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I'he Processing Pipeline
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Image Ennancement

* Step 1: we have to improve the dynamic range of
the input images in the volume:; i.e., increase/
decrease it.

* Step 2: we have to tilter the image in order to elicit
some features and/or to remove noise (salt-and-
pepper, Gaussian noise, etc).



2D Images



2D Images

Each square is called a pixel



2D Images

 Each pixel is a square:
* Position: (x, y)
* Size: height and width —> the same for all pixels
* An attribute: color (RGB) or intensity:
* Each intensity value iIs typically normalized in

0,1] —> integer values a ditterent bit depth: 8-
oit, 10-bit, 12-bit, 14-bit, and 16-bit.




2D Images: Bit-Depth




2D Images: Colors

————— sRGB
BT.2020




2D Images

* A 2D Iimage is a graph:

2D Image, 3x3 pixels



2D Images

 A2D image is a graph:

4-connected pixel

2D Image, 3x3 pixels adjacency graph



2D Images

* A 2D Iimage is a graph:
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2D Image, 3x3 pixels



2D Images

* A 2D Iimage is a graph:
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A Graph

A graphisa pair G = (V, E), where:

e \/ s a set of vertices. Each element of V is called
a vertex of G.

 Eisapairsof elementsinV, e.qg, (V1; Vo), etc.
Each element of E is called an edge of G.



lmage Coordinate System

Origin




lmage Coordinate System:
MATLAB

* MATLAB origin—> (1,1)
* (Given an image, img, as m-n matrix to access:

f = 1img(y, X)

* where mis the height of the image, and n is the
width of it



Region Of Interest (ROI)

* WWe may be interested to process not the full image/
volume but an area/volume.

* This area is typically called region of interest (ROI).




Region Of Interest (ROI)

e A ROI can be defined as:

 Parametric region: rectangles, circles,
polygons, etc.

* Mask: a binary image where:
* 0 —> no interest area

e 1 —> Interest area



Medical Images



Medical Images

e Main sources:

o CAT

 MRI

e Ultrasound



Noise In Medical Imaging

* Images are not perfect: device, patient moves, etc.

 What we really see is:

flx,y) = f(x,y)
f(z,y) = [(f +nr)®@h|(z,y) - g(x,y) +n(z,y)



Noise In Medical Imaging

* Images are not perfect: device, patient moves, etc.

 What we really see is:
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Other tissues



Noise In Medical Imaging

* Images are not perfect: device, patient moves, etc.

 What we really see is:

flx,y) = f(x,y)
fz,y) = [(f +nr) @ h|(z,y) - g(x,y) +n(z,y)

/

Discrete spatial-temporal process



Noise In Medical Imaging

* Images are not perfect: device, patient moves, etc.

 What we really see is:

flx,y) = f(x,y)
f(z,y) = [(f +nr)®h|(z,y) -|9(x,y)|+ n(z,y)

/

Signal Damping



Noise In Medical Imaging

* Images are not perfect: device, patient moves, etc.

 What we really see is:

flx,y) = f(x,y)
f(z,y) = [(f +nr)@h|(z,y) - 9(x,y) +n(z,y)

|

Device Noise



Noise Measure: SNR

e (Given a ROI i, a definition of SNR is:

SNR = X
o
* where U; and 0; are, respectively, the mean of the
signal in i and Iits noise

* Jo have an estimate of noise, we compute 0; In
the background of the image (i.e., low intensity
values) assuming that noise does not vary in
different ROls



Noise Measure: example

SNR = 3.43 SNR = 29.26



Medical File Format



DICOM

igital Imaging and mmunications in Medicine:

It is a standard for producing, storing, displaying, printing,
and sending, retrieving, and querying medical images

Data: 2D images (may be compressed using JPG/JPG2000)

Metadata: bit-depth, pixel’s size (mm), thickness between
slices (mm), patient’s personal information, date of the
exam, position of the patient, etc.

