
3D from Volume:
Part III

Dr. Francesco Banterle,
francesco.banterle@isti.cnr.it

banterle.com/francesco

mailto:francesco.banterle@isti.cnr.it
http://banterle.com/francesco

The Processing Pipeline

Enhancement

RAW Volume

Segmentation

The Processing Pipeline

Mesh
Extraction

Points
Extractions

3D Mesh

The Processing Pipeline

Mesh
Extraction

Points
Extractions

3D Mesh

3D Visualization

Volume Visualization

• We need to pre-visualize the 3D model that we are
going to create.

• Pre-visualization is typically fast (no need to create
a 3D model) and helps the segmentation process.

Volume Visualization

Camera

Volume

Camera Model:
Pinhole Camera

world-spaceimage-space

Yc

Xc
Zc

f

Image
Plane Hole Yw

Xw

Zw

C

Camera Model
• Perspective projection:

M =

2

664

x

y

z

1

3

775 m0 =

8
><

>:

x

0 = �f · x

z

y

0 = �f · y

z

z

0 = �f

Camera Model
• Perspective projection:

Homogenous coordinates

M =

2

664

x

y

z

1

3

775 m0 =

8
><

>:

x

0 = �f · x

z

y

0 = �f · y

z

z

0 = �f

Camera Model:
Pinhole Camera

Yc

Xc
Zc

f

Image
Plane Hole

u

v
Cc0

Camera Model: Image Plane
u

v

c0 = [u0, v0]
> = C 0

• Pixels have different height and width; i.e., (ku, kv).
• c0 is called the principal point.

• If we take all into account, we obtain:

Camera Model:
Intrinsic Parameters

m0 =

8
><

>:

x

0 = �k

u

· f · x

z

+ u0

y

0 = �k

v

· f · y

z

+ v0

z

0 = �f

m0 =

2

4
x

0

y

0

1

3

5

• This can be expressed in a matrix form with a non-
linear projection:

Camera Model:
Intrinsic Parameters

P =

2

4
�fku 0 u0 0
0 �fkv v0 0
0 0 1 0

3

5 = K[I|0] K =

2

4
�fku 0 u0

0 �fkv v0
0 0 1

3

5

m = P ·M m0 = m/mz

Camera Model:
Extrinsic Parameters

• They define the pose of the camera; i.e., its orientation and
position in the world-space.

• This is defined as geometry matrix G:

• R is a 3x3 rotation matrix (orthogonal matrix with
determinant 1) —> 3 angles: yaw, pitch, and, roll

• t is translation vector (3 components)

G =


R t
0 1

�

Camera Model
• The full camera model including the camera pose

is defined as

• P is 3x4 matrix with 11 independent parameters!

P = K[I|0]G = K[R|t]

t =

2

4
t1
t2
t3

3

5 R =

2

4
r>1
r>2
r>3

3

5

Rendering
• The idea is to create for each pixel a ray (origin and

direction) that is going to intersect the volume.

• We will color the pixel if its ray intersect the volume.
Otherwise the pixel will be set to zero.

f Volume

C

Rendering
• The idea is to create for each pixel a ray (origin and

direction) that is going to intersect the volume.

• We will color the pixel if its ray intersect the volume.
Otherwise the pixel will be set to zero.

f Volume

C

Rendering
• The idea is to create for each pixel a ray (origin and

direction) that is going to intersect the volume.

• We will color the pixel if its ray intersect the volume.
Otherwise the pixel will be set to zero.

f Volume

C

Volume Rendering:
Ray-Marching

Volume boundary

Volume Rendering:
Ray-Marching

Volume boundary

r = (o; ~d)

Volume Rendering:
Ray-Marching

Volume boundary

r = (o; ~d)
xi

Volume Rendering:
Ray-Marching

Volume boundary

r = (o; ~d)
xi xf

Volume Rendering:
Ray-Marching

xi xf

Volume Rendering:
Ray-Marching

I[u, v] =

Z
xf

xi

T

✓
V (o[u, v] + ~d[u, v] · t)

◆
dt

T is called the transfer function

Volume Rendering:
Ray-Marching

xi xf
d

Intensity

Thr2

Thr1

Volume Rendering:
Ray-Marching

xi xf
d

Intensity

Thr2

Thr1

Volume Rendering:
Ray-Marching

xi xf
d

Intensity

Thr2

First

Thr1

Volume Rendering:
Ray-Marching Example

Volume Rendering:
Ray-Marching

xi xf
d

Intensity

Thr1

Thr2

Average

Volume Rendering:
Ray-Marching

xi xf
d

Intensity

Thr1

Thr2

Average

Volume Rendering:
Ray-Marching Example

hang on!
Volumes have intensity

values not colors…

Volume Rendering:
Color Mapping

• To improve visualization intensity values are
mapped to colors:

• In between values are linearly interpolated.

