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2D/3D Segmentation



Segmentation

Segmentation is a process after which we obtain a
mask of a structure in an/a image/voxel.

A mask is binary image/volume; i.e., its values can
be only either O or 1.

1 —> the pixel/voxel belongs to a structure of our
Interest

0 —> the pixel/voxel does not!
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Segmentation

* Obviously, if we need to segment k objects in the
image/volume we have two ways to proceed:

1. We create k-masks, one for each object.

2. We create an mask In which

each object as label a number in [1,k].
Background is always O!



3D Segmentation

* There are typically two approaches:
* 2D segmentation for each slice

e 2D segmentation of a slice and propagation of
the segmentation



Manual Segmentation



Manual Segmentation:
Painting Approacnh

* We manually paint the mask using a GUI.

* Obviously, the segmentation mask is created in a
different layer and not on the input image!
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Manual Segmentation:
Boundary Definition

 We manually define the boundary of the mask
using a GUI.

* We either define it using polygons or free-hand.

 We can use image gradients and Laplacian to stick
polygons to our object of interest.



anual Segmentation:
Boundary Definition

‘kneel) (mported)-1.0 (RGB color, 1 layer) 220x233 - GIMP
75 100

v Tool Optons
Free Select

Vo - g
8 Artalasing

Feather edges

.

N

=

Larpers
Mode: Norma
4 o g B8

RANMPRAR® -6
L— :o: 3

.ﬁl

S SO
Q G

.. i




anual Segmentation:
Boundary Definition

‘kneel) (mported)-1.0 (RGB color, 1 layer) 220x233 - GIMP
75 100

v Tool Optons
Free Select

Vo - g
8 Artalasing

Feather edges

.

N

=

Larpers
Mode: Norma
4 o g B8

RANMPRAR® -6
L— :o: 3

.ﬁl

S SO
Q G

.. i




Thresholding



Thresholding Example

* We assume that each object in an image/volume has
a unigue intensity value

Object

Skull

Grey Matter

Veins




Thresholding

e [his means:

M j) = {1 it d(1(,4), 1) < 1.

0 otherwise.

e \WWe can have different distance functions:
d(z;y) = |z —y
d(z;y) = (x — y)°

d(z;y) = eXp( e 3)2>

20
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Thresholding
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Thresholding:
Connected Components

e After segmentation we may
end up with different pieces
that are not connected.




Thresholding:
Connected Components

* A two-pass algorithm that works in scan order (from
left to right and from top to bottom).

 1-Pass: it creates labels to groups of pixel.

e 2-Pass: it merges groups that are connected.



Thresholding:
Connected Components
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FIrst Pass



Thresholding:
Connected Components

... .. We check up and
left neighbors to
see if they
L L | e




Thresholding:
Connected Components

... .. If not we create a




Thresholding:
Connected Components
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Connected Components
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Thresholding:
Connected Components
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Second Pass



Thresholding:
Connected Components

We go through all
==I B

pixel we set the
. equivalent.




Thresholding:
Connected Components
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Thresholding:
Connected Components
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Thresholding:
Connected Components




Thresholding:
Connected Components Example




Thresholding

|t works if each object has a unigue intensity value/
color; this Is a very limiting constraint!

 However, it could be used as a starting point for
other algorithms.

e [The user needs to set the threshold!

* The |; value for each class may be inferred by
analyzing the histogram of the input image.

e [ts 3D extension is trivial!



K-NVleans



K-Means

* k-means is a clustering algorithm.
* Let's assume we have k-objects In the image.

e SO we have to determine k-clusters.



kK-Means: Initialization

Q e Let'sassume k = 3.
: Q Q e We make a random
uess on -
O centroids (the
stars).



kK-Means: Initialization

Q e Let'sassume k = 3.
: Q Q e We make a random
uess on -
O centroids (the
stars).



K-Means: Iteration

« We now assign a
sample to a cluster
if the distance (L1,
L2, etc.), between
a centroid Is the
minimum.




