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Image Enhancement

• Step 1: we have to improve the dynamic range of 
the input images in the volume; i.e., increase/
decrease it. 

• Step 2: we have to filter the image in order to elicit 
some features and/or to remove noise (salt-and-
pepper, Gaussian noise, etc). 



2D Images



2D Images
• A 2D image is a graph:

2D Image, 3x3 pixels 4-connected pixel 
adjacency graph

8-connected pixel 
adjacency graph



A Graph

• A graph is a pair G = (V,E), where: 

• V is a set of vertices. Each element of V is called 
a vertex of G. 

• E is a pairs of elements in V; e.g, (V1; V2), etc. 
Each element of E is called an edge of G.



Image Coordinate System

Origin
X

Y

f(x,y)



Image Coordinate System: 
MATLAB

• MATLAB origin —> (1,1) 

• Given an image, img, as m-n matrix to access to f: 

f = img(y, x)



Region Of Interest (ROI)
• We may be interested to process not the full image/

volume but an area/volume. 

• This area is typically called region of interest (ROI). 



• Images are not perfect: device, patient moves, etc. 

• What we really see is: 

Noise in Medical Imaging

f(x, y) ⇡ f

0(x, y)

f(x, y) = [(f 0 + nT )⌦ h](x, y) · g(x, y) + n(x, y)
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• Images are not perfect: device, patient moves, etc. 

• What we really see is: 

Noise in Medical Imaging

f(x, y) ⇡ f

0(x, y)

f(x, y) = [(f 0 + nT )⌦ h](x, y) · g(x, y) + n(x, y)

device noise



• A classic: 

Noise Measure
SNR =

µ

�

SNR = 1.5SNR = 0.8



Medical File Format



DICOM
• Digital Imaging and COmmunications in Medicine 

• It is a standard for producing, storing, displaying, printing, 
and sending, retrieving, and querying medical images 

• Data: 2D images (may be compressed using JPG/
JPG2000) 

• Metadata: patient’s personal information, date of the exam, 
position of the patient, etc. 

• Issue: many extra fields, which are filled without 
consistency amongst different software/scanners



DICOM

• File extension: name_file.dcm 

• The media format does not allow files to have 
and extension; the folders structure gives 
meaning to the file! 

• Standard official web-site: http://DICOM.nema.org 

• MATLAB and Slicer can open them natively.

http://DICOM.nema.org


Point-wise Operators



Point-wise Operators

• An operator takes as input one or two images, and 
the result is another image. 

• Unary operator T1: 

• Binary operator T2:

g(x, y) = T2


f(x, y);h(x, y)

�

g(x, y) = T1


f(x, y)

�



Unary Operators: 
Negative

• Negative or inverter: 

• It is usually helpful to highlight some structures. 

• Note: this operator assumes images’ values are in 
the rage [0,1].

g(x, y) = Neg
⇥
f(x, y)

⇤
= 1.0� f(x, y)



Negative: Example



• This operator increases the dynamic range of the 
input image linearly: 

• It is useful when the contrast is low.

Unary Operators: 
Contrast Stretching

g(x, y) = CS

⇥
f(x, y);E

min

;E

max

⇤
=

= (f(x, y)�min(f))

E

max

� E

min

max(f)�min(f)

+ E

min



Contrast Stretching Example



• Another method for increasing the dynamic range: 

• It is more intuitive.

Unary Operators: 
Gamma

g(x, y) = G
⇥
f(x, y); k; �

⇤
=

= k · f(x, y)�



Unary Operators: 
Gamma
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Gamma Example



Unary Operators: 
Logarithmic Operator

• The dynamic range may be too large, (16-bit), and 
most monitors handle only 8-bit! 

• The operator is defined as 

g(x, y) = log

⇥
f(x, y);E

min

;E

max

⇤
=

= (E

max

� E

min

) · log(1 + f(x, y))

log(1 + max(f))

+ E

min



Logarithmic Example



• This operator creates a mask (0 or 1 values): 

• It can be used for segmentation. 