0.5

0.1

Volume Rendering:
Let there be light

• We can improve quality by adding light sources.

• There are local (taking into account that light
bounces around) and global models.

• For the sake of simplicity, we are interested in local
models only!

Volume Rendering:
Let there be light

• A local model is a function computing radiance (L); i.e.,
the value for coloring the pixel using only local geometry
information:

• Point’s position.

• Point’s normal.

• Optical properties of the material at its position. The
intensity value of the volume (or its color encoding) in
our case.

• Light source’s position.

Volume Rendering:
Let there be light

• A simple model assumes that the light source is
placed at infinite (e.g., the sun):

~l

x

~n
x

Volume Rendering:
Let there be light

• A simple local model is the diffuse model that
assume light is locally reflected in all directions:

x

~l

~n
x

Volume Rendering:
Let there be light

• The model is defined as

• Note that:

• needs to be normalized.

• needs to be normalized.

L(x) =
�

⇡
·max(�~n

x

·~l, 0)

~n
x

~l

Volume Rendering:
Let there be light

• The model is defined as

• Note that:

• needs to be normalized.

• needs to be normalized.

L(x) =
�

⇡
·max(�~n

x

·~l, 0)

~n
x

~l

Radiance

Volume Rendering:
Let there be light

• The model is defined as

• Note that:

• needs to be normalized.

• needs to be normalized.

L(x) =
�

⇡
·max(�~n

x

·~l, 0)

~n
x

~l

Albedo/IntensityRadiance

Volume Rendering:
Let there be light

Volume Rendering:
Let there be light

Volume Rendering

• It is a very simple and easy to implement method.

• It is computationally expensive.

• It works in real-time using a GPU!

3D Points Extraction

3D Points Extraction
• For each slice of the volume, we compute the

edges of the segmented region:

3D Points Extraction
• For each white pixel in the edge with coordinates

(u,v) at the i-th slice, we compute its 3D position as

m =

2

4
x

y

z

3

5 =

2

4
u · ku
v · kv
i · kw

3

5

ku is the pixel’s width in mm

kv is the pixel’s height in mm

kw is the distance between slices in mm

3D Points Extraction

• How do we compute the normal at the point?

• It is simply the negative value of the gradient of the
volume in that point!

�~rV

0
14010

20

20 120

40

30
100

60

40

80

50 80
60

100

6070

120

80 40

140

90
20

100
0110

3D Points Extraction
Example

3D Mesh Extraction

A Very Stupid
Algorithm:

For each extracted point, create a cube…

A Very Stupid Algorithm
Example

A Very Stupid Algorithm
Example

A Very Stupid Algorithm
Example

I guess, we can do
better than this!

Connecting the dots…

Edges Triangulation

• As the first step, we extract the edges from each
slice in the volume.

• We save the connectivity of points belonging to the
same edge —> “parametric curve”

• We may have more curves per slice!

Edges Triangulation

Slice 1 Slice 2

Edges Triangulation

Z

X

Y

Edges Triangulation

Z

X

Y

Find the
nearest
point in a
previous slice

Edges Triangulation

Z

X

Y

Connect with
the next
vertex in the
upper line.

Edges Triangulation

Z

X

Y

Edges Triangulation

Z

X

Y

Edges Triangulation:
Fail Case

Slice 1 Slice 2

Edges Triangulation:
Fail Case

Slice 1 Slice 2

Edges Triangulation:
Fail Case

Slice 1 Slice 2

Edges Triangulation
• It works because we have a previously known

connectivity.

• It works only for a binary segmentation mask. No
multiple objects!

• Quality of triangles is pretty poor!

• We cannot close the mesh, i.e., it is not watertight.

Marching Cubes

Let’s start in 2D

Marching Squares

f(x, y) = 0

Marching Squares

f(x, y) = 0

Marching Squares

Marching Squares

f(x, y) = 0

Marching Squares

Marching Squares

Marching Squares

Marching Squares: Cases

There are in total 16 (24) configurations, the
other ones can be computed by rotating or
reflecting these.

Marching Squares
• 1st pass: For each square (“we march”):

• We determine if it is fully inside (1) or outside the
curve (0).

• 2nd pass: For each square:

• We compute the configuration of the current square.

• We fetch from the table of configurations our case.

• We place the line for that case in the current square.

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Marching Squares Example

Let’s move into the
3D world

Marching Cubes

• 1st pass: as in the 2D cases, we need to mark
which part of the volume is the inside (1) or the
outside (0).

• 2nd pass: for each voxel, we need to find out the
current configuration and to look up into a table to
place triangles!

Marching Cubes
• In 3D the look up table has 256 entries (28).