K-Means: Iteration




K-Means: Iteration

« We repeat the
process until
convergence (no
more changes) or
after m iterations.




K-Means: Iteration

We repeat the

O ,
‘ ‘ process until
convergence (no

more changes) or

after m iterations.



K-Means Example




K-Means

* [The method is fully automatic, we do not need to
set threshold!

* Disadvantages:

* we need to know how many objects (including
the background) are in the image.



Active Contour Model
aka Snakes



Snakes

A snake Is a parametric curve:
v(t) = (=(t);y(t) te](0,1]

o Typically, it is a spline (original paper), but for sake
of simplicity let's assume a piecewise linear curve.



Snakes

 The snake curve is defined by a set of control point
that is defined as

C = {v;|i € [1,n]} where v; = (x;, y;)

@ <



Snakes

» A first step, we draw
a snake close to the
boundary of the
object we want to
segment.




Snakes

 Then, we deform its
control points in order
to move them
towards the object’s
boundary.
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Snakes

 Then, we deform its
control points in order
to move them
towards the object’s
boundary.




Snakes

 How do we deform the control points”?
* An energy function E is associated with the curve.

 We deform control points by minimizing E; i.e., we
solve an optimization problem.



Snakes

 How do we define the energy function?

* The energy of a snake has three components:

Ev — Einternal + Eexternal + Econstraint



Snakes: Internal Energy

* This energy represents the internal energy of the
cure due to bending. It is defined per point as

Einternal(v(t)) — l(a(t) d‘;fft) * 6(t> dd‘;it) )

* [he total energy is defined as

1
Einterna,l :/ Einternal(v(t))dt
0
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Snakes: Internal Energy

* The first term is an elastic energy:

®
dv(t)
dt

~ Vitl — Vy

» The second term is a bending energy: ®

d*v(t)
d?t

R Vipl — 2V + Vi



Snakes: Internal Energy

* The first term is an elastic energy:

®
dv(t)
dt

~ Vitl — Vy

 [he second term is a bending energy:

d*v(t)
d?t

R Vipl — 2V + Vi



Snakes: Internal Energy

* The first term is an elastic energy:

®
dtlit) ~ Vit1l — Vy
®
 [he second term is a bending energy: @
d*v(t) @

Tay Vil T 2vi + Vi1



Snakes: External Energy

* This energy determines how well the snake matches
with the image locally!

e How can we achieve this?

* (Gradients magnitude




Snakes: External Energy

e |tis defined per point as

* [he total energy is defined as

1
Eexternal :/ Eexternal(v(t))dt
0



Snakes: Constraint Energy

* This energy is meant for interactive systems.

* [The user interactively monitors the minimization,

and she/he can push/pull vertices using the mouse
Cursor's position:

. 1 )) 1
* Repulsion forces or “vulcano™ —;
74

* Spring forces: —k(x1 — x2)°



Snakes: Constraint Energy
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Snakes: Constraint Energy




How do we solve t?

Ev — Einternal + Eexternal + Econstraint



Gradient Descent

't is a first-order iterative optimization method:
. 0
1+1

T = x; — aé)?jf(x;)

We need to start with a g

It will find a |
fhas to be differentiable.

xO

XY IS a guess.
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Gradient Descent
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Gradient Descent




Gradient Descent




Snakes: Gradient Descent

e \What is our x°in the snake minimization?

* We need to click a few points in the image around
our object of interest!



Snakes An Example




Snakes

e Extension to the 3D case:

* Instead of a curve we have a parametric surface; e.g., we
can start using a sphere.

* Disadvantages:
 \We may have an over-smooth boundaries when using splines

e How many n control points? O

e Not trivial to avoid self-intersection. O




Region Growing



Region Growing

* This algorithms expands a painted initial mask until
it reaches strong edges

* Therefore, we need to compute edges first!



Region Growing




Region Growing

Seed




Region Growing




Region Growing




after a while...



Region Growing




Region Growing

e |tis straightforward to extend to 3D!
e This algorithm depends on:

* The threshold of edge detection
* |t may be slow:

 From an initial seed, the growing region needs to reach
the tfarthest edge pixel/voxel.

