is a 2D rotation matrix.

✓ = atan2(m0,1,m1,0)

A✓ = R✓ ·A



ORB Descriptor



ORB Descriptor
• Advantages: 

• Computationally fast. 

• Invariant to illumination changes. 

• Compact! 

• Invariant to rotation. 

• Patent free. 

• Disadvantage: 

• Not robust as SIFT.



SIFT Descriptor

• It is the state-of-the-art descriptor. 

• It was introduced in 1999, but it is still the king.



SIFT Descriptor: 
Patch Orientation

• The first step is to compute the orientation of P. 

• We compute the horizontal (Px) and vertical (Py) 
gradients of the P. 

• For each pixel at coordinates (i, j) in the patch we 
compute its orientation and magnitude: 

m(i, j) =
q

Px(i, j)2 + Py(i, j)2
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✓(i, j) = atan2

✓
Py(i, j), Px(i, j)

◆
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SIFT Descriptor: 
Patch Orientation

• A histogram, H, of directions (18 bins) is created for each 
orientation taking into account magnitude. 

• Let’s say we have a gradient with m = 10 and θ = 45°. How 
do we insert it in the histogram H? 

• First, we compute the index of the bin to update: 

• Then, we update H as 

• We repeat this process for all gradients in the patch!

H(i) = H(i) + 10

i =

�
45

20

⌫
= 2



SIFT Descriptor: 
Patch Orientation

• Finally, we get this (a toy example with 8 bins!): 

• The patch orientation, θ, is given by the highest peak: 

• If we have two equal peaks, we take the as winner the first 
one in histogram.



SIFT Descriptor: 
Patch Orientation

• Finally, we get this (a toy example with 8 bins!): 

• The patch orientation, θ, is given by the highest peak: 

• If we have two equal peaks, we take the as winner the first 
one in histogram.



SIFT Descriptor
• Once we have the θ, we rotate all gradients in the 

patch using θ. 

• This ensures to be rotation invariant! 

• At this point, we divide the patch into 4x4 blocks. 
For each block, we compute a histogram of 
directions. 

• The final SIFT descriptor is the concatenation 
(flattening) of all these histograms.



SIFT Descriptor: Example 
Dividing the Patch into 2x2 Blocks

Note: when we compute gradients, we rotate them 
using the computed orientation!

Image Gradients Keypoint descriptor



SIFT Descriptor: Test
• We test the differences as distance between 

histograms: 

• Lower the closer: 

• This is the opposite compared to BRIEF/ORB.

D2(h
1,h2) =

vuut
nX

i=1

(h1
i � h2

i )
2



SIFT Descriptor
• Advantages: 

• Invariant to illumination changes. 

• Invariant to rotation. 

• Disadvantages: 

• Slower than BRIEF/ORB. 

• More memory than binary methods. 

• Patented!



Matching Images



Matching
• Input: two descriptor lists (with different lengths), 

desc1 and desc2, respectively of image I1 and I2. 

• Output: two arrays with indices of matches for 
each list. 

• For desc1: 

• For desc2:

m1 = [10, 23, . . . , 1]>

m2 = [100, 4, . . . , 2]>



Matching: Example
• Let’s say we have 5 descriptors in desc1 

• Let’s say we have 7 descriptors in desc2 

• Output: 

• m1 = [3, 5, 6, 7, 1] 

• m2 = [2, 3, 4, 5, 1, 1, 3]



Matching: Example

• m1 = [3, 5, 6, 7, 1] 

• This means that the 1st descriptor in desc1 is matched with the 3rd in desc2. 

• This means that the 2nd descriptor in desc1 is matched with the 5th in desc2. 

• This means that the 3rd descriptor in desc1 is matched with the 6th in desc2. 

• This means that the 4th descriptor in desc1 is matched with the 7th in desc2. 

• This means that the 5th descriptor in desc1 is matched with the 1st in desc2.



