3D from Volume:

fra

Part

Dr. Francesco
Ncesco.banter

Banterle,

e@isti.cnr.it

banterle.com/francesco

mailto:francesco.banterle@isti.cnr.it
http://banterle.com/francesco

I'he Processing Pipeline

/]

» Enhancement | » Segmentation |

)

RAW Volume

I'he Processing Pipeline

Points Mesh
Extractions Extraction

-)
{4 Y

3D Mesh

I'he Processing Pipeline

Points Mesh
Extractions Extraction

3D Mesh

3D Visualization

Volume Visualization

* We need to pre-visualize the 3D model that we are
going to create. This process Is called

e Pre-visualization Is:
e fast: no need to create a 3D model

* |t helps the segmentation process

Volume Visualization

<

P
A

Camera |

Volume

Input Output

Volume Visualization

Given a “virtual camera” and a 3D volume (e.g.,
from a CAT or MRI), we want to generate an image,
.e., called

What do we need?

e Define the “virtual camera” model

* Define how to color pixels; i.e., rendering

Virtual Camera Model:
Pinhole Camera

Image
Plane

Rendering

We need to color pixels (in the image plane) using
the volume information; I.e., intensity values.

For each pixel, we create aray (i.e., a line):

* |f the ray intersects the volume, then we collect
intensity values from it; i.e. we integrate it!

* Otherwise the pixel will be set to zero or fully
transparent!

Volume Rendering:
Ray-Marching

* |et’s start our rendering at a given pixel (see the

star):

Volume boundary

Volume Rendering:
Ray-Marching

* |f the ray misses the volume:

r = (0;d)

K

Volume boundary

Volume Rendering:
Ray-Marching

* |f the ray hits the volume:

—
AR
i
“ Y

Volume boundary

Volume Rendering:
Ray-Marching

* Then, we integrate inside it with a step equal to the
resolution of the volume:

P
“
e
Q

Volume boundary

Volume Rendering;:
Ray-Marching

. €

|]

Volume Rendering:
Ray-Marching

 |n other words:

Iu,v] = /t:::)T(v[oﬂi[u,v] -t])dt

T i1s called the
to highlights volume features.

Volume Rendering:
Ray-Marching

0 determine the outside surface, we stop the
integration at the first non zero value (over a
Nreshold):

Intensity
A

t(XS) t(Xe)

Volume Rendering;:
Ray-Marching Example

Volume Rendering:
Ray-Marching

* Jo see all features inside the volume, we integrate
along the ray:

Intensity

>
t(XS) t(Xe)

Volume Rendering;:
Ray-Marching Example

Volume Rendering;:
Color Mapping

* Jo Improve visualization intensity values are mapped

to colors:
00 I
10 I

* |n between values are linearly interpolated:

0.0 1.0

Volume Rendering;:
Color Mapping

Volume Rendering;:
Color Mapping

Volume Rendering;:
Color Mapping

Volume Rendering;:
Color Mapping

Volume Rendering:
|_et there be light

* We can improve gquality by adding light sources.

* There are local (taking into account that light
bounces around) and global models.

* For the sake of simplicity, we are interested in local
models only!

Volume Rendering:
|_et there be light

* A local model is a function computing radiance (L); i.e.,

the value for coloring the pixel using only local geometry
information:

Point’'s position.

Point’'s normal.

Optical properties of the material at its position. The
intensity value of the volume (or its color encoding) in

our case.

Light source’s position.

Volume Rendering:
|_et there be light

* A simple model assumes that the light source Is
placed at infinite (e.q., the sun):

|

Volume Rendering;:
et there be light

* A simple local model is the diffuse model that
assume light is locally reflected in all directions:

5 \Q/
NI

&

Volume Rendering:
|_et there be light

e The model is defined as

e Note that;

* N« Needs to be normalized.

-

e [needsto be normalized.

Volume Rendering:
|_et there be light

e The model is defined as

e Note that;

* N« Needs to be normalized.

-

e [needsto be normalized.

Volume Rendering:
|_et there be light

e The model is defined as

e Note that;

* N« Needs to be normalized.

-

e [needsto be normalized.

Volume Rendering;:
|_et there be light

Volume Rendering;:
et there be light

Volume Rendering

* |tis avery simple and easy to implement method.
* |tis computationally expensive.

* |t works in real-time using a GPU!

