3D from Volume: Part II

Dr. Francesco Banterle, francesco.banterle@isti.cnr.it banterle.com/francesco

The Processing Pipeline

RAW Volume

The Processing Pipeline

The Processing Pipeline

RAW Volume

2D/3D Segmentation

Segmentation

- Segmentation is a process after which we obtain a mask of a structure in an/a image/voxel.
- A mask is binary image/volume; i.e., its values can be only either 0 or 1 .
- $1 \longrightarrow$ the pixel/voxel belongs to a structure of our interest
- $0 \longrightarrow$ the pixel/voxel does not!

Segmentation Example

Segmentation Example

Segmentation Example

Segmentation Example

Segmentation

- Obviously, if we need to segment k objects in the image/volume we have two ways to proceed:

1. We create k-masks, one for each object.
2. We create an unsigned integer mask in which each object as label a number in $[1, k]$. Background is always 0 !

3D Segmentation

- There are typically two approaches:
- 2 D segmentation for each slice
- 2D segmentation of a slice and propagation of the segmentation

Manual Segmentation

Manual Segmentation: Painting Approach

- We manually paint the mask using a GUI.
- Obviously, the segmentation mask is created in a different layer and not on the input image!

Manual Segmentation: Painting Approach

Manual Segmentation: Painting Approach

Manual Segmentation: Boundary Definition

- We manually define the boundary of the mask using a GUI.
- We either define it using polygons or free-hand.
- We can use image gradients and Laplacian to stick polygons to our object of interest.

Manual Segmentation: Boundary Definition

Manual Segmentation: Boundary Definition

Thresholding

Thresholding Example

- We assume that each object in an image/volume has a unique intensity value

Thresholding

- This means:

$$
M(i, j)= \begin{cases}1 & \text { if } d\left(I(i, j), I_{t}\right)<t \\ 0 & \text { otherwise }\end{cases}
$$

- We can have different distance functions:

$$
\begin{array}{r}
d(x ; y)=|x-y| \\
d(x ; y)=(x-y)^{2} \\
d(x ; y)=\exp \left(-\frac{(x-y)^{2}}{2 \sigma^{2}}\right)
\end{array}
$$

Thresholding

- This means:

Reference Value

$$
M(i, j)= \begin{cases}1 & \text { if } d\left(I(i, j), I_{t}\right)<t \\ 0 & \text { otherwise }\end{cases}
$$

- We can have different distance functions:

$$
\begin{array}{r}
d(x ; y)=|x-y| \\
d(x ; y)=(x-y)^{2} \\
d(x ; y)=\exp \left(-\frac{(x-y)^{2}}{2 \sigma^{2}}\right)
\end{array}
$$

Thresholding

- This means:

Reference Value

$$
M(i, j)=\left\{\begin{array}{ll}
1 & \text { if } d\left(I(i, j), I_{t}\right)<t, \\
0 & \text { otherwise. }
\end{array}\right. \text { Threshold }
$$

- We can have different distance functions:

$$
\begin{array}{r}
d(x ; y)=|x-y| \\
d(x ; y)=(x-y)^{2} \\
d(x ; y)=\exp \left(-\frac{(x-y)^{2}}{2 \sigma^{2}}\right)
\end{array}
$$

Thresholding

Thresholding

Thresholding Example

$$
I_{t}=1.0 \quad t=0.1
$$

Thresholding Example

$$
I_{t}=0.6 \quad t=0.1
$$

Thresholding Example

$$
I_{t}=0.3 \quad t=0.1
$$

Thresholding: Connected Components

- After segmentation we may end up with different pieces that are not connected.

Thresholding: Connected Components

- A two-pass algorithm that works in scan order (from left to right and from top to bottom).
- 1-Pass: it creates labels to groups of pixel.
- 2-Pass: it merges groups that are connected.

Thresholding: Connected Components

Scan order

First Pass

Thresholding: Connected Components

We check up and left neighbors to see if they have a label.

Thresholding: Connected Components

If not we create a new one.

Thresholding: Connected Components

Then, we move right, and we repeat the process.