Issue: many extra fields, which are filled without
consistency amongst different software/scanners



DICOM

* File extension: name_file.dcm

* The media format does not allow files to have
and extension; the folders structure gives
meaning to the file!

* Standard official web-site: http://DICOM.nema.org

* MATLAB and Slicer can open them natively.


http://DICOM.nema.org

Point-wise Operators



Point-wise Operators

* An operator takes as input one or two images, and
the result Is another image.

 Unary operator T+1:

g(x,y) =1 _f(a?vy)_

* Binary operator To:

o(@,y) = To | F(a,y); b y)




Unary Operators:
Negative

* Negative or inverter:

* |t is usually helpful to highlight some structures.

* Note: this operator assumes images’ values are in
the rage [0,1].



Negative:




Unary Operators:
Contrast Stretching

e [his operator increases the dynamic range of the
iInput Image linearly:

g(a:, y) = C5 [f(xvy)v Emin§ Emax] —

= (f(r,y) — min(f)) e~ S

| Emin
max(f) — min(f)

e [t Is useful when the contrast is low.



Contrast Stretching Example




Unary Operators:
Gamma

* Another method for increasing the dynamic range:

e |t S more Intultive.



Unary Operators:
Gamma
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Gamma Example




Unary Operators:
_ogarithmic Operator

* The dynamic range may be too large, (16-bit), and
most monitors handle only 8-bit!

* [he operator is defined as

g(l‘,y) — lOg[f(ZE,y);Emin;EmaX} —

(B — Eoi) log(1+ f(x,y))

| Emin
log(1 4 max(f))




L ogarithmic Example




Unary Operators:
Thresholding

* This operator creates a mask (O or 1 values):

L if f(z,y) € |a,b],
0 otherwise.

g(z,y) = Thr|f(z,y);a;b| = {

* |t can be used for segmentation.



Thresholding Example




Binary Operators

* Binary operators are typically the classic arithmetic
operators defined over images:

o _|_,_’*,/

* Note that using +, -, and /, our dynamic range is
not anymore in the range [0,1] (it can be negative!):

* Linear scaling in [0,1]

* Logarithmic operator



HIstograms



Image Histogram

e A histogram H is the distribution of intensity values
of pixels.

* How do we compute it?
* We divide the range of values into n bins

e For each bin we count the number of pixels
whose intensity values are in the range of that bin

« MATLAB: built-in function



Image Histogram

* This can be seen as the probability of a pixel of
having a given intensity value:
H (i)
N

pI(z,y) € [H(i —1),H(i)]) =

 where H is the histogram, H(x, y) is a pixel of the

image I at coordinate (x, y), and N Is the number
of pixels of 1.
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Histogram Equalization

* A technigue to improve automatically the contrast of the
image.

* [he main idea Is to have an histogram in which each

intensity value j (or bin) has the same (more or less)
number of pixels:

, N
H(']) — 2n_bit

 where N is the number of pixels of the image, and n bit
s the bit-depth of all pixels.

« NOTE: we have a bin for each intensity value!



Histogram Equalization

How?

Matching the CDF (cumulative distribution function)
of the histogram with the CDF of a uniform
histogram.

A uniform CDF is defined as:

olg Flx)=P(X <x) = /%‘ p(z)dx



Histogram Equalization

> >

Uniform Histogram Uniform CDF
|deal continuous CDF




Histogram equalization:
Histogram Matching

- |nput CDF

Target CDF

o




Histogram equalization:
Histogram Matching

- |nput CDF

Target CDF




Histogram equalization:
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- |nput CDF
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Histogram equalization:
Histogram Matching
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Histogram equalization:
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Histogram equalization:
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Histogram equalization:
Histogram Matching
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Histogram equalization:
Histogram Matching

- |nput CDF

- Target CDF




Histogram Equalization
Example
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Histogram Equalization
Example
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Histogram equalization
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Histogram Equalization