* Computational complexity is a function of the area/
volume of the object we want to segment.



Region Growing:
Epic Fall




Region Growing:
Epic Fall




Stroke-Based



Stroke-Based

e Stroke-based algorithms are based on the idea to
define with a stroke what is foreground (i.e., our
object of interest) and what is background.

* [hese strokes are roughly painted.

* However, they have to be placed in areas where
we are 100% sure how to classity the image.



Stroke-Based
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Stroke-Based: Grow-Cut

e Grow-cut is a stroke-based method.

* The idea Is to propagate the label of the current
pixels if its neighbors are “similar”.



Stroke-Based: Grow-Cut

* For each pixel, we have:
<li;0;;C; >
* |nitialization pixel without stroke:
li=0; 0;=0; C;=1I(x;y;) Vis(xiy)=0

e |nitialization pixel without stroke:
li =s(ziyi); 0, =0; Cy=1(xi,y;) Vis(zizy) #0



Stroke-Based: Grow-Cut

* For each pixel, we have:
<| L3 Cq| >
* |nitialization pixel without stroke:
li=0; 0;=0; C;=1I(x;y;) Vis(xiy)=0

e |nitialization pixel without stroke:
li =s(ziyi); 0, =0; Cy=1(xi,y;) Vis(zizy) #0



Stroke-Based: Grow-Cut

* For each pixel I

* We copy the previous status:

<t orth it s=< 1t ot I >

17 71

* For each neighbors jof I

e if g(|]|C; — Cjll2) - 67 > 6; then

t+1 _ gt
=gt

0; = g(|C} = Cjll2) - 6]



Stroke-Based: Grow-Cut

* [his process is iterated until either convergence
(no changes in state) or labels have been

propagated enough (e.g., number of pixels of the
diagonal).



Stroke-Based: Grow-Cut
Example

lteration =



Stroke-Based: Grow-Cut
Example
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Stroke-Based: Grow-Cut
Example

lteration = 40



Stroke-Based: Grow-Cut
Example

lteration = 321



Stroke-Based: Grow-Cut

e This algorithm can be extended to 3D in a
straightforward way, and it can be parallelized on
the GPU.

* Disadvantages:

e |tis computationally slow!



Stroke-based

* Graph-cut: assuming the I
image as a 4-connected graph, —
we look for the minimum cut In I
the graph.
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 Machine learning algorithms work very well for
classification. Theretore, tor segmentation too!
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Machine Learning

 Machine learning algorithms work very well for
classification. Theretore, tor segmentation too!

Qutput
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Machine Learning:
Neural Networks

e [The idea s to "mimic the neurons” In our brain.

 They work very well for binary classification, our
case!



Neural Networks:
| ogistic Regression




Neural Networks:
Logistic Regression




Neural Networks:
|_ogistic Regression

e fis called the activation function.

* |t can be defined in many ways. For example:

f(2)

1 {1 if z >0,

— zZ ] =
l+e % f(z) 0 otherwise.

 This Is because the result has to be either
belonging or not to a class (i.e., our area of
interest).



Neural Networks Example
O—0
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Neural Networks:
Training Sample Example

x = {100,100,200} y =1

Assuming n = 3



Neural Networks:
Training Sample Example

x = {20,20,10) y

Assuming n = 3

|l
O



Neural Networks: Learning

 We need to collect m samples.
* We need to minimize an error function. For example:
1©) =33 (76 @7 +1)—y') with f(2) =
i=1
 How do we minimize it?
* Gradient descent.

o Starting solution? Random values in [0,1]!



Neural Networks:
Bigger Networks
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Neural Networks:
Bigger Networks

Hidden Layers




Neural Networks

 Advantages:
e fully automatic!

e computationally fast to evaluate (not the learning
though); especially using GPUs.

* Disadvantages:

e they required many many examples: more than
1,000 to get some decent result; better >10,000
training example!



that’s all folks!



