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2D/3D Segmentation



Segmentation
• Segmentation is a process after which we obtain a 

mask of a structure in an/a image/voxel. 

• A mask is binary image/volume; i.e., its values can 
be only either 0 or 1. 

• 1 —> the pixel/voxel belongs to a structure of our 
interest 

• 0 —> the pixel/voxel does not!
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Segmentation

• Obviously, if we need to segment k objects in the 
image/volume we have two ways to proceed: 

1. We create k-masks, one for each object. 

2. We create an unsigned integer mask in which 
each object as label a number in [1,k]. 
Background is always 0!



3D Segmentation

• There are typically two approaches: 

• 2D segmentation for each slice  

• 2D segmentation of a slice and propagation of 
the segmentation



Manual Segmentation



Manual Segmentation: 
Painting Approach

• We manually paint the mask using a GUI. 

• Obviously, the segmentation mask is created in a 
different layer and not on the input image!



Manual Segmentation: 
Painting Approach
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Manual Segmentation: 
Boundary Definition

• We manually define the boundary of the mask 
using a GUI. 

• We either define it using polygons or free-hand. 

• We can use image gradients and Laplacian to stick 
polygons to our object of interest.



Manual Segmentation: 
Boundary Definition



Manual Segmentation: 
Boundary Definition



Thresholding



• We assume that each object in an image/volume has 
a unique intensity value 

Thresholding Example

Object Value

Skull 255

Grey Matter 153

Veins 77



• This means: 

• We can have different distance functions: 

Thresholding
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Thresholding Example

It = 1.0        t = 0.1



Thresholding Example

It = 0.6        t = 0.1



Thresholding Example

It = 0.3        t = 0.1



Thresholding: 
Connected Components

• After segmentation we may 
end up with different pieces 
that are not connected.



Thresholding: 
Connected Components

• A two-pass algorithm that works in scan order (from 
left to right and from top to bottom). 

• 1-Pass: it creates labels to groups of pixel. 

• 2-Pass: it merges groups that are connected.



Thresholding: 
Connected Components

Scan order



First Pass



Thresholding: 
Connected Components

We check up and 
left neighbors to 
see if they 
have a label.



Thresholding: 
Connected Components

If not we create a 
new one.



Thresholding: 
Connected Components

Then, we move 
right, and we 
repeat the 
process.



Thresholding: 
Connected Components

In this case, the 
left neighbor has a 
label, so we reuse 
it.
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Thresholding: 
Connected Components

1

2
In this case, we 
choose the lowest 
label, and we store 
that 1 is equivalent 
to 2
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Second Pass



Thresholding: 
Connected Components
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We go through all 
pixels. For each 
pixel we set the 
value of lowest 
equivalent.



Thresholding: 
Connected Components

1

2

3

4



Thresholding: 
Connected Components

1

2

3

4



Thresholding: 
Connected Components

1

2

3

4



Thresholding: 
Connected Components

1

2

3

4

1 2=



Thresholding: 
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Thresholding: 
Connected Components Example



Thresholding
• It works if each object has a unique intensity value/

color; this is a very limiting constraint! 

• However, it could be used as a starting point for 
other algorithms. 

• The user needs to set the threshold!  

• The It value for each class may be inferred by 
analyzing the histogram of the input image. 

• Its 3D extension is trivial! 



k-Means



k-Means

• k-means is a clustering algorithm. 

• Let’s assume we have k-objects in the image. 

• So we have to determine k-clusters.



k-Means: Initialization

• Let’s assume k = 3. 

• We make a random 
guess on the k-
centroids (the 
stars). 
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• Let’s assume k = 3. 

• We make a random 
guess on the k-
centroids (the 
stars). 



k-Means: Iteration

• We now assign a 
sample to a cluster 
if the distance (L1, 
L2, etc.),  between 
a centroid is the 
minimum.



k-Means: Iteration

• We re-compute the 
centroid as the 
mean of samples of 
a cluster.



k-Means: Iteration

• We repeat the 
process until 
convergence (no 
more changes) or 
after m iterations.



k-Means: Iteration

• We repeat the 
process until 
convergence (no 
more changes) or 
after m iterations.



k-Means Example



k-Means

• The method is fully automatic, we do not need to 
set threshold! 

• Disadvantages: 

• we need to know how many objects (including 
the background) are in the image.