3D Points Extraction

3D Points Extraction

* For each slice of the volume, we compute the
edges of the segmented region:

3D Points Extraction

* For each white pixel in the edge with coordinates
(u, v) at the I-th slice, we compute its 3D position as

X

Lk
m= |y| = |v-k,
k2 KRR

k. 1s the pixel’s width in mm
k., 1s the pixel’s height in mm
k., 1s the distance between slices in mm

3D Points Extraction

 How do we compute the normal at the point?

e |t is simply the negative value of the gradient of the
volume in that point:

vV
IVV|

n =

140

120 |

100 |

80 |

60 |

3D Points

Extraction

Example

&5y
St aeetse s
@ ot %

AR TN

oF

140

3D Mesh Extraction

A Very Stupid
Algorithm:

For each extracted point, create a cube...

A Very Stupid Algorithm
Example

A Very Stupid Algorithm
Example

A Very Stupid Algorithm
Example

Z)

| guess, we can do
pbetter than this!

Connecting the dots...

Edges Iriangulation

* As the first step, we extract the edges from each
slice in the volume.

* We save the connectivity of points belonging to the
same edge —> “parametric curve’

 \WWe may have more curves per slice!

Edges Iriangulation

.

Slice 1 Slice 2

Edges Iriangulation

Edges Iriangulation

Find the
nearest

point in a
previous slice

Edges Iriangulation

Connect with
the next

vertex in the
upper line.

Edges Iriangulation

Edges Iriangulation

Edges Iriangulation:
Fall Case

_ N

Slice 1 Slice 2

Edges Iriangulation:
Fall Case

e b

Slice 1 Slice 2

Edges Iriangulation:
Fall Case

. b

Slice 1 Slice 2

Edges Iriangulation

It works because we have a previously known
connectivity.

't works only for a binary segmentation mask:
* No multiple objects!
Quality of triangles is pretty poor!

We cannot close the mesh; I.e., it Is not watertight!

Marching Cubes

| et’'s start In 2D

Marching Squares

EEEEEE
my =N
]]
mi -
m W

| A
il AN
HL, _/HE
LT

Marching Squares

EEEEEE
BN
mE
mY WA
il VB

T
Nl NAN
Hi_y/En
ER=ANN

Marching Squares

Marching Squares

Marching Squares

Marching Squares

Marching Squares

Bl -
e
E—

Marching Squares

Marching Squares

Marching Squares

Marching Squares

Real boundary

Marching squares

Marching Squares

Real boundary

Marching squares

Marching Squares: Cases
There are in total 16 (24) configurations, the

other ones can be Computed by rotating or
reflecting these.

Marching Squares

* For each square:

* We compute the configuration of the current
square.

* We fetch from the table of configurations our
case.

* We place the line for that case in the current
square.

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares:
Boundaries

* |n theory, the object of our interest should be inside
the volume without touching boundaries.

* However, we can have cases where the
segmentation Is touching boundaries!

Marching Squares
Boundaries example

Marching Squares
Boundaries example

Marching Squares
Boundaries example

Marching Squares
Boundaries example

Marching Squares
Boundaries example

Marching Squares
Boundaries example

Marching Squares:
Boundaries

* For these cases, we can set different politics:

* We do not process boundaries, so we cut out
part of the information

* We replicate information from previous scan

| et’'s move Into the
3D worlao

Marching Cubes

* 1st pass: as in the 2D cases, we need to mark

which part of the volume is the inside (1) or the
outside (0).

e 2nd pass: for each voxel, we need to find out the

current configuration and to look up into a table to
place triangles'

Marching Cubes

* |In 3D the look up table has 256 entries (28).

* However, there are only 14 main cases (others are
computed by reflecting and/or rotating these):

Marching Cubes

Marching Cubes:
Ambiguous Cases

43 .{?

P
P

—~ Hole

\

/\
<
SN

[Cignoni et al. 1999]

Marching Cubes:
Ambiguous Cases

* A solution, which avoids ambiguous cases, Is to
partition each voxel/cell into tetrahedra; e.g. 5 or 6
of them.

Marching Cubes:
Ambiguous Cases

<}

<

N1/

Marching Cubes

* Advantages:
e Easy to understand and to implement
* Fast and non memory consuming
e Disadvantages:
» Consistency: Co and manifold result?
 Ambiguous cases!

 Mesh complexity: the number of triangles does not depend on the
shape but on the discretization, i.e., number of voxels!

