3D from Volume: Part I

Dr. Francesco Banterle, francesco.banterle@isti.cnr.it banterle.com/francesco

The Main Pipeline

The Processing Pipeline

RAW Volume

The Processing Pipeline

The Processing Pipeline

RAW Volume

Image Enhancement

- **Step 1**: we have to improve the dynamic range of the input images in the volume; i.e., increase/ decrease it.
- **Step 2**: we have to filter the image in order to elicit some features and/or to remove noise (salt-and-pepper, Gaussian noise, etc).

Each square is called a pixel

- Each pixel is a square:
 - Position: (x, y)
 - Size: height and width —> the same for all pixels
 - An attribute: color (RGB) or intensity:
 - Each intensity value is typically normalized in [0,1] —> integer values a different bit depth: 8bit, 10-bit, 12-bit, 14-bit, and 16-bit.

2D Images: Bit-Depth

2D Images: Colors

• A 2D image is a graph:

2D Image, 3x3 pixels

• A 2D image is a graph:

2D Image, 3x3 pixels

4-connected pixel adjacency graph

• A 2D image is a graph:

2D Image, 3x3 pixels

4-connected pixel adjacency graph

8-connected pixel adjacency graph

A 2D image is a graph:

A Graph

- A graph is a pair G = (V, E), where:
 - V is a set of vertices. Each element of V is called a vertex of G.
 - E is a pairs of elements in V; e.g, (V₁; V₂), etc. Each element of E is called an **edge** of G.

Image Coordinate System

Image Coordinate System: MATLAB

- MATLAB origin —> (1,1)
- Given an image, **img**, as m-n matrix to access:

$$f = img(y, x)$$

where m is the height of the image, and n is the width of it

Region Of Interest (ROI)

- We may be interested to process not the full image/ volume but an area/volume.
- This area is typically called region of interest (ROI).

Region Of Interest (ROI)

- A ROI can be defined as:
 - Parametric region: rectangles, circles, polygons, etc.
 - Mask: a binary image where:
 - 0 —> no interest area
 - 1 —> interest area

Medical Images

Medical Images

- Main sources:
 - CAT
 - MRI
 - Ultrasound

- Images are not perfect: device, patient moves, etc.
- What we really see is:

$$f(x,y) \approx f'(x,y)$$

$$f(x,y) = [(f'+n_T) \otimes h](x,y) \cdot g(x,y) + n(x,y)$$

- Images are not perfect: device, patient moves, etc.
- What we really see is:

$$f(x,y) \approx f'(x,y)$$

$$f(x,y) = [(f' + n_T) \otimes h](x,y) \cdot g(x,y) + n(x,y)$$

Other tissues

- Images are not perfect: device, patient moves, etc.
- What we really see is:

$$f(x,y) \approx f'(x,y)$$

$$f(x,y) = [(f'+n_T) \otimes h](x,y) \cdot g(x,y) + n(x,y)$$

Discrete spatial-temporal process

- Images are not perfect: device, patient moves, etc.
- What we really see is:

$$f(x,y) \approx f'(x,y)$$

$$f(x,y) = [(f'+n_T) \otimes h](x,y) \cdot g(x,y) + n(x,y)$$

Signal Damping

- Images are not perfect: device, patient moves, etc.
- What we really see is:

$$f(x,y) \approx f'(x,y)$$

$$f(x,y) = [(f'+n_T) \otimes h](x,y) \cdot g(x,y) + n(x,y)$$

Noise Measure: SNR

• Given a ROI i, a definition of SNR is:

$$SNR = \frac{\mu_i}{\sigma_i}$$

- where μ_i and σ_i are, respectively, the mean of the signal in i and its noise
- To have an estimate of noise, we compute σ_i in the background of the image (i.e., low intensity values) assuming that noise does not vary in different ROIs

Noise Measure: Example

SNR = 3.43

SNR = 29.26

Medical File Format

DICOM

- Digital Imaging and COmmunications in Medicine:
- It is a standard for producing, storing, displaying, printing, and sending, retrieving, and querying medical images
- Data: 2D images (may be compressed using JPG/JPG2000)
- Metadata: bit-depth, pixel's size (mm), thickness between slices (mm), patient's personal information, date of the exam, position of the patient, etc.
- Issue: many extra fields, which are filled without consistency amongst different software/scanners

DICOM

- File extension: name_file.dcm
 - The media format does not allow files to have and extension; the folders structure gives meaning to the file!
- Standard official web-site: http://DICOM.nema.org
- MATLAB and Slicer can open them natively.