Unary Operators: 
Thresholding

g(x, y) = Thr

⇥
f(x, y); a; b

⇤
=

(
1 if f(x, y) 2 [a, b],

0 otherwise.



Thresholding Example



Binary Operators
• Binary operators are typically the classic arithmetic 

operators defined over images: 

• +, -, *, / 

• Note that using + and *, we can increase the 
dynamic range and obtaining values in [0,2]: 

• Logarithmic operator 

• Linear scaling in [0,1]



Histograms



Image Histogram
• The distribution of intensity pixel values. 

• This can be seen as the probability of a pixel of 
having a given intensity value. 

• How to compute? 

• For each unique intensity value J: 

• Count how many pixels have J as intensity 

• MATLAB: imhist built-in function
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Histogram Equalization
• A technique to improve automatically the contrast of the 

image. 

• The main idea is to have an histogram in which each 
intensity value J (or bin) has the same (more or less) 
number of pixels: 

• H[J] = n_pixels_image / 2n_bit 

• How? Matching the CDF (cumulative distribution function) 
of the histogram with the CDF of a uniform histogram. 

• This uniform CDF    —>     y(x) = x       with x in [0,1]



Histogram Equalization: 
Histogram Matching
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Histogram Equalization: 
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Histogram Equalization: 
Histogram Matching
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Histogram Equalization: 
Histogram Matching
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Histogram Equalization 
Example
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Pixel Intesity
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Histogram Equalization 
Example
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Histogram Equalization 
Example
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Linear Filters



1D Convolution
• Given two functions f and g, f convolved g is defined 

as 

• In the discrete world, this leads to: 

(f ⌦ g)[x] =

Z +1

�1
f(t) · g(t� x)dx =

=

Z +1

�1
f(x� t) · g(x)dx

(f ⌦ g)[i] =
NX

j=�N

f [i� j] · g[j]



• In the 2D world, this leads to: 

• where g is a (2n)-(2m) matrix, called kernel. 

• For sake of simplicity, let’s assume negative addresses! 

• MATLAB: conv (1D convolution), and conv2 (2D 
convolution) built-in functions

2D Convolution

(f ⌦ g)[i, j] =
NX

k=�N

MX

l=�M

f [i� k, j � l] · g[k, l]



• The gradient of an image is an important piece of 
information: 

• Where it is high implies we may have an edge; i.e., a 
boundary between two different regions. 

• Typically, kernels for computing gradients are defined 
as 

Gradient Filter

gX =

2

4
0 0 0
�1 0 1
0 0 0

3

5 gY =

2

4
0 1 0
0 0 0
0 �1 0

3

5



Gradient Operator Example

gX gY



Gradient Operator Example

krGk =

s✓
[ ]2 + [ ]2

◆
=

gX gY



Gradient Operator Example

krGk =

s✓
[ ]2 + [ ]2

◆
=

gX gY



Sobel Gradient Operator
• Technically speaking, it is just another discrete 

differential operator! 

• It emphasizes more edges, which is good. 

gX =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 gY =

2

4
1 2 1
0 0 0
�1 �2 1

3

5



Sobel Gradient Operator 
Example

gX gY



Sobel Gradient Operator 
Example

gX gY



Sobel Gradient Operator 
Example



Edge Detectors

• Edges are can be helpful for defining regions 

• They help in the visualization of what we want to 
segment



Edge Detectors
• Steps: 

• Compute gradients (magnitude and angle of orientation 
[atan2]) 

• Non-maximum suppression —> remove low power stuff 

• Apply double thresholding; classification: strong, weak, 
and no edge 

• Edge tracking; a weak edge is a strong one if it is 
connected to a strong edge!



Edge Detector Example

thr = 0.001 thr = 0.01 thr = 0.1



Laplacian Filter

• If you really want… we can also define a Laplacian 
operator… Why? 

• The Laplacian of an image highlights regions of 
rapid intensity change and is therefore often 
used for edge detection 

• oh, jolly good!