Histogram equalization
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Histogram Equalization
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Histogram equalization
Example
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ROI helps in cases of huge peaks (see [=0)



Histogram equalization
Example
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Histogram Equalization
Example




Histogram Equalization
Example




Histogram Equalization
Example




L Inear Filters



1D Convolution

* (Given two functions fand g, f convolved g is defined
as:

+ 00
(f ® g)la] = / F(t) - glt — 2)dz —

+00
=/_ flz—1)- g(x)de

e |n the discrete world, this leads to:

(f@g)li Z fli—j]-



2D Convolution

e |nthe 2D discrete world, this leads to:

(f @ g)[i, ] Z Z fli —k,j—1]- gk, 1]

—NI[=—M

 where g is a (2n)-(2m) matrix, called kernel.
o For sake of simplicity, let's assume negative addresses!

« MATLAB: (1D convolution), and (2D
convolution) built-in functions



Gradient Filter

* The gradient of an image is an important piece of
information:

 Where it Is high implies we may have an edge; i.e., a
boundary between two different regions.

e Jypically, kernels tor computing gradients are defined

as.
0 0 0 0 1 0
gx — —1 0 1 gy = 0 0 0
0 0 0 0 -1 0




Gradient Operator Example




Gradient Operator Example

Ve = \/ ([.]2
gx




Gradient Operator Example




Sobel Gradient Operator

* Jechnically speaking, it is just another discrete
differential operator!

* |t emphasizes more edges, which is good.

—1 0 1 1 2 1
gx = [—2 0 2 gv =10 0 O
-1 0 1 -1 -2 1




Sobel Gradient Operator
Example

8X gy



Sobel Gradient Operator
Example




—age Detectors

* Edges are can be helpful for defining regions

* They help in the visualization of what we want to
segment



—age Detectors

o Steps:

Compute gradients (magnitude and angle of orientation

[ )

Non-maximum suppression —> remove low power stuff

Apply double thresholding; classification: strong, weak,
and no edge

Edge tracking; a weak edge is a strong one it it is
connected to a strong edge!



—age Detectors

o Steps:

Compute gradients (magnitude and angle of orientation

[ )

Non-maximum suppression —> remove low power stuff

Apply double thresholding; classification: strong, weak,
and no edge

Edge tracking; a weak edge is a strong one it it is
connected to a strong edge!



Eadge Detectors:
Edge Tracking



-age Detector Example
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| aplacian rilter

* |t you really want... we can also define a Laplacian
operator... Why?

* The Laplacian of an image highlights regions of

rapid intensity change and is therefore often
used for edge detection

* oNh, jolly good!
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| aplacian Filter Example




|_aplacian Filter Bonus

* With a small change (+1) we can increase
sharpness in the image:

Jsharp — —1 O —1




Laplacian Filter Bonus
Example




Laplacian Filter Bonus
Example




| aplacian Filter Extra
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BOX Fllter

* Thisis a very simple ftilter low-pass filter:
glk,l]=1 VkAVI
* What does it do” It blurs the signal!

 This kernel has to be normalized:
glk, 1]

k,l| = ~ 7
o Zk:_N Zz:_M glk,]



Box Fllter example




Box Fllter example




(Gaussian Filter

e \We use a Gaussian kernel defined as

glk, 1] = G(VE2 + 12)

e where GG is:

o) o 22)

* Note that g has to be normalized:
glk,!]

kil = =§ M
= S e




(Gaussian Filter




Gaussian Filter: how large”

Typically, we have N = M;

N and M depends on the sigma parameter:

5
N:M:§-a » 98% of energy

Larger sigma the better but the slower!

Note: when sigma is too large (e.g., more than 128
pixels) it is better to work in the Fourier domain!



Gaussian Filter Example




Gaussian Filter Example




Box vs (Gaussian

* As you probably know...

* The box filter cuts primarily high frequencies but it
has oscillations for some low frequencies.

e \What does it mean”?