Thresholding: Connected Components

In this case, the left neighbor has a label, so we reuse it.

Thresholding: Connected Components

In this case, the left neighbor has a label, so we reuse it.

Thresholding: Connected Components

In this case, we
choose the lowest label, and we store that 1 is equivalent to 2

Thresholding: Connected Components

Second Pass

Thresholding: Connected Components

We go through all pixels. For each pixel we set the value of lowest equivalent.

Thresholding: Connected Components

Thresholding:

Connected Components Example

Thresholding

- It works if each object has a unique intensity value/ color; this is a very limiting constraint!
- However, it could be used as a starting point for other algorithms.
- The user needs to set the threshold!
- The I_{t} value for each class may be inferred by analyzing the histogram of the input image.
- Its 3D extension is trivial!

k-Means

k-Means

- k-means is a clustering algorithm.
- Let's assume we have k-objects in the image.
- So we have to determine k-clusters.

k-Means: Initialization

- Let's assume $\mathrm{k}=3$.
- We make a random guess on the kcentroids (the stars).

k-Means: Initialization

- Let's assume $\mathrm{k}=3$.
- We make a random guess on the kcentroids (the stars).

k-Means: Iteration

- We now assign a sample to a cluster if the distance (L1, L2, etc.), between a centroid is the minimum.

k-Means: Iteration

- We re-compute the centroid as the mean of samples of a cluster.

k-Means: Iteration

- We repeat the process until convergence (no more changes) or after m iterations.

k-Means: Iteration

- We repeat the process until convergence (no more changes) or after m iterations.

k-Means Example

k-Means

- The method is fully automatic, we do not need to set threshold!
- Disadvantages:
- we need to know how many objects (including the background) are in the image.

Active Contour Model aka Snakes

Snakes

- A snake is a parametric curve:

$$
\mathbf{v}(t)=(x(t) ; y(t)) \quad t \in[0,1]
$$

- Typically, it is a spline (original paper), but for sake of simplicity let's assume a piecewise linear curve.

Snakes

- The snake curve is defined by a set of control point that is defined as

$$
\mathbf{C}=\left\{\mathbf{v}_{i} \mid i \in[1, n]\right\} \text { where } \mathbf{v}_{i}=\left(x_{i}, y_{i}\right)
$$

Snakes

- A first step, we draw a snake close to the boundary of the object we want to segment.

Snakes

- Then, we deform its control points in order to move them towards the object's boundary.

Snakes

- Then, we deform its control points in order to move them towards the object's boundary.

Snakes

- Then, we deform its control points in order to move them towards the object's boundary.

Snakes

- How do we deform the control points?
- An energy function \mathbf{E} is associated with the curve.
- We deform control points by minimizing E; i.e., we solve an optimization problem.

Snakes

- How do we define the energy function?
- The energy of a snake has three components:

$$
E_{\mathbf{v}}=E_{\text {internal }}+E_{\text {external }}+E_{\text {constraint }}
$$

Snakes: Internal Energy

- This energy represents the internal energy of the cure due to bending. It is defined per point as

$$
E_{\text {internal }}(\mathbf{v}(t))=\frac{1}{2}\left(\alpha(t)\left|\frac{d \mathbf{v}(t)}{d t}\right|^{2}+\beta(t)\left|\frac{d^{2} \mathbf{v}(t)}{d^{2} t}\right|^{2}\right)
$$

- The total energy is defined as

$$
E_{\text {internal }}=\int_{0}^{1} E_{\text {internal }}(\mathbf{v}(t)) d t
$$

Snakes: Internal Energy

- This energy represents the internal energy of the cure due to bending. It is defined per point as

$$
E_{\text {internal }}(\mathbf{v}(t))=\frac{1}{2}\left(\alpha(t)\left|\frac{d \mathbf{v}(t)}{d t}\right|^{2}-\beta(t)\left|\frac{d^{2} \mathbf{v}(t)}{d^{2} t}\right|^{2}\right)
$$

