
3D from Volume:
Part II

Dr. Francesco Banterle,
francesco.banterle@isti.cnr.it

banterle.com/francesco

mailto:francesco.banterle@isti.cnr.it
http://banterle.com/francesco

The Processing Pipeline

Enhancement

RAW Volume

Segmentation

The Processing Pipeline

Mesh
Extraction

Points
Extractions

3D Mesh

The Processing Pipeline

Enhancement

RAW Volume

Segmentation

2D/3D Segmentation

Segmentation
• Segmentation is a process after which we obtain a

mask of a structure in an/a image/voxel.

• A mask is binary image/volume; i.e., its values can
be only either 0 or 1.

• 1 —> the pixel/voxel belongs to a structure of our
interest

• 0 —> the pixel/voxel does not!

Segmentation Example

Segmentation Example

Segmentation Example

Segmentation Example

Segmentation

• Obviously, if we need to segment k objects in the
image/volume we have two ways to proceed:

1. We create k-masks, one for each object.

2. We create an unsigned integer mask in which
each object as label a number in [1,k].
Background is always 0!

3D Segmentation

• There are typically two approaches:

• 2D segmentation for each slice

• 2D segmentation of a slice and propagation of
the segmentation

Manual Segmentation

Manual Segmentation:
Painting Approach

• We manually paint the mask using a GUI.

• Obviously, the segmentation mask is created in a
different layer and not on the input image!

Manual Segmentation:
Painting Approach

Manual Segmentation:
Painting Approach

Manual Segmentation:
Boundary Definition

• We manually define the boundary of the mask
using a GUI.

• We either define it using polygons or free-hand.

• We can use image gradients and Laplacian to stick
polygons to our object of interest.

Manual Segmentation:
Boundary Definition

Manual Segmentation:
Boundary Definition

Thresholding

• We assume that each object in an image/volume has
a unique intensity value

Thresholding Example

Object Value

Skull 255

Grey Matter 153

Veins 77

• This means:

• We can have different distance functions:

Thresholding

d(x; y) = |x� y|
d(x; y) = (x� y)

2

d(x; y) = exp

✓
� (x� y)

2

�

◆d(x; y) = |x� y|
d(x; y) = (x� y)

2

d(x; y) = exp

✓
� (x� y)

2

�

◆

d(x; y) = |x� y|
d(x; y) = (x� y)

2

d(x; y) = exp

✓
� (x� y)

2

�

◆

M(i, j) =

(
1 if d(I(i, j), It) < t,

0 otherwise.

• This means:

• We can have different distance functions:

Thresholding

d(x; y) = |x� y|
d(x; y) = (x� y)

2

d(x; y) = exp

✓
� (x� y)

2

�

◆

Reference Value

d(x; y) = |x� y|
d(x; y) = (x� y)

2

d(x; y) = exp

✓
� (x� y)

2

�

◆

d(x; y) = |x� y|
d(x; y) = (x� y)

2

d(x; y) = exp

✓
� (x� y)

2

�

◆

M(i, j) =

(
1 if d(I(i, j), It) < t,

0 otherwise.

• This means:

• We can have different distance functions:

Thresholding

d(x; y) = |x� y|
d(x; y) = (x� y)

2

d(x; y) = exp

✓
� (x� y)

2

�

◆

Threshold

Reference Value

d(x; y) = |x� y|
d(x; y) = (x� y)

2

d(x; y) = exp

✓
� (x� y)

2

�

◆

d(x; y) = |x� y|
d(x; y) = (x� y)

2

d(x; y) = exp

✓
� (x� y)

2

�

◆

M(i, j) =

(
1 if d(I(i, j), It) < t,

0 otherwise.

Thresholding

0

1000

2000

3000

4000

5000

6000

N
um

be
r o

f P
ix

el
s

0 0.2 0.4 0.6 0.8 1
Intensity value

Thresholding

0

1000

2000

3000

4000

5000

6000

N
um

be
r o

f P
ix

el
s

0 0.2 0.4 0.6 0.8 1
Intensity value

Thresholding Example

It = 1.0 t = 0.1

Thresholding Example

It = 0.6 t = 0.1

Thresholding Example

It = 0.3 t = 0.1

Thresholding:
Connected Components

• After segmentation we may
end up with different pieces
that are not connected.

Thresholding:
Connected Components

• A two-pass algorithm that works in scan order (from
left to right and from top to bottom).

• 1-Pass: it creates labels to groups of pixel.

• 2-Pass: it merges groups that are connected.

Thresholding:
Connected Components

Scan order

First Pass

Thresholding:
Connected Components

We check up and
left neighbors to
see if they
have a label.

Thresholding:
Connected Components

If not we create a
new one.