Laplacian Filter

gL4 =

2

4
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�1 4 �1
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Laplacian Filter Example

gL4 gL8



Laplacian Filter Extra
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Laplacian Filter Bonus

• With a small change (+1) we can increase 
sharpness in the image: 

gsharp =

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5



Laplacian Filter Bonus 
Example



Laplacian Filter Bonus 
Example



• This is a very simple filter low-pass filter: 

• What does it do? It blurs the signal! 

• This kernel has to be normalized: 

Box Filter

g[k, l] =
g[k, l]

PN
k=�N

PM
l=�M g[k, l]

g[k, l] = 1 8k ^ 8l



Box Filter Example



Box Filter Example



• We use a Gaussian kernel defined as 

• where G is: 

• Note that g has to be normalized: 

Gaussian Filter

G(x) = exp

✓
� x

2

2�

2

◆

g[k, l] = G
�p

k2 + l2
�

g[k, l] =
g[k, l]

PN
k=�N

PM
l=�M g[k, l]



Gaussian Filter
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Gaussian Filter: how large?
• Typically, we have N = M; 

• N and M depends on the sigma parameter: 

• Larger sigma the better but the slower! 

• Note: when sigma is too large (e.g., more than 128 
pixels) it is better to work in the Fourier domain!

N = M =
5

2
· � 98% of energy



Gaussian Filter Example



Gaussian Filter Example



Box vs Gaussian
• As you probably know… 

• The box filter cuts primarily high frequencies but it 
has oscillations for some low frequencies. 

• What does it mean? That is BAD! 

• The Gaussian filter cuts mostly high frequencies! 

•  That is GOOD!



Box vs Gaussian Example
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Box vs Gaussian Example
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Box vs Gaussian Example
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Box vs Gaussian Example



Box vs Gaussian Example



Non-Linear Filters



Salt and Pepper Noise



Salt and Pepper Noise



Median Filter

• This filter is mostly meant for tackling salt-and-
pepper noise! 

• Linear filters do a mess with salt-and-pepper! 

• It exploits the fact that median is robust in 
separating the higher half of data sample from the 
lower part! Classist isn’t it?



Median Filter Example



Median Filter Example



The Bilateral Filter
• It is a non-linear filter, oh really? 

• It works both spatial domain and intensity/range 
domain of the image. 

• Basically, it is an adaptive linear filter: 

• It behaves as a linear filter in flat regions; 

• At strong edges (step-edge), filtering is “limited”.



The Bilateral Filter

BF [I](x, fs, gr) =
1

K(x, fs, gr)

X

y2⌦(x)

I(y)fs(kx� yk)gr(kI(y)� I(x)k),

K[I](x, fs, gr) =
X

y2⌦(x)

fs(kx� yk)gr(kI(y)� I(x)k),



The Bilateral Filter

BF [I](x, fs, gr) =
1

K(x, fs, gr)

X

y2⌦(x)

I(y)fs(kx� yk)gr(kI(y)� I(x)k),

K[I](x, fs, gr) =
X

y2⌦(x)

fs(kx� yk)gr(kI(y)� I(x)k),

Spatial Function



The Bilateral Filter

BF [I](x, fs, gr) =
1

K(x, fs, gr)

X

y2⌦(x)

I(y)fs(kx� yk)gr(kI(y)� I(x)k),
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X
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fs(kx� yk)gr(kI(y)� I(x)k),



The Bilateral Filter

BF [I](x, fs, gr) =
1

K(x, fs, gr)

X

y2⌦(x)

I(y)fs(kx� yk)gr(kI(y)� I(x)k),

K[I](x, fs, gr) =
X

y2⌦(x)

fs(kx� yk)gr(kI(y)� I(x)k),

Range Function



The Bilateral Filter

BF [I](x, fs, gr) =
1

K(x, fs, gr)

X

y2⌦(x)

I(y)fs(kx� yk)gr(kI(y)� I(x)k),

K[I](x, fs, gr) =
X

y2⌦(x)

fs(kx� yk)gr(kI(y)� I(x)k),



The Bilateral Filter

• Spatial function: a Gaussian function 

• Range function: a Gaussian function 

• How large is the kernel? 