Elasticity

- The total energy is defined as

$$
E_{\text {internal }}=\int_{0}^{1} E_{\text {internal }}(\mathbf{v}(t)) d t
$$

Snakes: Internal Energy

- This energy represents the internal energy of the cure due to bending. It is defined per point as

$$
E_{\text {internal }}(\mathbf{v}(t))=\frac{1}{2} \underbrace{\left(\alpha(t)\left|\frac{d \mathbf{v}(t)}{d t}\right|^{2}\right.}_{\text {Elasticity }}+\frac{\beta(t)\left|\frac{d^{2} \mathbf{v}(t)}{d^{2} t}\right|^{2}}{\text { Stiffness }}
$$

- The total energy is defined as

$$
E_{\text {internal }}=\int_{0}^{1} E_{\text {internal }}(\mathbf{v}(t)) d t
$$

Snakes: Internal Energy

- The first term is an elastic energy:

$$
\frac{d \mathbf{v}(t)}{d t} \approx \mathbf{v}_{i+1}-\mathbf{v}_{i}
$$

- The second term is a bending energy:

$$
\frac{d^{2} \mathbf{v}(t)}{d^{2} t} \approx \mathbf{v}_{i+1}-2 \mathbf{v}_{i}+\mathbf{v}_{i-1}
$$

Snakes: Internal Energy

- The first term is an elastic energy:

$$
\frac{d \mathbf{v}(t)}{d t} \approx \mathbf{v}_{i+1}-\mathbf{v}_{i}
$$

- The second term is a bending energy:

$$
\frac{d^{2} \mathbf{v}(t)}{d^{2} t} \approx \mathbf{v}_{i+1}-2 \mathbf{v}_{i}+\mathbf{v}_{i-1}
$$

Snakes: Internal Energy

- The first term is an elastic energy:

$$
\frac{d \mathbf{v}(t)}{d t} \approx \mathbf{v}_{i+1}-\mathbf{v}_{i}
$$

- The second term is a bending energy:

$$
\frac{d^{2} \mathbf{v}(t)}{d^{2} t} \approx \mathbf{v}_{i+1}-2 \mathbf{v}_{i}+\mathbf{v}_{i-1}
$$

Snakes: External Energy

- This energy determines how well the snake matches with the image locally!
- How can we achieve this?
- Gradients magnitude

Snakes: External Energy

- It is defined per point as

$$
E_{\text {external }}(\mathbf{v}(t))=-\|\nabla I(\mathbf{v}(t))\|^{2}
$$

- The total energy is defined as

$$
E_{\text {external }}=\int_{0}^{1} E_{\text {external }}(\mathbf{v}(t)) d t
$$

Snakes: Constraint Energy

- This energy is meant for interactive systems.
- The user interactively monitors the minimization, and she/he can push/pull vertices using the mouse cursor's position:
- Repulsion forces or "vulcano": $\frac{1}{r^{2}}$
- Spring forces:

$$
-k\left(\mathbf{x}_{1}-\mathbf{x}_{\mathbf{2}}\right)^{2}
$$

Snakes: Constraint Energy

How do we solve it?
 $E_{\mathbf{v}}=E_{\text {internal }}+E_{\text {external }}+E_{\text {constraint }}$

Gradient Descent

- It is a first-order iterative optimization method:

$$
x_{j}^{i+1}=x_{j}^{i}-\alpha \frac{\partial}{\partial x_{j}} f\left(\mathbf{x}_{j}^{i}\right)
$$

- We need to start with a g
- It will find a local minimum!
- f has to be differentiable.
- \boldsymbol{x}^{0} is a guess.

Gradient Descent

- It is a first-order iterative optimization method:

$$
x_{j}^{i+1}=x_{j}^{i}-\alpha \frac{\partial}{\partial x_{j}} f\left(\mathbf{x}_{j}^{i}\right)
$$

- We need to start with a g
- It will find a local minimum!
- f has to be differentiable.
- \boldsymbol{x}^{0} is a guess.