Active Contour Model 
aka Snakes



Snakes
• A snake is a parametric curve: 

• Typically, it is a spline (original paper), but for sake 
of simplicity let’s assume a piecewise linear curve. 

v(t) =
�
x(t); y(t)

�
t 2 [0, 1]



• The snake curve is defined by a set of control point 
that is defined as 

Snakes

C = {vi|i 2 [1, n]} where vi = (xi, yi)

vi-1

vi

vi+1



Snakes

• A first step, we draw 
a snake close to the 
boundary of the 
object we want to 
segment.



Snakes

• Then, we deform its 
control points in order 
to move them 
towards the object’s 
boundary.
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Snakes

• Then, we deform its 
control points in order 
to move them 
towards the object’s 
boundary.



Snakes

• How do we deform the control points? 

• An energy function E is associated with the curve. 

• We deform control points by minimizing E; i.e., we 
solve an optimization problem.



Snakes
• How do we define the energy function? 

• The energy of a snake has three components: 

Ev = E
internal

+ E
external

+ E
constraint



Snakes: Internal Energy
• This energy represents the internal energy of the 

cure due to bending. It is defined per point as 

• The total energy is defined as 
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Snakes: Internal Energy
• This energy represents the internal energy of the 

cure due to bending. It is defined per point as 

• The total energy is defined as 

Einternal =
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• The first term is an elastic energy: 

• The second term is a bending energy: 

 

Snakes: Internal Energy
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Snakes: Internal Energy
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Snakes: External Energy
• This energy determines how well the snake matches 

with the image locally! 

• How can we achieve this? 

• Gradients magnitude 



• It is defined per point as 

• The total energy is defined as 

Snakes: External Energy

E
external

(v(t)) = �krI(v(t))k2

E
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Snakes: Constraint Energy
• This energy is meant for interactive systems. 

• The user interactively monitors the minimization, 
and she/he can push/pull vertices using the mouse 
cursor’s position: 

• Repulsion forces or “vulcano”: 

• Spring forces:  

1

r2

�k(x1 � x2)
2



Snakes: Constraint Energy
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Snakes: Constraint Energy



How do we solve it?
Ev = E

internal

+ E
external

+ E
constraint



Gradient Descent
• It is a first-order iterative optimization method: 

• We need to start with a g 

• It will find a local minimum! 

• f has to be differentiable. 

• x0 is a guess. x0

x

i+1
j = x

i
j � ↵

@

@xj
f(xi

j)



Gradient Descent
• It is a first-order iterative optimization method: 

• We need to start with a g 

• It will find a local minimum! 

• f has to be differentiable. 

• x0 is a guess. x0

x

i+1
j = x

i
j � ↵

@

@xj
f(xi

j)



Gradient Descent
• It is a first-order iterative optimization method: 

• We need to start with a g 

• It will find a local minimum! 

• f has to be differentiable. 

• x0 is a guess. x0

x

i+1
j = x

i
j � ↵

@

@xj
f(xi

j)



Gradient Descent
• It is a first-order iterative optimization method: 

• We need to start with a g 

• It will find a local minimum! 

• f has to be differentiable. 

• x0 is a guess. x0

x

i+1
j = x

i
j � ↵

@

@xj
f(xi

j)



Gradient Descent
• It is a first-order iterative optimization method: 

• We need to start with a g 

• It will find a local minimum! 

• f has to be differentiable. 

• x0 is a guess. x0

x

i+1
j = x

i
j � ↵

@

@xj
f(xi

j)



Gradient Descent



Gradient Descent

x0



Gradient Descent

x0



Gradient Descent

x0



Gradient Descent

x0



Gradient Descent

x0x0



Gradient Descent

x0x0



Gradient Descent
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Gradient Descent

x0x0



Snakes: Gradient Descent

• What is our x0 in the snake minimization? 

• We need to click a few points in the image around 
our object of interest!



Snakes An Example



Snakes

• Extension to the 3D case: 

• Instead of a curve we have a parametric surface; e.g., we 
can start using a sphere. 

• Disadvantages: 

• We may have an over-smooth boundaries when using splines 

• How many n control points? 

• Not trivial to avoid self-intersection.



Region Growing



Region Growing

• This algorithms expands a painted initial mask until 
it reaches strong edges 

• Therefore, we need to compute edges first!



Region Growing



Region Growing

Seed



Region Growing



Region Growing



after a while…



Region Growing



Region Growing
• It is straightforward to extend to 3D! 

• This algorithm depends on: 

• The threshold of edge detection 

• It may be slow: 

• From an initial seed, the growing region needs to reach 
the farthest edge pixel/voxel. 

