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3D Visualization



Volume Visualization

• We need to pre-visualize the 3D model that we are 
going to create. 

• Pre-visualization is typically fast (no need to create 
a 3D model) and helps the segmentation process.



Volume Visualization
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Camera Model: 
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Camera Model
• Perspective projection:
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Camera Model
• Perspective projection:

Homogenous coordinates
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Camera Model: 
Pinhole Camera
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Camera Model: Image Plane
u

v

c0 = [u0, v0]
> = C 0

• Pixels have different height and width; i.e., (ku, kv). 
• c0 is called the principal point.



• If we take all into account, we obtain:

Camera Model: 
Intrinsic Parameters
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• This can be expressed in a matrix form with a non-
linear projection:

Camera Model: 
Intrinsic Parameters
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Camera Model: 
Extrinsic Parameters

• They define the pose of the camera; i.e., its orientation and 
position in the world-space. 

• This is defined as geometry matrix G: 

• R is a 3x3 rotation matrix (orthogonal matrix with 
determinant 1) —> 3 angles: yaw, pitch, and, roll 

• t is translation vector (3 components)

G =
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R t
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Camera Model
• The full camera model including the camera pose 

is defined as 

• P is 3x4 matrix with 11 independent parameters!

P = K[I|0]G = K[R|t]
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Rendering
• The idea is to create for each pixel a ray (origin and 

direction) that is going to intersect the volume. 

• We will color the pixel if its ray intersect the volume. 
Otherwise the pixel will be set to zero.
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Volume Rendering: 
Ray-Marching
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Volume Rendering: 
Ray-Marching

Volume boundary

r = (o; ~d)



Volume Rendering: 
Ray-Marching

Volume boundary

r = (o; ~d)
xi



Volume Rendering: 
Ray-Marching

Volume boundary

r = (o; ~d)
xi xf



Volume Rendering: 
Ray-Marching

xi xf



Volume Rendering: 
Ray-Marching

I[u, v] =

Z
xf

xi

T

✓
V (o[u, v] + ~d[u, v] · t)

◆
dt

T is called the transfer function
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Volume Rendering: 
Ray-Marching Example
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Volume Rendering: 
Ray-Marching Example



hang on! 
Volumes have intensity 

values not colors…



Volume Rendering: 
Color Mapping

• To improve visualization intensity values are 
mapped to colors: 

• In between values are linearly interpolated.
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Volume Rendering: 
Let there be light

• We can improve quality by adding light sources. 

• There are local (taking into account that light 
bounces around) and global models. 

• For the sake of simplicity, we are interested in local 
models only!



Volume Rendering: 
Let there be light

• A local model is a function computing radiance (L); i.e., 
the value for coloring the pixel using only local geometry 
information: 

• Point’s position. 

• Point’s normal. 

• Optical properties of the material at its position. The 
intensity value of the volume (or its color encoding) in 
our case. 

• Light source’s position.



Volume Rendering: 
Let there be light

• A simple model assumes that the light source is 
placed at infinite (e.g., the sun):
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Volume Rendering: 
Let there be light

• A simple local model is the diffuse model that 
assume light is locally reflected in all directions:
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Volume Rendering: 
Let there be light

• The model is defined as 

• Note that: 

•      needs to be normalized. 

•      needs to be normalized.
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Volume Rendering: 
Let there be light

• The model is defined as 

• Note that: 

•      needs to be normalized. 

•      needs to be normalized.

L(x) =
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Volume Rendering: 
Let there be light



Volume Rendering: 
Let there be light



Volume Rendering

• It is a very simple and easy to implement method. 

• It is computationally expensive. 

• It works in real-time using a GPU!



3D Points Extraction



3D Points Extraction
• For each slice of the volume, we compute the 

edges of the segmented region:



3D Points Extraction
• For each white pixel in the edge with coordinates 

(u,v) at the i-th slice, we compute its 3D position as

m =
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4
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ku is the pixel’s width in mm

kv is the pixel’s height in mm

kw is the distance between slices in mm



3D Points Extraction

• How do we compute the normal at the point? 

• It is simply the negative value of the gradient of the 
volume in that point!

�~rV
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3D Points Extraction 
Example



3D Mesh Extraction



A Very Stupid 
Algorithm:

For each extracted point, create a cube…



A Very Stupid Algorithm 
Example
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A Very Stupid Algorithm 
Example



I guess, we can do 
better than this!



Connecting the dots…



Edges Triangulation

• As the first step, we extract the edges from each 
slice in the volume. 

• We save the connectivity of points belonging to the 
same edge —> “parametric curve” 

• We may have more curves per slice!



Edges Triangulation
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Edges Triangulation
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Edges Triangulation
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Edges Triangulation: 
Fail Case
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Edges Triangulation: 
Fail Case

Slice 1 Slice 2



Edges Triangulation
• It works because we have a previously known 

connectivity. 

• It works only for a binary segmentation mask. No 
multiple objects! 

• Quality of triangles is pretty poor! 

• We cannot close the mesh, i.e., it is not watertight.



Marching Cubes



Let’s start in 2D



Marching Squares

f(x, y) = 0



Marching Squares
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Marching Squares
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Marching Squares



Marching Squares



Marching Squares: Cases

There are in total 16 (24) configurations, the 
other ones can be computed by rotating or 
reflecting these.



