3D from Photographs:
Camera Calibration

Dr Francesco Banterle
francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it

3D from Photographs

Automatic
Matching of Ccf‘g“ etr.an
mages alibratio
Surface Dense
Reconstruction Matching

3D model

3D from Photographs

3D model

Automatic
Matching of
Images

Surface
Reconstruction

Camera

Calibration

Dense
Matching

Camera
Pre-Calibration

Camera Model:
Pinhole Camera

Image
Plane

Camera Model:
Pinhole Camera

* [he perspective projection Is defined as

P = K[I|0]G = K[R|t

tl _r]__
t2 R = I';—
tg I':;r

Intrinsic Matrix

Pre-Calibration

* |n some cases, when we know the camera, It Is
useful to avoid intrinsics matrix estimation:

* |t s more precise.

* We reduce computations.

Pre-Calibration: Why*

* |n some cases, when we know the camera, It Is
useful to avoid intrinsics matrix estimation:

* |t s more precise.

* We reduce computations.

DLT:
Direct Linear Transform

DLT: Direct Linear Transform

* Input: a photograph of a non-coplanar calibration
with m 2D points with known 3D coordinates.

* Output: X of the camera.

DLT: Direct Linear Transform

SA201 6.SIGGRAPH.ORG

DLT: Direct Linear Transform

T T
pl U = pll_.M
_ T -M
P = |ps Py
p, M
T) — =2
P3 p, ‘M

DLT: Direct Linear Transform

2D-3D matches

DLT: Direct Linear Transform

e [his |leads to a matrix;:

™M 0 —u,M/ P1
OZ M/ U-M-TZ (P2 =0
- ’ T4 I ps

* For each point, we need to stack this equations
obtaining a matrix 4.

DLT: Direct Linear Transform

 We obtain a 2mXx12 linear system to solve.

 The minimum number of points to solve it is 6, but

more points are required to have robust and stable
solutions.

What's the problem
with this method?

DLT: Direct Linear Transform

 DLI minimizes an algebraic error!
* |t does not have geometric meaning!!
* Hang on, is it all wrong?

 Nope, we can use it as input for a non-linear
method.

DLT: Non-linear Refinement

 The non-linear refinement minimizes (at least
squares) the distance between 2D points of the
image (m;) and projected 3D points (M,):

m 2 2
arg min = U; -+ = V;
i=1 ' P - M;

* Different methods for solving it; e.g., Nelder-Mead’s
method (MATLAB's).

NOw we have a nice
matrix P...

DLT: Direct Linear Transform

e |et’s recap:
K has to be upper-triangular.
* R is orthogonal.

P = K[R|t] = [K - R|K - t] = [P'|p4]

DLT: Direct Linear Transform

e QR decomposition:
+ A=0"T
 where O Is orthogonal and T is upper-triangular.

 |n our case, we have:

P=K-R— (P)y'=R'!' K

DLT: Direct Linear Transform

* QR decomposition to P

[P’]QR =0T
 |n our case, we have:
R=0"1!' K=1"1

e Note that there is a scale factor!

DLT: Direct Linear Transform

ne scale factor is due to the fact we do not know if
‘e taking a shot to a large object from afar or to a
mall object in front of the cameral

w O —

Case 1 Case 2

DLT: Direct Linear Transform

e |t makes sense to fix the scale iIn K because R has
to be an orthogonal matrix!

 This affects also #!

How do we compute ¢ 7

How do we compute ¢ 7

-1
t =K " -py

The Sanity Check

e |f we can have an “estimation” of K from camera

parameters that are available in the camera
specifications.

-
-
p—t

The Sanity Check

 What do we need?
* Focal length of the camera in mm (f).
* Resolution of the picture in pixels (w, &).

« CCD/CMOS sensor size in mm (ws, hs).

The Sanity Check

s a=(fXw)/ws.
+ b= (fXh)/hs.
* up=w/2.

* vo=h/2

The Sanity Check

ca=(fXw)/ws.

e b= (fXh)/hs.

*luo=w/2.

*\vo=h/2

Assuming It In the center!

and what's about the
radial distortion?