• Computational complexity is a function of the area/
volume of the object we want to segment.



Region Growing: 
Epic Fail



Region Growing: 
Epic Fail



Stroke-Based



Stroke-Based

• Stroke-based algorithms are based on the idea to 
define with a stroke what is foreground (i.e., our 
object of interest) and what is background. 

• These strokes are roughly painted. 

• However, they have to be placed in areas where 
we are 100% sure how to classify the image.



Stroke-Based
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Stroke-Based
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Stroke-Based: Grow-Cut

• Grow-cut is a stroke-based method. 

• The idea is to propagate the label of the current 
pixels if its neighbors are “similar”.



• For each pixel, we have: 

• Initialization pixel without stroke: 

• Initialization pixel without stroke: 

Stroke-Based: Grow-Cut

< li; ✓i;Ci >

li = 0; ✓i = 0; Ci = I(xi, yi) 8i s(xi; yi) = 0

li = s(xi; yi); ✓i = 0; Ci = I(xi, yi) 8i s(xi; yi) 6= 0



• For each pixel, we have: 

• Initialization pixel without stroke: 

• Initialization pixel without stroke: 

Stroke-Based: Grow-Cut

< li; ✓i;Ci >

Label

Strength

Intensity

li = 0; ✓i = 0; Ci = I(xi, yi) 8i s(xi; yi) = 0

li = s(xi; yi); ✓i = 0; Ci = I(xi, yi) 8i s(xi; yi) 6= 0



Stroke-Based: Grow-Cut
• For each pixel i: 

• We copy the previous status: 

• For each neighbors j of i: 

• if                                         then 

< lt+1
i , ✓t+1

i ; It+1
i >=< lti , ✓

t
i ; I

t
i >

g(kCt
i � Ct

jk2) · ✓tq > ✓ti

lt+1
i = ltj

✓t+1
i = g(kCt

i � Ct
jk2) · ✓tj



Stroke-Based: Grow-Cut

• This process is iterated until either convergence 
(no changes in state) or labels have been 
propagated enough (e.g., number of pixels of the 
diagonal).



Stroke-Based: Grow-Cut 
Example

Iteration = 1



Stroke-Based: Grow-Cut 
Example

Iteration = 10



Stroke-Based: Grow-Cut 
Example

Iteration = 40



Stroke-Based: Grow-Cut 
Example

Iteration = 321



Stroke-Based: Grow-Cut

• This algorithm can be extended to 3D in a 
straightforward way, and it can be parallelized on 
the GPU. 

• Disadvantages: 

• It is computationally slow!



Stroke-based

• Graph-cut: assuming the 
image as a 4-connected graph, 
we look for the minimum cut in 
the graph. 



Machine Learning
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classification. Therefore, for segmentation too!
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Machine Learning
• Machine learning algorithms work very well for 

classification. Therefore, for segmentation too!

Training 
Set

Learning

Model

Input Output



Machine Learning

Class 2
Class 1



Machine Learning

Class 2
Class 1



Machine Learning: 
Neural Networks

• The idea is to “mimic the neurons” in our brain. 

• They work very well for binary classification, our 
case!



Neural Networks: 
Logistic Regression
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Neural Networks: 
Logistic Regression

• f is called the activation function. 

• It can be defined in many ways. For example: 

• This is because the result has to be either 
belonging or not to a class (i.e., our area of 
interest).

f(z) =
1

1 + e�z
f(z) =

(
1 if z � 0,

0 otherwise.



Neural Networks Example
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Neural Networks: 
Training Sample Example

x = {100,100,200} y = 1
Assuming n = 3



Neural Networks: 
Training Sample Example

x = {20,20,10} y = 0
Assuming n = 3



• We need to collect m samples. 

• We need to minimize an error function. For example: 

• How do we minimize it? 

• Gradient descent. 

• Starting solution? Random values in [0,1]!

Neural Networks: Learning

J(⇥) =
1

2

mX

i=1

✓
f(xi ·⇥> + b)� y

i

◆2

with f(x) = x



Neural Networks: 
Bigger Networks
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Neural Networks: 
Bigger Networks
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Neural Networks
• Advantages: 

• fully automatic! 

• computationally fast to evaluate (not the learning 
though); especially using GPUs. 

• Disadvantages: 

• they required many many examples: more than 
1,000 to get some decent result; better >10,000 
training example!



that’s all folks!