Marching Squares
• 1st pass: For each square (“we march”): 

• We determine if it is fully inside (1) or outside the 
curve (0). 

• 2nd pass: For each square: 

• We compute the configuration of the current square. 

• We fetch from the table of configurations our case. 

• We place the line for that case in the current square.



Marching Squares Example
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Marching Squares Example



Let’s move into the 
3D world



Marching Cubes

• 1st pass: as in the 2D cases, we need to mark 
which part of the volume is the inside (1) or the 
outside (0). 

• 2nd pass: for each voxel, we need to find out the 
current configuration and to look up into a table to 
place triangles!



Marching Cubes
• In 3D the look up table has 256 entries (28). 

• However, there are only 14 main cases (others are 
computed by reflecting and/or rotating these):Marching Cube: configurations 

•   All configurations: 2^8=256, but only 14 considering rotations, 
mirroring and complement 



Marching Cubes



Marching Cubes: 
Ambiguous Cases

Figure 7: A hole (gray) in the surface generated by the MC algorithm.

vertices are lower than the threshold. In these cases, different triangulations patterns can be selected for the same

cell.

Actually, the problem of the MC topological ambiguity, as noted by Ning and Bloomenthal [27], has to be

more properly splitted into two aspects:

consistency: the polygonization of each cell do not result in improperly closed surfaces (i.e., surfaces with

holes);

correctness: the extracted isosurface is faithful to the geometry of the real surface.

Topological consistency is very important because it prevents the appearance of easily detected artifacts.

Topological correctness is also desirable but it becomes indispensable in our application in which the real un-

derlying function is (or is assumed to be) known and magnification of the ambiguous regions and progressive

refinements of the cells’ polygonization are required. Infact, in these cases, the topological decisions have to

strictly correspond to the true functional variations.

Numerous solutions have been proposed in the last ten years for the solution of the MC topological problems;

they can be classified on the basis of the strategy they adopt. In general:

the techniques proposed for the consistency problem are the simplest to implement and the fastest in exe-

cution. They do not solve the correctness problem;

the solution of the correctness problem implies also the solution of the consistency problem;

most of the algorithms for the correctness problem assure the correctness of the returned isosurface(s) only

on the boundary of the ambiguous cell, not in the inner part.

We will pay particular attention to the last statement because we are interested in applications in which the

isosurface has to be refined inside the cells on the base of a given trilinear interpolant: the topological decisions

we have to take must be consistent with the trilinear functional everywhere in the examined cell.

A review [27, 13] of the proposed solutions includes (but it is certainly not limited to):

9

Hole

[Cignoni et al. 1999]



Marching Cubes: 
Ambiguous Cases

• We have ambiguous cases at saddle points. 
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Marching Cubes: 
Ambiguous Cases

?



Marching Cubes: 
Ambiguous Cases

• A typical solution is to compute the saddle point for 
each face of the a current cube. 

• Based on the sign of each face, we need to extend 
the existing cases…



Marching Cubes: 
Ambiguous Cases

• A solution, which avoids ambiguous cases, is to 
partition each voxel/cell into tetrahedra; e.g. 5 or 6 
of them.

Marching Tetrahedra 

•Original approach []: cubic cells are partitioned in  5 (o 6) 
tetrahedra. 
–Subdivision determines topology 
 
•Body centered cubic lattice: one more sample in the middle of the 
cubic cell   
–Unique subdivision 
–Equal tetrahedra 
–Better surface (better triangles) 



Marching Cubes: 
Ambiguous Cases



Marching Cubes

• Advantages: 

• Easy to understand and to implement. 

• Fast and non memory consuming. 

• Very robust.



Marching Cubes
• Disadvantages: 

• Consistency: Guarantee a C0 and manifold result: 
ambiguous cases. 

• Correctness: return a good approximation of the real 
surface 

• Mesh complexity: the number of triangles does not 
depend on the shape of the isosurface (but on the 
discretization, i.e., number of voxels). 

• Mesh quality: arbitrarily ugly triangles.



Poisson 
Reconstruction



Poisson Reconstruction
• The idea of this method is to reconstruct the 

surface of a 3D model by solving for the indicator 
function of the shape: 

�(p) =

(
1 if p 2 M,

0 otherwise.
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Poisson Reconstruction: 
Gradient Relationship

•There is a relationship between the normal field 
and gradient of indicator function:

Oriented Points Indicator function gradient
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Poisson Reconstruction: 
Integration as a Poisson Problem

• Let’s represent the points with a normal by a vector 
field    . 

• We need to find a function    whose gradients best 
approximates    :

min
�

kr�� ~V k

�

~V

~V



• If we apply the divergence operator, this becomes 
a Poisson problem: 

Poisson Reconstruction: 
Integration as a Poisson Problem

r · (r�) = r · ~V $ �� = r · ~V

min
�

kr�� ~V k



Poisson Reconstruction 
Example



Poisson Reconstruction 
Example



Poisson Reconstruction

• Precise and robust. 

• Computationally slow, it depends on the resolution. 

• The Poisson solution needs to close stuff so if there 
are no enough points in an area weird things will 
happen.



that’s all folks!
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