• However, there are only 14 main cases (others are
computed by reflecting and/or rotating these):Marching Cube: configurations

• All configurations: 2^8=256, but only 14 considering rotations,
mirroring and complement

Marching Cubes

Marching Cubes:
Ambiguous Cases

Figure 7: A hole (gray) in the surface generated by the MC algorithm.

vertices are lower than the threshold. In these cases, different triangulations patterns can be selected for the same

cell.

Actually, the problem of the MC topological ambiguity, as noted by Ning and Bloomenthal [27], has to be

more properly splitted into two aspects:

consistency: the polygonization of each cell do not result in improperly closed surfaces (i.e., surfaces with

holes);

correctness: the extracted isosurface is faithful to the geometry of the real surface.

Topological consistency is very important because it prevents the appearance of easily detected artifacts.

Topological correctness is also desirable but it becomes indispensable in our application in which the real un-

derlying function is (or is assumed to be) known and magnification of the ambiguous regions and progressive

refinements of the cells’ polygonization are required. Infact, in these cases, the topological decisions have to

strictly correspond to the true functional variations.

Numerous solutions have been proposed in the last ten years for the solution of the MC topological problems;

they can be classified on the basis of the strategy they adopt. In general:

the techniques proposed for the consistency problem are the simplest to implement and the fastest in exe-

cution. They do not solve the correctness problem;

the solution of the correctness problem implies also the solution of the consistency problem;

most of the algorithms for the correctness problem assure the correctness of the returned isosurface(s) only

on the boundary of the ambiguous cell, not in the inner part.

We will pay particular attention to the last statement because we are interested in applications in which the

isosurface has to be refined inside the cells on the base of a given trilinear interpolant: the topological decisions

we have to take must be consistent with the trilinear functional everywhere in the examined cell.

A review [27, 13] of the proposed solutions includes (but it is certainly not limited to):

9

Hole

[Cignoni et al. 1999]

Marching Cubes:
Ambiguous Cases

• We have ambiguous cases at saddle points.

-1

45

40

-0.8

0
35

5

-0.6

30 10

25 15

-0.4

2020

25
15

-0.2

30
10

35
5 40

0

0 45

0.2

0.4

0.6

0.8

1

Marching Cubes:
Ambiguous Cases

?

Marching Cubes:
Ambiguous Cases

• A typical solution is to compute the saddle point for
each face of the a current cube.

• Based on the sign of each face, we need to extend
the existing cases…

Marching Cubes:
Ambiguous Cases

• A solution, which avoids ambiguous cases, is to
partition each voxel/cell into tetrahedra; e.g. 5 or 6
of them.

Marching Tetrahedra

•Original approach []: cubic cells are partitioned in 5 (o 6)
tetrahedra.
–Subdivision determines topology

•Body centered cubic lattice: one more sample in the middle of the
cubic cell
–Unique subdivision
–Equal tetrahedra
–Better surface (better triangles)

Marching Cubes:
Ambiguous Cases

Marching Cubes

• Advantages:

• Easy to understand and to implement.

• Fast and non memory consuming.

• Very robust.

Marching Cubes
• Disadvantages:

• Consistency: Guarantee a C0 and manifold result:
ambiguous cases.

• Correctness: return a good approximation of the real
surface

• Mesh complexity: the number of triangles does not
depend on the shape of the isosurface (but on the
discretization, i.e., number of voxels).

• Mesh quality: arbitrarily ugly triangles.

Poisson
Reconstruction

Poisson Reconstruction
• The idea of this method is to reconstruct the

surface of a 3D model by solving for the indicator
function of the shape:

�(p) =

(
1 if p 2 M,

0 otherwise.

00

0

0

0

0 0

0

0

0

0
0

1

1
1

1

1

1
1

1

Poisson Reconstruction:
Gradient Relationship

•There is a relationship between the normal field
and gradient of indicator function:

Oriented Points Indicator function gradient

0
0

0

0

0

0

00

0

0

Poisson Reconstruction:
Integration as a Poisson Problem

• Let’s represent the points with a normal by a vector
field .

• We need to find a function whose gradients best
approximates :

min
�

kr�� ~V k

�

~V

~V

• If we apply the divergence operator, this becomes
a Poisson problem:

Poisson Reconstruction:
Integration as a Poisson Problem

r · (r�) = r · ~V $ �� = r · ~V

min
�

kr�� ~V k

Poisson Reconstruction
Example

Poisson Reconstruction
Example

Poisson Reconstruction

• Precise and robust.

• Computationally slow, it depends on the resolution.

• The Poisson solution needs to close stuff so if there
are no enough points in an area weird things will
happen.

that’s all folks!

Acknowledgements
• Some images on work by:

• Dr. Fabio Ganovelli:

• http://vcg.isti.cnr.it/~ganovell/

• Dr. Paolo Cignoni:

• http://vcg.isti.cnr.it/~cignoni/

http://vcg.isti.cnr.it/~cignoni/