Thresholding:
Connected Components

Then, we move
right, and we
repeat the
process.

Thresholding:
Connected Components

In this case, the
left neighbor has a
label, so we reuse
it.

Thresholding:
Connected Components

In this case, the
left neighbor has a
label, so we reuse
it.

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

1

2
In this case, we
choose the lowest
label, and we store
that 1 is equivalent
to 2

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Thresholding:
Connected Components

Second Pass

Thresholding:
Connected Components

1

2

3

4

We go through all
pixels. For each
pixel we set the
value of lowest
equivalent.

Thresholding:
Connected Components

1

2

3

4

Thresholding:
Connected Components

1

2

3

4

Thresholding:
Connected Components

1

2

3

4

Thresholding:
Connected Components

1

2

3

4

1 2=

Thresholding:
Connected Components

1

3

4

Thresholding:
Connected Components Example

Thresholding
• It works if each object has a unique intensity value/

color; this is a very limiting constraint!

• However, it could be used as a starting point for
other algorithms.

• The user needs to set the threshold!

• The It value for each class may be inferred by
analyzing the histogram of the input image.

• Its 3D extension is trivial!

k-Means

k-Means

• k-means is a clustering algorithm.

• Let’s assume we have k-objects in the image.

• So we have to determine k-clusters.

k-Means: Initialization

• Let’s assume k = 3.

• We make a random
guess on the k-
centroids (the
stars).

k-Means: Initialization

• Let’s assume k = 3.

• We make a random
guess on the k-
centroids (the
stars).

k-Means: Iteration

• We now assign a
sample to a cluster
if the distance (L1,
L2, etc.), between
a centroid is the
minimum.

k-Means: Iteration

• We re-compute the
centroid as the
mean of samples of
a cluster.

k-Means: Iteration

• We repeat the
process until
convergence (no
more changes) or
after m iterations.

k-Means: Iteration

• We repeat the
process until
convergence (no
more changes) or
after m iterations.

k-Means Example

k-Means

• The method is fully automatic, we do not need to
set threshold!

• Disadvantages:

• we need to know how many objects (including
the background) are in the image.

Active Contour Model
aka Snakes

Snakes
• A snake is a parametric curve:

• Typically, it is a spline (original paper), but for sake
of simplicity let’s assume a piecewise linear curve.

v(t) =
�
x(t); y(t)

�
t 2 [0, 1]

• The snake curve is defined by a set of control point
that is defined as

Snakes

C = {vi|i 2 [1, n]} where vi = (xi, yi)

vi-1

vi

vi+1

Snakes

• A first step, we draw
a snake close to the
boundary of the
object we want to
segment.

Snakes

• Then, we deform its
control points in order
to move them
towards the object’s
boundary.

Snakes

• Then, we deform its
control points in order
to move them
towards the object’s
boundary.

Snakes

• Then, we deform its
control points in order
to move them
towards the object’s
boundary.

Snakes

• How do we deform the control points?

• An energy function E is associated with the curve.

• We deform control points by minimizing E; i.e., we
solve an optimization problem.

Snakes
• How do we define the energy function?

• The energy of a snake has three components:

Ev = E
internal

+ E
external

+ E
constraint

Snakes: Internal Energy
• This energy represents the internal energy of the

cure due to bending. It is defined per point as

• The total energy is defined as

Einternal =

Z 1

0
Einternal(v(t))dt

Einternal(v(t)) =
1

2

✓
↵(t)

����
dv(t)

dt

����
2

+ �(t)

����
d2v(t)

d2t

����
2◆

Snakes: Internal Energy
• This energy represents the internal energy of the

cure due to bending. It is defined per point as

• The total energy is defined as

Einternal =

Z 1

0
Einternal(v(t))dt

Elasticity

Einternal(v(t)) =
1

2

✓
↵(t)

����
dv(t)

dt

����
2

+ �(t)

����
d2v(t)

d2t

����
2◆

Snakes: Internal Energy
• This energy represents the internal energy of the

cure due to bending. It is defined per point as

• The total energy is defined as

Einternal =

Z 1

0
Einternal(v(t))dt

Elasticity Stiffness

Einternal(v(t)) =
1

2

✓
↵(t)

����
dv(t)

dt

����
2

+ �(t)

����
d2v(t)

d2t

����
2◆

• The first term is an elastic energy:

• The second term is a bending energy:

Snakes: Internal Energy

d2v(t)

d2t
⇡ vi+1 � 2vi + vi�1

dv(t)

dt
⇡ vi+1 � vi

• The first term is an elastic energy:

• The second term is a bending energy:

Snakes: Internal Energy

d2v(t)

d2t
⇡ vi+1 � 2vi + vi�1

dv(t)

dt
⇡ vi+1 � vi

• The first term is an elastic energy:

• The second term is a bending energy:

Snakes: Internal Energy

d2v(t)

d2t
⇡ vi+1 � 2vi + vi�1

dv(t)

dt
⇡ vi+1 � vi

Snakes: External Energy
• This energy determines how well the snake matches

with the image locally!