Estimating Radial Distortion

e Let’s start with simple radial distortion (i.e., only a
coefficient):

u' = (u—ug) - (14 k173) + ug
v = (v —w0) - (14 k1r3) + vg

r2 = ((“_“0)>2+ <(”_U0)>2 0w =—f ky ay=—fk

gy Ay

e Can we solve it?

Estimating Radial Distortion

* We have only one unknown, which is linear; i1.e., ki:

/

u —u — L
(u—,uo)-fr'?l 1
v — — I
(v—vg)-rczi 1

* |n theory, a single point is enough, but it is better to
use more points to get a more robust solution.

Homograpny

2D Transformations

* \We can have different type of transformation (defined by a
matrix) of 2D points:

e Translation (2 degree of freedom [DoF]):
* |t preserves orientation.
* Rigid/Euclidian (3 DoF); translation, and rotation:
e |t preserves lengths.
o Similarity (4DoF); translation, rotation, and scaling:

e |t preserves angles.

2D Transformations

» Affine (6 degree of freedom [DoF]); D

* |t reserves parallelism.

* Projective (8 DoF):

* |t preserves straight lines.

2D Transtormations:
Homography

* Homography is defined as

x’ m1/ms
m=H -M m= |y | = |ma/m3
1 1

* This is typically expressed as
m~H-M

 where His a 3x3 non-singular matrix with 8 Dok

2D Transtormations:
Homography

N
v

Homography Estimation

m~ H -M

m =

y/
1

M —

Y
1

Homography Estimation

m~ H -M

m =

y/
1

M —

Y
1

Homography Estimation

m~ H - -M
I hi1z1 + hiay1 + his
h31x1 4+ h3oy1 + hss
) = ho1T1 + hooy1 + has
hs1x1 4 h32yr + has

Ir—\@\
L

=

Homography Estimation

(hsi21 + haayr + hs3) - 2" — (hi1z1 + hi2yr + hss)
(hs1x1 + hsay1 + hss) -y — (ha1x1 + haoyr + has)

Homography Estimation

(ha121 + haayr + haz) - " — (hi1z1 + hasyr + haz) =

(hs121 + h3oy1 + hss) - y' — (ha1x1 + haoyr + haz) =

Stacking multiple equations;
one for each match (at least 5!)

Homography Estimation

(ha121 + haayr + haz) - " — (hi1z1 + hasyr + haz) =

(hs121 + h3oy1 + hss) - y' — (ha1x1 + haoyr + haz) =

Stacking multiple equations;
one for each match (at least 5!)

A-vec(H) =0 4is2nx9

Homography Estimation

* Again, we have minimized an algebraic error!!

* Jechnically speaking, we should run a non-linear
optimization.

/hang’s Algorithm

/Zhang’s Algorithm

* Input: a set of n photographs of a checkboard or
other patterns. From these, we have to extract m

points In each photograph!

* Output: K of the camera, and [R|t] for each
photographs.

/Zhang’s Algorithm

/Zhang’s Algorithm

/Zhang’s Algorithm
& C U

K =10 ﬁ U0
0 0 1

/Zhang’s Algorithm
& | C| Uo

K =10 ﬁ U0
0 0 1

/Zhang’s Algorithm

 Assumption:

* We have a set of photographs of a plane so Z is
equal O.

* SO we have 3D points defined as

<
|
— o 8

/Zhang’s Algorithm

m=F M =

=K - [R]t]

— o 8

/Zhang’s Algorithm

m =K. [I’lI‘QI'g‘t] :

:r—\ o E*%:

=K - [I’lrg‘t] .

s

/Zhang’s Algorithm

m =K . [1'11'21'3“3] y

:r—\ o E*%:

K - [I’lrg‘t]

s

/Zhang’s Algorithm

m =K - [I’lI'QI'g‘t] ¥

:r—\ o E*B:

K - [rirgft] | |y » |H=K:|riry|t]

/Zhang’s Algorithm

m =K - |rjrors|t| -
rirars|t It Is a homography!

:r—\ o E%:

K - [I’lrg‘t]

s

H =K. [I’lrg‘t]

v

/Zhang’s Algorithm

m =K - |rirors|t| -
rirars|t It Is a homography!