Point-wise Operators

Point-wise Operators

- An operator takes as input one or two images, and the result is another image.
- Unary operator T₁:

$$g(x,y) = T_1 \left[f(x,y) \right]$$

• Binary operator T₂:

$$g(x,y) = T_2 \left[f(x,y); h(x,y) \right]$$

Unary Operators: Negative

Negative or inverter:

$$g(x,y) = \text{Neg}[f(x,y)] = 1.0 - f(x,y)$$

- It is usually helpful to highlight some structures.
- Note: this operator assumes images' values are in the rage [0,1].

Negative: Example

Unary Operators: Contrast Stretching

 This operator increases the dynamic range of the input image linearly:

$$g(x,y) = \text{CS}[f(x,y); E_{\min}; E_{\max}] =$$

$$= (f(x,y) - \min(f)) \frac{E_{\max} - E_{\min}}{\max(f) - \min(f)} + E_{\min}$$

It is useful when the contrast is low.

Contrast Stretching Example

Unary Operators: Gamma

Another method for increasing the dynamic range:

$$g(x,y) = G[f(x,y);k;\gamma] =$$

$$= k \cdot f(x,y)^{\gamma}$$

It is more intuitive.

Unary Operators: Gamma

Gamma Example

Unary Operators: Logarithmic Operator

- The dynamic range may be too large, (16-bit), and most monitors handle only 8-bit!
- The operator is defined as

$$g(x,y) = \log[f(x,y); E_{\min}; E_{\max}] =$$

$$= (E_{\max} - E_{\min}) \cdot \frac{\log(1 + f(x,y))}{\log(1 + \max(f))} + E_{\min}$$

Logarithmic Example

Unary Operators: Thresholding

This operator creates a mask (0 or 1 values):

$$g(x,y) = \text{Thr}[f(x,y);a;b] = \begin{cases} 1 & \text{if } f(x,y) \in [a,b], \\ 0 & \text{otherwise.} \end{cases}$$

It can be used for segmentation.

Thresholding Example

Binary Operators

 Binary operators are typically the classic arithmetic operators defined over images:

```
• +, -, *, /
```

- Note that using +, -, and /, our dynamic range is not anymore in the range [0,1] (it can be negative!):
 - Linear scaling in [0,1]
 - Logarithmic operator

Histograms

Image Histogram

- A histogram H is the distribution of intensity values of pixels.
- How do we compute it?
 - We divide the range of values into n bins
 - For each bin we count the number of pixels whose intensity values are in the range of that bin
 - MATLAB: imhist built-in function

Image Histogram

 This can be seen as the *probability* of a pixel of having a given intensity value:

$$p(I(x,y) \in [H(i-1), H(i)]) = \frac{H(i)}{N}$$

• where H is the histogram, H(x, y) is a pixel of the image I at coordinate (x, y), and N is the number of pixels of I.

Example

- A technique to improve automatically the contrast of the image.
- The main idea is to have an histogram in which each intensity value j (or bin) has the **same** (more or less) number of pixels:

$$H(j) = \frac{N}{2^{\text{n-bit}}}$$

- where N is the number of pixels of the image, and n_bit is the bit-depth of all pixels.
- NOTE: we have a bin for each intensity value!

- How?
- Matching the CDF (cumulative distribution function)
 of the histogram with the CDF of a uniform
 histogram.
- A uniform CDF is defined as:

$$F(x) = x$$

• or:
$$F(x) = P(X \le x) = \int_{-\infty}^{x} p(x) dx$$

ROI helps in cases of huge peaks (see I=0)

ROI helps in cases of huge peaks (see I=0)

Histogram Equalization Example

Linear Filters

1D Convolution

• Given two functions f and g, f convolved g is defined as:

$$(f \otimes g)[x] = \int_{-\infty}^{+\infty} f(t) \cdot g(t - x) dx =$$

$$= \int_{-\infty}^{+\infty} f(x - t) \cdot g(x) dx$$

In the discrete world, this leads to:

$$(f \otimes g)[i] = \sum_{j=-N}^{N} f[i-j] \cdot g[j]$$

2D Convolution

In the 2D discrete world, this leads to:

$$(f \otimes g)[i,j] = \sum_{k=-N}^{N} \sum_{l=-M}^{M} f[i-k,j-l] \cdot g[k,l]$$

- where g is a (2n)-(2m) matrix, called kernel.
 - For sake of simplicity, let's assume negative addresses!
- MATLAB: conv (1D convolution), and conv2 (2D convolution) built-in functions