* The Gaussian filter cuts mostly high frequencies!



Box vs (Gaussian Example
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Box vs (Gaussian Example
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Box vs (Gaussian Example
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Box vs (Gaussian Example




Box vs (Gaussian Example




Non-Linear Filters



Salt and Pepper Noise




r Noise

Salt and Peppe




Median rilter

e This filter is mostly meant for tackling salt-and-
pepper noise!

e Linear tilters do a mess with salt-and-pepper!
* |t exploits the fact that median is robust Iin

separating the higher half of data sample from the
lower part! Classist isn't it?



Median rilter

ow does it work?

* \We define the size of the filter; e.qg., 9x9
* For each pixel (i, |):
* We collect all pixel values around (i, |)
 We sort pixel values

e \We take the median value!



Median Filter: Example




Median Filter: Example




Median Filter: Example

[100, 89, 20, 10, 30, 20, 10, 20, 20]



Median Filter: Example

[10, 10, 20, 20, 20, 20, 30, 89, 100]



Median Filter: Example

[10, 10, 20, 20, 20, 20, 30, 89, 100]



Median Filter: Example

[10, 10, 20, 20, 20, 20, 30, 89, 100]



Median rilter Example




Median rilter Example




1he Bilateral Filter

* |tis a non-linear filter, oh really?

* |t works both spatial domain and intensity/range
domain of the image.

* Basically, it Is an adaptive linear filter:
* |t behaves as a linear filter in flat regions;

* At strong edges (step-edge), filtering is “limited”.



1he Bilateral Filter

BEIJ(x, fs:9r) = 5 > I f(llx=yg-(11(y) = 1)),

yEQ(x)

K[I)(x, fs;90) = > [s(Ix=yIDa-(I1(y) = I(x)I)),

y €Q(x)

fs gr)



1he Bilateral Filter

Spatial Function

BFUI.f0,) = ey 2 (= yilor (119 = 169
v J sy Yr yEQ(X)

K[I)(x, fs;90) = > [s(Ix=yIDa-(I1(y) = I(x)I)),

yE€Q(x)




1he Bilateral Filter

BEIJ(x, fs:9r) = 5 > I f(llx=yg-(11(y) = 1)),

yEQ(x)

K[I)(x, fs;90) = > [s(Ix=yIDa-(I1(y) = I(x)I)),
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1he Bilateral Filter

BEIJ(x, fs:9r) = 5 > Il = yIDo-(11(y) = 1))}
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1he Bilateral Filter

BEIJ(x, fs:9r) = 5 > I f(llx=yg-(11(y) = 1)),

yEQ(x)

K[I)(x, fs;90) = > [s(Ix=yIDa-(I1(y) = I(x)I)),

y €Q(x)

fs gr)



1he Bilateral Filter

* £ (Spatial function): a Gaussian function
* g,(Range function: a Gaussian function
* How large is the kernel?

* |f the spatial function is a Gaussian:

N:Mzé()'s
2



The Bilateral Filter Explained
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The Bilateral Filter Explained

Kernel Image



The Bilateral Filter Explained
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The Bilateral Filter Explained

Image



The Bilateral Filter Explained
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The Bilateral Filter Example




Ihe Bilateral Filter Example




Ihe Bilateral Filter Example

Result of using a Gaussian filter with
the same kernel size of previous slide



Ihe Bilateral Filter Example

Result of using a Gaussian filter with
the same kernel size of previous slide



| ocal Contrast
Fnhancement

* Before, we have seen how to increase local
contrast using the sharpening operator (or modified

Laplacian).