• How can we achieve this?

• Gradients magnitude

• It is defined per point as

• The total energy is defined as

Snakes: External Energy

E
external

(v(t)) = �krI(v(t))k2

E
external

=

Z
1

0

E
external

(v(t))dt

Snakes: Constraint Energy
• This energy is meant for interactive systems.

• The user interactively monitors the minimization,
and she/he can push/pull vertices using the mouse
cursor’s position:

• Repulsion forces or “vulcano”:

• Spring forces:

1

r2

�k(x1 � x2)
2

Snakes: Constraint Energy

Snakes: Constraint Energy

x1

x2

Snakes: Constraint Energy

Snakes: Constraint Energy

Snakes: Constraint Energy

How do we solve it?
Ev = E

internal

+ E
external

+ E
constraint

Gradient Descent
• It is a first-order iterative optimization method:

• We need to start with a g

• It will find a local minimum!

• f has to be differentiable.

• x0 is a guess. x0

x

i+1
j = x

i
j � ↵

@

@xj
f(xi

j)

Gradient Descent
• It is a first-order iterative optimization method:

• We need to start with a g

• It will find a local minimum!

• f has to be differentiable.

• x0 is a guess. x0

x

i+1
j = x

i
j � ↵

@

@xj
f(xi

j)

Gradient Descent
• It is a first-order iterative optimization method:

• We need to start with a g

• It will find a local minimum!

• f has to be differentiable.

• x0 is a guess. x0

x

i+1
j = x

i
j � ↵

@

@xj
f(xi

j)

Gradient Descent
• It is a first-order iterative optimization method:

• We need to start with a g

• It will find a local minimum!

• f has to be differentiable.

• x0 is a guess. x0

x

i+1
j = x

i
j � ↵

@

@xj
f(xi

j)

Gradient Descent
• It is a first-order iterative optimization method:

• We need to start with a g

• It will find a local minimum!

• f has to be differentiable.

• x0 is a guess. x0

x

i+1
j = x

i
j � ↵

@

@xj
f(xi

j)

Gradient Descent

Gradient Descent

x0

Gradient Descent

x0

Gradient Descent

x0

Gradient Descent

x0

Gradient Descent

x0x0

Gradient Descent

x0x0

Gradient Descent

x0x0

Gradient Descent

x0x0

Snakes: Gradient Descent

• What is our x0 in the snake minimization?

• We need to click a few points in the image around
our object of interest!

Snakes An Example

Snakes

• Extension to the 3D case:

• Instead of a curve we have a parametric surface; e.g., we
can start using a sphere.

• Disadvantages:

• We may have an over-smooth boundaries when using splines

• How many n control points?

• Not trivial to avoid self-intersection.

Region Growing

Region Growing

• This algorithms expands a painted initial mask until
it reaches strong edges

• Therefore, we need to compute edges first!

Region Growing

Region Growing

Seed

Region Growing

Region Growing

after a while…

Region Growing

Region Growing
• It is straightforward to extend to 3D!

• This algorithm depends on:

• The threshold of edge detection

• It may be slow:

• From an initial seed, the growing region needs to reach
the farthest edge pixel/voxel.

• Computational complexity is a function of the area/
volume of the object we want to segment.

Region Growing:
Epic Fail

Region Growing:
Epic Fail

Stroke-Based

Stroke-Based

• Stroke-based algorithms are based on the idea to
define with a stroke what is foreground (i.e., our
object of interest) and what is background.

• These strokes are roughly painted.

• However, they have to be placed in areas where
we are 100% sure how to classify the image.

Stroke-Based

+1

-1

Stroke-Based

+1

-1

Stroke-Based

I s

Stroke-Based: Grow-Cut

• Grow-cut is a stroke-based method.

• The idea is to propagate the label of the current
pixels if its neighbors are “similar”.