Gradient Filter

- The gradient of an image is an important piece of information:
 - Where it is high implies we may have an edge; i.e., a boundary between two different regions.
- Typically, kernels for computing gradients are defined as:

$$g_X = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad g_Y = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

Gradient Operator Example

g_X

Gradient Operator Example

$$\|\nabla G\| = \sqrt{\left(\left[\begin{array}{ccc} g_X & g_Y \end{array}\right]^2 + \left[\begin{array}{ccc} g_X & g_Y \end{array}\right]^2\right)} =$$

Gradient Operator Example

$$\|\nabla G\| = \sqrt{\left(\left[\begin{array}{ccc} & & \\ & & \end{array}\right]^2 + \left[\begin{array}{ccc} & & \\ & & \end{array}\right]^2\right)} = g_X \qquad g_Y$$

Sobel Gradient Operator

- Technically speaking, it is just another discrete differential operator!
- It emphasizes more edges, which is good.

$$g_X = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad g_Y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & 1 \end{bmatrix}$$

Sobel Gradient Operator Example

 g_X g_Y

Sobel Gradient Operator Example

Edge Detectors

- Edges are can be helpful for defining regions
- They help in the visualization of what we want to segment

Edge Detectors

• Steps:

- Compute gradients (magnitude and angle of orientation [atan2])
- Non-maximum suppression —> remove low power stuff
- Apply double thresholding; classification: strong, weak, and no edge
- Edge tracking; a weak edge is a strong one if it is connected to a strong edge!

Edge Detectors

• Steps:

- Compute gradients (magnitude and angle of orientation [atan2])
- Non-maximum suppression —> remove low power stuff
- Apply double thresholding; classification: strong, weak, and no edge
- Edge tracking; a weak edge is a strong one if it is connected to a strong edge!

Edge Detectors: Edge Tracking

Edge Detector Example

thr = 0.001

thr = 0.01

thr = 0.1

Laplacian Filter

- If you really want... we can also define a Laplacian operator... Why?
 - The Laplacian of an image highlights regions of rapid intensity change and is therefore often used for edge detection
 - oh, jolly good!

Laplacian Filter

$$g_{L_4} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \qquad g_{L_8} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Laplacian Filter Example

GL4

g_{L8}

Laplacian Filter Bonus

 With a small change (+1) we can increase sharpness in the image:

$$g_{\text{sharp}} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Laplacian Filter Bonus Example

Laplacian Filter Bonus Example

Laplacian Filter Extra

$$g_{LoG}[k,l] = -\frac{1}{\pi\sigma^4} \left(1 - \frac{k^2 + l^2}{2\sigma^2} e^{-\frac{k^2 + l^2}{2\sigma^2}} \right)$$

Box Filter

• This is a very simple filter low-pass filter:

$$g[k,l] = 1 \quad \forall k \land \forall l$$

- What does it do? It blurs the signal!
- This kernel has to be normalized:

$$g[k, l] = \frac{g[k, l]}{\sum_{k=-N}^{N} \sum_{l=-M}^{M} g[k, l]}$$

Box Filter Example

Box Filter Example

Gaussian Filter

We use a Gaussian kernel defined as

$$g[k,l] = G(\sqrt{k^2 + l^2})$$

where G is:

$$G(x) = \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Note that g has to be normalized:

$$g[k, l] = \frac{g[k, l]}{\sum_{k=-N}^{N} \sum_{l=-M}^{M} g[k, l]}$$

Gaussian Filter

Gaussian Filter: how large?

- Typically, we have N = M;
- N and M depends on the sigma parameter:

$$N = M = \frac{5}{2} \cdot \sigma \longrightarrow 98\%$$
 of energy

- Larger sigma the better but the slower!
- Note: when sigma is too large (e.g., more than 128 pixels) it is better to work in the Fourier domain!

Gaussian Filter Example

Gaussian Filter Example

Box vs Gaussian

- As you probably know...
- The box filter cuts primarily high frequencies but it has oscillations for some low frequencies.
 - What does it mean? That is BAD!
- The Gaussian filter cuts mostly high frequencies!
 - That is GOOD!

Box vs Gaussian Example

Non-Linear Filters

Salt and Pepper Noise

Salt and Pepper Noise

Median Filter

- This filter is mostly meant for tackling salt-andpepper noise!
 - Linear filters do a mess with salt-and-pepper!
- It exploits the fact that median is robust in separating the higher half of data sample from the lower part! Classist isn't it?