* We can achieve better results using a more general
framework



L ocal Contrast
Enhancement

Oli, 3| = fli, J] ((f@g)[i»j])>



| ocal Contrast
Fnhancement




L ocal Contrast
Enhancement

Oli, 3| = fli, J] ((f@g)[i»j])>



L ocal Contrast
Enhancement

o fld)
Oli, j| = [, J] ((f®g)[i,j])>




L ocal Contrast
Enhancement

Oli, 3| = fli, J] ((f@g)[i»j])>



| ocal Contrast
Enhancement




L ocal Contrast
Enhancement

Oli, 3| = fli, J] ((f@g)[i»j])>



| ocal Contrast
Enhancement Example

Input Image Image After Enhancement



| ocal Contrast
Fnhancement

 When using linear filters we may introduce halos!

e halos —> BIAS!

e [t Is better to use non-linear filters such as the
bilateral filter, the guided filter, WLS, etc.



Deconvolution

In some cases, we have to reduce “blur” (e.qg., the patient
moved during the scan):

QK =J

where [ is ideal image, K is a convolution kernel, and J is
the input blurred image.

NOTE: the real case is:
IQK)+n=J

where n IS noise



Deconvolution

 Assuming that we know K:
e We need to find an I such that:

QK =J

e wWhich means:

2
argm}n(]@K — J>



Deconvolution

Richardson-Lucy’s method



Deconvolution

Iy = 0.5nput Blurred Image

liv1=1;- ( ®KT>

[; QK

Richardson-Lucy’s method



Deconvolution

Richardson-Lucy’s method



Deconvolution example

After 1000 iterations



Deconvolution example

After 1000 iterations



Deconvolution example

original deconvolution difference



Deconvolution

* o make It work, we need to:
* Run many iterations (more than thousands)!

 Known exactly the size and shape of K; we can
estimate it. This may create artitacts!



Image Upsampling



Why Upsampling?

 [he main reason why we want to upsample (we
invent data basically) our input data is that they
have a very low resolution

* Forget 4K for your flicks, we have 512x512
resolution in happy days



Upsampling

 When we upsample we need to invent the pixel in
between the original ones...

* Basic solution:
* For each missing pixel:

* find the closest (norm 1, 2, whatever) “real” pixel
with intensity/color Cr

e Set the intensity/color of the missing pixel equals
to Cn



Upsampling:
Nearest Neighbors




Upsampling:
Nearest Neighbors




Upsampling:
Nearest Neighbors




Upsampling:
Nearest Neighbors




Upsampling:
Nearest Neighbors




Upsampling:
Nearest Neighbors




Upsampling:
Nearest Neighbors




Upsampling 1D:
\;inear Interpolation

Cend

Cstart(l o CV) Cenda Q& [O, 1]




Upsampling 1D:
\;inear Interpolation

Cend

Cstart(l o CV) Cenda Q& [O, 1]




This becomes a bi-linear
iInterpolation In 2D!



Bilinear Upsampling 2D




Bilinear Upsampling 2D




Bilinear Upsampling 2D




Bilinear Upsampling 2D




Bilinear Upsampling 2D




Bilinear Upsampling 2D
®




Bilinear Upsampling 2D
®




Bilinear Upsampling 2D




Bilinear Upsampling 2D




Bilinear Upsampling 2D




Bilinear Upsampling 2D




Bilinear Upsampling 2D




Bilinear Upsampling 2D




Bilinear Upsampling 2D




Bilinear Upsampling
Example




What's about 3D?



Triinear Upsampling

 We want to upsample the whole volume:

* First, we apply bilinear upsampling to all slices of
the volume; 1.e., 2D images

 Second, we linearly interpolate between slices to
obtain a new slice



Triinear Upsampling




Triinear Upsampling




Triinear Upsampling




Triinear Upsampling




Triinear Upsampling




Triinear Upsampling




Triinear Upsampling




Triinear Upsampling




Triinear Upsampling




Can we do It better?



Bicubic Usampling (2D)




Bicubic Usampling (2D)




Bicubic Usampling (2D)




Bicubic Upsampling

Upsampling



Bicubic Upsampling

Upsampling



Bicupbic Upsampling
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Bicupbic Upsampling
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that’s all folks!