• If the spatial function is a Gaussian: 

N = M =
5

2
�s



The Bilateral Filter Explained
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The Bilateral Filter Explained
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The Bilateral Filter Explained
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The Bilateral Filter Explained
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The Bilateral Filter Explained
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The Bilateral Filter Example



The Bilateral Filter Example



The Bilateral Filter Example



The Bilateral Filter Example



Local Contrast 
Enhancement

• Before, we have seen how to increase local 
contrast using the sharpening operator. 

• We can achieve better results using a more general 
framework!



Local Contrast 
Enhancement Explained

O[i, j] = f [i, j] ·
✓

f [i, j]

(f ⌦ g)[i, j])

◆
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Local Contrast 
Enhancement Explained
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Local Contrast 
Enhancement Explained

O[i, j] = f [i, j] ·
✓

f [i, j]

(f ⌦ g)[i, j])

◆



Local Contrast 
Enhancement Example



Local Contrast 
Enhancement Example



Bonus: Deconvolution
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Bonus: Deconvolution
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◆Input Blurred Image

Richardson–Lucy deconvolution



Bonus: Deconvolution
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Bonus: Deconvolution 
Example



Bonus: Deconvolution 
Example



Local Contrast 
Enhancement

• When using linear filters we may introduce halos! 

• halos —> BIAS! 

• It is better to use non-linear filters such as the 
bilateral filter, the guided filter, WLS, etc.



Image Upsampling



Why Upsampling?

• The main reason why we want to upsample (we 
invent data basically) our input data is that they 
have a very low resolution 

• Forget 4K for your flicks, we have 512x512 
resolution in happy days



Upsampling
• When we upsample we need to invent the pixel in 

between the original ones… 

• Basic solution: 

• For each missing pixel: 

• find the closest (norm 1, 2, whatever) “real” pixel 
with intensity/color Cn 

• Set the intensity/color of the missing pixel equals 
to Cn



Upsampling: 
Nearest Neighbors



Upsampling: 
Nearest Neighbors



Upsampling: 
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Upsampling: 
Nearest Neighbors



Upsampling: 
Nearest Neighbors
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Upsampling: 
Nearest Neighbors



Upsampling 1D: 
Linear Interpolation

Cstart(1� ↵) + Cend↵ ↵ 2 [0, 1]

Cend

Cstart



Upsampling 1D: 
Linear Interpolation

Cstart(1� ↵) + Cend↵ ↵ 2 [0, 1]

Cend

Cstart



This becomes a bi-linear 
interpolation in 2D!



Bilinear Upsampling 2D
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Bilinear Upsampling 2D



Bilinear Upsampling 2D
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Bilinear Upsampling 2D



Bilinear Upsampling 2D



Bilinear Upsampling 
Example



Can we do it better?



Upsampling
Image Upsampling via Imposed Edge Statistics

Raanan Fattal∗
University of California, Berkeley

Abstract

In this paper we propose a new method for upsampling images
which is capable of generating sharp edges with reduced input-
resolution grid-related artifacts. The method is based on a statisti-
cal edge dependency relating certain edge features of two different
resolutions, which is generically exhibited by real-world images.
While other solutions assume some form of smoothness, we rely on
this distinctive edge dependency as our prior knowledge in order to
increase image resolution. In addition to this relation we require
that intensities are conserved; the output image must be identical
to the input image when downsampled to the original resolution.
Altogether the method consists of solving a constrained optimiza-
tion problem, attempting to impose the correct edge relation and
conserve local intensities with respect to the low-resolution input
image. Results demonstrate the visual importance of having such
edge features properly matched, and the method’s capability to pro-
duce images in which sharp edges are successfully reconstructed.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.4.3 [Image Processing and
Computer Vision]: Enhancement—Sharpening and deblurring