Median Filter

- How does it work?
 - We define the size of the filter; e.g., 9x9
 - For each pixel (i, j):
 - We collect all pixel values around (i, j)
 - We sort pixel values
 - We take the median value!

[100, 89, 20, 10, 30, 20, 10, 20, 20]

[10, 10, 20, 20, 20, 20, 30, 89, 100]

[10, 10, 20, 20, 20, 20, 30, 89, 100]

[10, 10, 20, 20, 20, 20, 30, 89, 100]

- It is a non-linear filter, oh really?
- It works both spatial domain and intensity/range domain of the image.
- Basically, it is an adaptive linear filter:
 - It behaves as a linear filter in flat regions;
 - At strong edges (step-edge), filtering is "limited".

$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

Spatial Function

$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

Range Function

$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

- fs (Spatial function): a Gaussian function
- g_r (Range function: a Gaussian function
- How large is the kernel?
 - If the spatial function is a Gaussian:

$$N = M = \frac{5}{2}\sigma_s$$

Kernel

Kernel

Kernel (change for each pixel!!)

Kernel (change for each pixel!!)

Kernel (change for each pixel!!)

Kernel (change for each pixel!!)

Result of using a Gaussian filter with the same kernel size of previous slide

Result of using a Gaussian filter with the same kernel size of previous slide

- Before, we have seen how to increase local contrast using the sharpening operator (or modified Laplacian).
- We can achieve better results using a more general framework

$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]}\right)$$

$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]} \right)$$

$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]}\right)$$

$$O[i,j] = f[i,j] \cdot \begin{pmatrix} f[i,j] \\ (f \otimes g)[i,j] \end{pmatrix}$$

$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]}\right)$$

$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]} \right)$$

$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]}\right)$$

Local Contrast Enhancement Example

Input Image

Image After Enhancement

- When using linear filters we may introduce halos!
 - halos —> BIAS!
- It is better to use non-linear filters such as the bilateral filter, the guided filter, WLS, etc.

 In some cases, we have to reduce "blur" (e.g., the patient moved during the scan):

$$I \otimes K = J$$

- where I is ideal image, K is a convolution kernel, and J is the input blurred image.
- NOTE: the real case is:

$$(I \otimes K) + n = J$$

• where *n* is noise

- Assuming that we know *K*:
 - We need to find an I such that:

$$I \otimes K = J$$

which means:

$$\arg\min_{I}igg(I\otimes K-Jigg)^2$$

$$\begin{cases} I_0 = 0.5 \\ I_{i+1} = I_i \cdot \left(\frac{J}{I_i \otimes K} \otimes K^{\top} \right) \end{cases}$$

Richardson-Lucy's method

$$\begin{cases} I_0 = 0.5 \text{Input Blurred Image} \\ I_{i+1} = I_i \cdot \left(\frac{J}{I_i \otimes K} \otimes K^\top \right) \end{cases}$$

Richardson-Lucy's method

$$\begin{cases} I_0 = 0.5 \\ I_{i+1} = I_i \cdot \left(\frac{J}{I_i \otimes K} \otimes K^{\top} \right) \end{cases}$$

Richardson-Lucy's method

Deconvolution Example

After 1000 iterations

Deconvolution Example

After 1000 iterations

Deconvolution Example

original

deconvolution

difference

- To make it work, we need to:
 - Run many iterations (more than thousands)!
 - Known exactly the size and shape of K; we can estimate it. This may create artifacts!

Image Upsampling

Why Upsampling?

- The main reason why we want to upsample (we invent data basically) our input data is that they have a very low resolution
- Forget 4K for your flicks, we have 512x512 resolution in happy days

Upsampling

- When we upsample we need to invent the pixel in between the original ones...
- Basic solution:
 - For each missing pixel:
 - find the closest (norm 1, 2, whatever) "real" pixel with intensity/color C_n
 - Set the intensity/color of the missing pixel equals to C_n

Upsampling 1D: Linear Interpolation

Upsampling 1D: Linear Interpolation

This becomes a bi-linear interpolation in 2D!

Bilinear Upsampling Example

What's about 3D?

- We want to upsample the whole volume:
 - First, we apply bilinear upsampling to all slices of the volume; i.e., 2D images
 - Second, we linearly interpolate between slices to obtain a new slice

Can we do it better?

Bicubic Usampling (2D)

Bicubic Usampling (2D)

Bicubic Usampling (2D)

Input

Upsampling

Input Upsampling

that's all folks!