Matching: Example
• m2 = [2, 3, 4, 5, 1, 1, 3] 

• This means that the 1st descriptor in desc2 is matched with the 2nd in desc1. 

• This means that the 2nd descriptor in desc2 is matched with the 3rd in desc1. 

• This means that the 3rd descriptor in desc2 is matched with the 4th in desc1. 

• This means that the 4th descriptor in desc2 is matched with the 5th in desc1. 

• This means that the 5th descriptor in desc2 is matched with the 1st in desc1. 

• This means that the 6th descriptor in desc2 is matched with the 1st in desc1. 

• This means that the 7th descriptor in desc2 is matched with the 3rd in desc1.



Matching: 
Brute Force Algorithm

• A simple method to find a matched descriptor in 
desc2 for each descriptor in desc1: 

• For each descriptor d1,i in desc1 to test all 
descriptors desc2 and to keep as matched the 
closest (in terms of distance).



Matching: 
Brute Force Algorithm

For each descriptor d1,i in desc1: 

matched = -1; 

dist_matched = BOTTOM; 

For each descriptor d2, j in desc2: 

if Closer( D(d1,i , d2, j), dist_matched) 

matched = j; 

dist_matched = D(di , di); 

endif



Matching: 
Brute Force Algorithm

For each descriptor d1,i in desc1: 

matched = -1; 

dist_matched = BOTTOM; 

For each descriptor d2, j in desc2: 

if Closer( D(d1,i , d2, j), dist_matched) 

matched = j; 

dist_matched = D(di , di); 

endif



Matching: 
Brute Force Algorithm

For each descriptor d1,i in desc1: 

matched = -1; 

dist_matched = BOTTOM; 

For each descriptor d2, j in desc2: 

if Closer( D(d1,i , d2, j), dist_matched) 

matched = j; 

dist_matched = D(di , di); 

endif

BOTTOM = +Inf for SIFT 
BOTTOM = 0 for BRIEF/ORB 



Matching: 
Brute Force Algorithm

• Advantage: 

• It is exhaustive and finds the best solution! 

• Disadvantage:  

• This method is very slow: 

• Let’s say we have n descriptors in desc2 and n 
in desc2. In the worst case, we need to 
compare descriptors n2/2.



Matching: 
Improving Efficiency

• How can we improve (approximating results)? 

• Hashing: 

• We create k bucket. 

• Each descriptor d2,i of I2 s assigned to a bucket using a function f , 
called hash function. This is defined as: 

f: descriptor —> [1, k]  (positive integer numbers!) 

•  This means that f cover generates a number in [1, k] given a 
descriptor. 

• For example, an f  for BRIEF/ORB, where the descriptor is a 256-bit 
number, is the modulo operation.



Matching: 
Improving Efficiency

1 2 k…

…

f



Matching: 
Improving Efficiency
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Matching: 
Improving Efficiency

1 2 k…

…
desc1

f



Matching: 
Improving Efficiency

1 2 k…

…

desc2

f

desc1



Matching: 
Improving Efficiency
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Matching: 
Improving Efficiency
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Matching: 
Improving Efficiency

1 2 k…

…
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f
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etc.



Matching: 
Improving Efficiency

• Now, we have all descriptors of I2 into buckets. 

• To find a match for a descriptor d1,i of I1, we apply f 
to d1,i. In this way, we obtain a bucket number, let’s 
call it T. 

• We run the brute force method for T. 



Matching: 
Improving Efficiency

• Advantages: 

• It is faster, we run the brute force method for a subset 
of descriptors. 

• Disadvantages: 

• It is not exact, it is approximate; i.e., we test only a 
sub-set of descriptors. 

• If f is not well crafted, we may have distant 
descriptors in the same bucket.



Matching: Example



Matching

• Once we have know matches between images, we 
can understand which images are near each 
others! 

• This is important for stable algorithms for 
triangulation of points and determining cameras’ 
poses!



that’s all folks!