Keywords: image interpolation, image enhancement, Markov ran-
dom field image modeling, super-resolution

1 Introduction

Image resizing or resampling is one of the most elementary image
operation, supported by virtually all image editing software, and is
used for many purposes. In the course of desktop publishing, raw
images are resized, on a regular basis, to new dimensions in order
to fit designated areas in documents. Low-resolution video frames
from surveillance cameras are enlarged to ease the inspection of
their contents. As well as the recent popularity of HDTVs brings
out the need for resolution enhancement of NTSC and PAL video
recordings. In 3D graphics, these interpolations are used to map
image textures onto objects’ surface. While satisfactory downsam-
pled images are obtained by a proper linear pre-filtering, this is not
the case for upsampling. Upsampled images usually lack small-
scale texture-related features and moreover, sharp edges become
blurry, original pixel grids remain noticeable (often called the ‘jag-
gies’ artifact), and in some cases ringing appears in the vicinity of
sudden transitions in intensity. Formally speaking, upsampling in-
volves determining far more pixel intensities than the number given.
This makes upsampling a particulary challenging problem and one
that is highly sensitive to the additional assumptions or informa-
tion needed to establish its well-posedness. Indeed, different up-
sampling techniques correspond to different assumptions about the
nature of the upsampled image. For example, the assumption that

∗e-mail: raananf@math.berkeley.edu

Figure 1: Sharp upsampled image resulting from a low-resolution
image plus edge statistics (the right ring is an actual result from the
input on the left).

images are smooth enough to be adequately approximated by poly-
nomials yields analytic polynomial-interpolation formulas. On the
other hand, assuming that images are limited in band yields a differ-
ent family of low-pass filters. For most images, these assumptions
are highly inaccurate, and as a consequence these methods produce
images which suffer from excessive blurriness and the other visual
artifacts mentioned earlier. We extend this discussion to more so-
phisticated methods in the next section.

In this paper we point out a unique dependency between image
derivatives at different resolutions, as exhibited by real-world im-
ages; pixel differences at higher resolutions depend on their dis-
tance from an edge, the spatial distribution of that edge and the total
intensity jump across it, all estimated in low-resolution. Using this
non-trivial relation, we have devised a new method for upsampling
images. The solution consists in promoting the predicted intensity
differences in the upsampled image given the edge parameters ob-
served at the low-resolution input. This is done while deducing
absolute intensities from an ‘intensity conservation’ constraint that
requires the total intensity in the low and high resolutions to be
the same. This approach is summarized schematically in Figure 1;
given a low-resolution image plus this additional parametric statis-
tical information, sharp edges are retrieved while typical artifacts
associated with upsampling are minimal.

By real-world images, we refer to scenes seen with the naked eye
or more precisely, scenes captured by a photographic device (e.g.
camera). This includes indoor and outdoor photos not enlarged by
any digital means. Also, unless stated otherwise, we discuss only
gray scale images, working with the Y channel of YUV color space.
We later extend the method to handle color images as well.

This paper is organized as follows. In the next section we give a
brief survey of existing work on this topic. In Section 3, we describe
the statistical edge dependency, and in the following section we
use it to construct the new method. In Section 5, we discuss the
results obtained and compare them with results produced by other
methods. Finally, in Section 6, we describe the drawbacks of this
method as revealed by testing and summarize our conclusions.

2 Previous Work

The problem of image upsampling has received much attention both
from the computer graphics and image processing communities. As
a result, many techniques have been suggested in recent years, each
with its own distinctive methodology, prior assumptions, and re-
quirements for additional information. In this section, we discuss
these related techniques by dividing them into groups of common
features. We begin with the classical approach of data invariant lin-
ear filters, which are very popular in commercial software. Among
these filters are the well known Nearest-Neighbor, Bilinear, Bicu-
bic, Hann, Hamming, and Lanczos interpolation kernels. The con-
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