Gradient Descent

- It is a first-order iterative optimization method:

$$
x_{j}^{i+1}=x_{j}^{i}-\alpha \frac{\partial}{\partial x_{j}} f\left(\mathbf{x}_{j}^{i}\right)
$$

- We need to start with a g
- It will find a local minimum!
- f has to be differentiable.
- \boldsymbol{x}^{0} is a guess.

Gradient Descent

- It is a first-order iterative optimization method:

$$
x_{j}^{i+1}=x_{j}^{i}-\alpha \frac{\partial}{\partial x_{j}} f\left(\mathbf{x}_{j}^{i}\right)
$$

- We need to start with a g
- It will find a local minimum!
- f has to be differentiable.
- \boldsymbol{x}^{0} is a guess.

Gradient Descent

- It is a first-order iterative optimization method:

$$
x_{j}^{i+1}=x_{j}^{i}-\alpha \frac{\partial}{\partial x_{j}} f\left(\mathbf{x}_{j}^{i}\right)
$$

- We need to start with a g
- It will find a local minimum!
- f has to be differentiable.
- \boldsymbol{x}^{0} is a guess.

Gradient Descent

Snakes: Gradient Descent

- What is our \boldsymbol{x}^{0} in the snake minimization?
- We need to click a few points in the image around our object of interest!

Snakes An Example

Snakes

- Extension to the 3D case:
- Instead of a curve we have a parametric surface; e.g., we can start using a sphere.
- Disadvantages:
- We may have an over-smooth boundaries when using splines
- How many n control points?
- Not trivial to avoid self-intersection.

Region Growing

Region Growing

- This algorithms expands a painted initial mask until it reaches strong edges
- Therefore, we need to compute edges first!

Region Growing

Region Growing

Seed

Region Growing

Region Growing

after a while...

Region Growing

Region Growing

- It is straightforward to extend to 3D!
- This algorithm depends on:
- The threshold of edge detection
- It may be slow:
- From an initial seed, the growing region needs to reach the farthest edge pixel/voxel.
- Computational complexity is a function of the area/ volume of the object we want to segment.

Region Growing: Epic Fail

Region Growing: Epic Fail

Stroke-Based

Stroke-Based

- Stroke-based algorithms are based on the idea to define with a stroke what is foreground (i.e., our object of interest) and what is background.
- These strokes are roughly painted.
- However, they have to be placed in areas where we are 100% sure how to classify the image.

Stroke-Based

Stroke-Based

Stroke-Based

Stroke-Based: Grow-Cut

- Grow-cut is a stroke-based method.
- The idea is to propagate the label of the current pixels if its neighbors are "similar".

Stroke-Based: Grow-Cut

- For each pixel, we have:

$$
<l_{i} ; \theta_{i} ; C_{i}>
$$

- Initialization pixel without stroke:

$$
l_{i}=0 ; \quad \theta_{i}=0 ; \quad C_{i}=I\left(x_{i}, y_{i}\right) \quad \forall i s\left(x_{i} ; y_{i}\right)=0
$$

- Initialization pixel without stroke:
$l_{i}=s\left(x_{i} ; y_{i}\right) ; \quad \theta_{i}=0 ; \quad C_{i}=I\left(x_{i}, y_{i}\right) \quad \forall i s\left(x_{i} ; y_{i}\right) \neq 0$

Stroke-Based: Grow-Cut

- For each pixel, we have:
Strength
$\langle | l_{i} ; \hat{\theta}_{i} ;\left|C_{i}\right|$
Label Intensity
- Initialization pixel without stroke:

$$
l_{i}=0 ; \quad \theta_{i}=0 ; \quad C_{i}=I\left(x_{i}, y_{i}\right) \quad \forall i s\left(x_{i} ; y_{i}\right)=0
$$

- Initialization pixel without stroke:
$l_{i}=s\left(x_{i} ; y_{i}\right) ; \quad \theta_{i}=0 ; \quad C_{i}=I\left(x_{i}, y_{i}\right) \quad \forall i s\left(x_{i} ; y_{i}\right) \neq 0$