• For each pixel, we have:

• Initialization pixel without stroke:

• Initialization pixel without stroke:

Stroke-Based: Grow-Cut

< li; ✓i;Ci >

li = 0; ✓i = 0; Ci = I(xi, yi) 8i s(xi; yi) = 0

li = s(xi; yi); ✓i = 0; Ci = I(xi, yi) 8i s(xi; yi) 6= 0

• For each pixel, we have:

• Initialization pixel without stroke:

• Initialization pixel without stroke:

Stroke-Based: Grow-Cut

< li; ✓i;Ci >

Label

Strength

Intensity

li = 0; ✓i = 0; Ci = I(xi, yi) 8i s(xi; yi) = 0

li = s(xi; yi); ✓i = 0; Ci = I(xi, yi) 8i s(xi; yi) 6= 0

Stroke-Based: Grow-Cut
• For each pixel i:

• We copy the previous status:

• For each neighbors j of i:

• if then

< lt+1
i , ✓t+1

i ; It+1
i >=< lti , ✓

t
i ; I

t
i >

g(kCt
i � Ct

jk2) · ✓tq > ✓ti

lt+1
i = ltj

✓t+1
i = g(kCt

i � Ct
jk2) · ✓tj

Stroke-Based: Grow-Cut

• This process is iterated until either convergence
(no changes in state) or labels have been
propagated enough (e.g., number of pixels of the
diagonal).

Stroke-Based: Grow-Cut
Example

Iteration = 1

Stroke-Based: Grow-Cut
Example

Iteration = 10

Stroke-Based: Grow-Cut
Example

Iteration = 40

Stroke-Based: Grow-Cut
Example

Iteration = 321

Stroke-Based: Grow-Cut

• This algorithm can be extended to 3D in a
straightforward way, and it can be parallelized on
the GPU.

• Disadvantages:

• It is computationally slow!

Stroke-based

• Graph-cut: assuming the
image as a 4-connected graph,
we look for the minimum cut in
the graph.

Machine Learning

Machine Learning
• Machine learning algorithms work very well for

classification. Therefore, for segmentation too!

Machine Learning
• Machine learning algorithms work very well for

classification. Therefore, for segmentation too!

Training
Set

Machine Learning
• Machine learning algorithms work very well for

classification. Therefore, for segmentation too!

Training
Set

Model

Machine Learning
• Machine learning algorithms work very well for

classification. Therefore, for segmentation too!

Training
Set

Model

Machine Learning
• Machine learning algorithms work very well for

classification. Therefore, for segmentation too!

Training
Set

Learning

Model

Machine Learning
• Machine learning algorithms work very well for

classification. Therefore, for segmentation too!

Training
Set

Learning

Model

Machine Learning
• Machine learning algorithms work very well for

classification. Therefore, for segmentation too!

Training
Set

Learning

Model

Input

Machine Learning
• Machine learning algorithms work very well for

classification. Therefore, for segmentation too!

Training
Set

Learning

Model

Input

Machine Learning
• Machine learning algorithms work very well for

classification. Therefore, for segmentation too!

Training
Set

Learning

Model

Input

Machine Learning
• Machine learning algorithms work very well for

classification. Therefore, for segmentation too!

Training
Set

Learning

Model

Input Output

Machine Learning

Class 2
Class 1

Machine Learning

Class 2
Class 1

Machine Learning:
Neural Networks

• The idea is to “mimic the neurons” in our brain.

• They work very well for binary classification, our
case!

Neural Networks:
Logistic Regression

𝜃1

Σ

b

𝜃2

𝜃n

… f

x1

… y

x2

xn

y = f(⇥ · x> + b)

Neural Networks:
Logistic Regression

𝜃1

Σ

b

𝜃2

𝜃n

… f

x1

… y

x2

xn

y = f(⇥ · x> + b)

Neural Networks:
Logistic Regression

• f is called the activation function.

• It can be defined in many ways. For example:

• This is because the result has to be either
belonging or not to a class (i.e., our area of
interest).

f(z) =
1

1 + e�z
f(z) =

(
1 if z � 0,

0 otherwise.

Neural Networks Example

𝜃1

Σ

b

𝜃2

𝜃3 f

x1

y

x2

x3

Neural Networks:
Training Sample Example

x = {100,100,200} y = 1
Assuming n = 3

Neural Networks:
Training Sample Example

x = {20,20,10} y = 0
Assuming n = 3

• We need to collect m samples.

• We need to minimize an error function. For example:

• How do we minimize it?

• Gradient descent.

• Starting solution? Random values in [0,1]!

Neural Networks: Learning

J(⇥) =
1

2

mX

i=1

✓
f(xi ·⇥> + b)� y

i

◆2

with f(x) = x

Neural Networks:
Bigger Networks

x1

…

x2

xn

Σ f y

…… … …

Neural Networks:
Bigger Networks

x1

…

x2

xn

Σ f y

…… … …

y = f(⇥ · x> + b)

Neural Networks:
Bigger Networks

x1

…

x2

xn

Σ f y

…… … …

y = f(⇥ · x> + b)

Hidden Layers

Neural Networks
• Advantages:

• fully automatic!

• computationally fast to evaluate (not the learning
though); especially using GPUs.

• Disadvantages:

• they required many many examples: more than
1,000 to get some decent result; better >10,000
training example!

that’s all folks!