:r—\ o R:

K - [r1r2 |t]

s

/Zhang’s Algorithm

* Now that we know that we need homographies!
* What to do?

* For each photograph we compute the
homography H between photographed
checkerboard corners and its model.

/Zhang’s Algorithm

Photograph

Model

/Zhang’s Algorithm
 (Given that r1 and r; are orthonormal, we have that:

h) K~' K 'hy =0
h) K"K 'hy =h, K~' K 'h,

/Zhang’s Algorithm

-1 c Cvo—Uo 3
o , a? a?f
B — K—TK—l — agﬁ Oégﬁz | 512 6(62(}32_5206) zg
cvg—ug S c(cvo—uofB) wg (C’UO_’UOﬁ)2 | Ug |
L a2 a2 32 32 a2 32 ! 32 !

B Is symmetric —> defined only by six values:

b = [Bl,la Bl,27 B2,27 Bl,37 BQ,S’ Bgag]—r

1

/Zhang’s Algorithm

- 1 c cvg —Ug S
o2 , a? 3 a3
B p— K_TK_]' p— agﬁ a§52 I 512 C(CQ;OZ_ﬁrLQLOﬁ) 2(2)
cvg—uo c(cvo—uofB) wg (CUO_UOﬁ)2 | Ug |
LT o283 232 32 a2 32 32

B 1s symmetric —> defined only by six values:

b = [3171, Bl,27 B2,27 Bl,37 B2,37 B3,3]T

1

/N
an
g'S
Algorith
m

h,;
- B
‘h; =
— v
z,j°b

/Zhang’s Algorithm

h/ -B-h;=v

1,]

T b

hi1hij
hithja + hizhj
hioh o

hishji
hish o

hi1hjs
hioh s

hish;s

/Zhang’s Algorithm

e (Given that 1 and r; are orthonormal, we have that:
h) K~'"K 'hy =0
h) K~'K'hy=h, K"K 'h,

iz lp—g
(V11 — V22)T

/Zhang’s Algorithm

* |f nimages of the model plane are observed, by
stacking n of such equations:

] " _
12 b=0
T —
_(V11 — V22))
* We obtain:
V-b=0

V1S 2nX6 matrix, so we need n > 2

/Zhang’s Algorithm

* At this point, we can compute elements of K as

vo = (B12B1s — B11B23)/(B11Bas — B7,)
A = Bs3 — [Bis + vg(B12B13 — B11B23)]/Bi1

a = \/\/Bi;
b = \/)\311/(311322 - B%Q)
¢ = —Biaa? /A

ug = cvg/o — Biza /X .

/hang's Algorithm:
Camera Pose

* Furthermore, we can extract the pose as

I'n —)\'K_lhl
I'o —)\'K_lhz
's = I71 XTI9

t = AK ‘hs

/hang's Algorithm:
Non-Linear Refinement

e SO far, we have obtained a solution through
minimizing an algebraic distance that is not
physically meaningful.

* From that solution, we can use a non-linear method
for minimizing the following error:

SN e — (K, Rt M)

1=1 7=1

/hang's Algorithm:
Non-Linear Refinement

e SO far, we have obtained a solution through
minimizing an algebraic distance that is not
physically meaningful.

* From that solution, we can use a non-linear method
for minimizing the following error:

SN e (K Rt M)

1=1 7=1

/hang's Algorithm:
Optical Distortion

* What's about the parameters tor modeling the
radial distortion?

* As before, first algebraic solution, and then a non-
inear solution.

/hang's Algorithm:
Optical Distortion

(w—uo)ry (uw—uo)ry| [ki| _
(v —vo)rs (v— vo)rfl_ ko o
D - k=d

k=(D'-D)'.D'.d

u — u

v — v

/hang's Algorithm:
Non-Linear Refinement

* We extend the previous non-linear model to include
optical distortion:

SN me - (K, R, b,k M)

1=1 7=1

/hang's Algorithm:
Non-Linear Refinement

* We extend the previous non-linear model to include
optical distortion:

mn T

This is a function projecting M; points given
intrinsics and the pose!

that’s all folks!