Stroke-Based: Grow-Cut

- For each pixel i :
- We copy the previous status:

$$
<l_{i}^{t+1}, \theta_{i}^{t+1} ; I_{i}^{t+1}>=<l_{i}^{t}, \theta_{i}^{t} ; I_{i}^{t}>
$$

- For each neighbors j of i :
- if $g\left(\left\|C_{i}^{t}-C_{j}^{t}\right\|_{2}\right) \cdot \theta_{q}^{t}>\theta_{i}^{t}$ then

$$
\begin{aligned}
l_{i}^{t+1} & =l_{j}^{t} \\
\theta_{i}^{t+1} & =g\left(\left\|C_{i}^{t}-C_{j}^{t}\right\|_{2}\right) \cdot \theta_{j}^{t}
\end{aligned}
$$

Stroke-Based: Grow-Cut

- This process is iterated until either convergence (no changes in state) or labels have been propagated enough (e.g., number of pixels of the diagonal).

Stroke-Based: Grow-Cut Example

Iteration $=1$

Stroke-Based: Grow-Cut Example

Iteration = 10

Stroke-Based: Grow-Cut Example

Iteration $=40$

Stroke-Based: Grow-Cut Example

Iteration = 321

Stroke-Based: Grow-Cut

- This algorithm can be extended to 3D in a straightforward way, and it can be parallelized on the GPU.
- Disadvantages:
- It is computationally slow!

Stroke-based

- Graph-cut: assuming the image as a 4-connected graph, we look for the minimum cut in the graph.

Machine Learning

Machine Learning

- Machine learning algorithms work very well for classification. Therefore, for segmentation too!

Machine Learning

- Machine learning algorithms work very well for classification. Therefore, for segmentation too!

Machine Learning

- Machine learning algorithms work very well for classification. Therefore, for segmentation too!

Model

Machine Learning

- Machine learning algorithms work very well for classification. Therefore, for segmentation too!

Model

Machine Learning

- Machine learning algorithms work very well for classification. Therefore, for segmentation too!

Model

Machine Learning

- Machine learning algorithms work very well for classification. Therefore, for segmentation too!

Machine Learning

- Machine learning algorithms work very well for classification. Therefore, for segmentation too!

Input

Machine Learning

- Machine learning algorithms work very well for classification. Therefore, for segmentation too!

Machine Learning

- Machine learning algorithms work very well for classification. Therefore, for segmentation too!

Machine Learning

- Machine learning algorithms work very well for classification. Therefore, for segmentation too!

Machine Learning

Class 1

Machine Learning

Class 1

Machine Learning: Neural Networks

- The idea is to "mimic the neurons" in our brain.
- They work very well for binary classification, our case!

Neural Networks: Logistic Regression

Neural Networks: Logistic Regression

Neural Networks: Logistic Regression

- f is called the activation function.
- It can be defined in many ways. For example:

$$
f(z)=\frac{1}{1+e^{-z}} \quad f(z)= \begin{cases}1 & \text { if } z \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- This is because the result has to be either belonging or not to a class (i.e., our area of interest).

Neural Networks Example

Neural Networks: Training Sample Example

$$
x=\{100,100,200\} \quad y=1
$$

Neural Networks: Training Sample Example

$$
x=\{20,20,10\}_{\text {Assuming } n=3} \quad y=0
$$

Neural Networks: Learning

- We need to collect m samples.
- We need to minimize an error function. For example:

$$
J(\boldsymbol{\Theta})=\frac{1}{2} \sum_{i=1}^{m}\left(f\left(\mathbf{x}^{i} \cdot \boldsymbol{\Theta}^{\top}+b\right)-y^{i}\right)^{2} \text { with } f(x)=x
$$

- How do we minimize it?
- Gradient descent.
- Starting solution? Random values in $[0,1]$!

Neural Networks: Bigger Networks

Neural Networks: Bigger Networks

Neural Networks: Bigger Networks

Hidden Layers

Neural Networks

- Advantages:
- fully automatic!
- computationally fast to evaluate (not the learning though); especially using GPUs.
- Disadvantages:
- they required many many examples: more than 1,000 to get some decent result; better $>10,000$ training example!
that's all folks!