 Mesh quality: arbitrarily ugly triangles

P0OISSON
Reconstruction

P0OISSON Reconstruction

 The idea of this method Is to reconstruct the
surface of a 3D model by solving for the indicator
function of the shape:

0 otherwise.

1 itpe M,
x(p){ O

P0OISSON Reconstruction:
Gradient Relationship

e [here is a relationship between the normal field
and gradient of indicator function:

¥
SUT:
J "o
J b
Lpigyh

Oriented Points Indicator function gradient

PoIsson Reconstruction:
Integration as a Poisson Problem

e |Let's represent the points with a normal by a vector field %

* We need to find a function X whose gradients best
approximates V' :

min |[Vy — V||
X

e |t we apply the divergence operator, this becomes a
Poisson problem:

V- (VX)=V-V&aAy=V.V

Poisson Reconstruction
Example

3D Points 3D Surface

P0OISSON Reconstruction

 Advantages:
* Precise
* Robust
* Disadvantages:

 Computationally slow, it depends on the resolution; i.e.,
It can take hours!

* The Poisson solution needs to close the surface. If
points density is not enough weird things may happen!

that’s all folks!

Acknowledgements

* Some images on work by:
* Dr. Fabio Ganovelli:
* http://vcg.isti.cnr.it/~ganovell/
* Dr. Paolo Cignoni:

* http://vcq.isti.cnr.it/~cignoni/

http://vcg.isti.cnr.it/~cignoni/

Appendix A.
The Pin-hole Camera
Vliodel

Camera Model:
Pinhole Camera

}(c
X
e
Image "’QV:' --------------- e 4 » /.
Plane 12 Hole

Camera Model: Image Plane

e Pixels are not square: height and width; i.e., (k. k).
* (oIS the projection of C (the optical center) and its is
called the principal point.

Camera Model:
Pinhole Camera

Image
Plane

Camera Model

e M is a point in the 3D world, and it is defined as:

M =

:r—\l\z@&

* mis a 2D point, the projection of M. m lives in the
image plane UV

Camera Model

* By analyzing the two triangles (real-world and
projected one), the following relationship emerges:

e [his means that:

Camera Model:
INtrinsic Parameters

e |f we take all into account of the optical center, and pixel size
we obtain:
U = —f -+ Ky + Uug
v:—f-y-kv%—vo

e |t we put this in matrix form, we obtain:

—fky 0wy O —fky O
P=| 0 —fky, wo O|=K[l0] K=| 0 —fk,
0 0 1 0 0 0

mz—=—PFP M

Camera Model:
Extrinsic Parameters

Note that K is called and has all projective
properties of the camera.

We need to define how the camera is placed (i.e., rotation and

translation). This is described by the G
G = t=|ta|] R=|ry
0 1 2
- - _tS_ _1'3 i

R 1s a 3x3 rotation matrix, which is an orthogonal matrix with
determinant 1.

t is translation vector with three components.

Camera Model

e [he full camera model including the camera pose
s defined as:

P = K[I|0|G = K[R|t]

e Pis 3x4 matrix with 11 independent parameters!

Appendix B:
From Pixels to Rays

Rendering: Ray Creation

* We need to create a ray » with an origin and a
direction:

* Origin is set to C; the center of the virtual
camera:

o= C

* This Is because the ray has to pass through it!

Rendering: Ray Creation

* (Given a pixel coordinates (u, v), we need to compute the 3D
point P inside the camera by inverting:

{U£°Qf°k'u—|—U()

v=—L .y k,+ v

z

* knowing z is set to f.

Rendering: Ray Creation

e Therefore, the point P is:

- - C(u—ug)
K
(v—wv9)

Ko
~f
1

P =

— N L R

e and, the ray direction is simply computed as:

C —P

d =
IC = P|

Appendix C:
Ray-Volume Bounaary
INntersection

Ray-Box Intersection

* As the first step, we need to find the intersection
ray-box. The volume boundary is just a box!

 We know that a box has six taces; i.e., planes:

 \We need to check intersection against six planes

Rendering: Ray-Plane
Intersection

* A plane is defined by its normal (a, b, ¢) and a shift
parameter (D):

a-r+b-y+c-z4+D =0

Y

n = (a,b,c)

X

4

D=—a-pl—b-p)—c-p°

Rendering: Ray-Plane
Intersection

 \We need to solve the system:

pt)=o+d-t t>0
a-py+b-p,+c-p,+D=0

lts solution Is ~ 0
V=P —O

v-n =
t = (m-d) >0

S|
Sl

