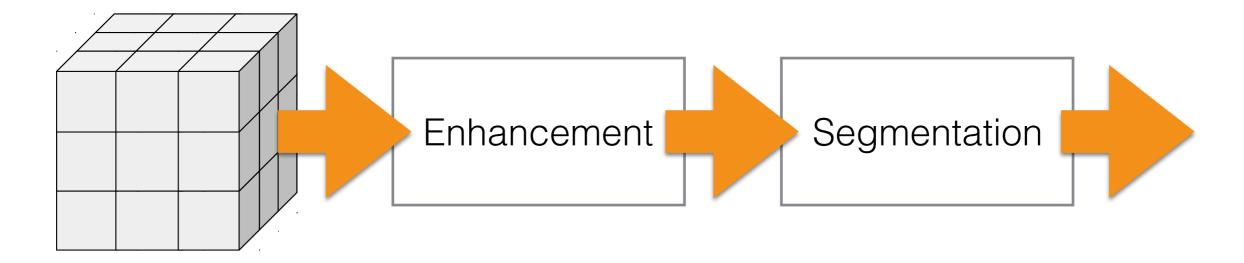
3D from Volume: Part I

Dr. Francesco Banterle, francesco.banterle@isti.cnr.it banterle.com/francesco

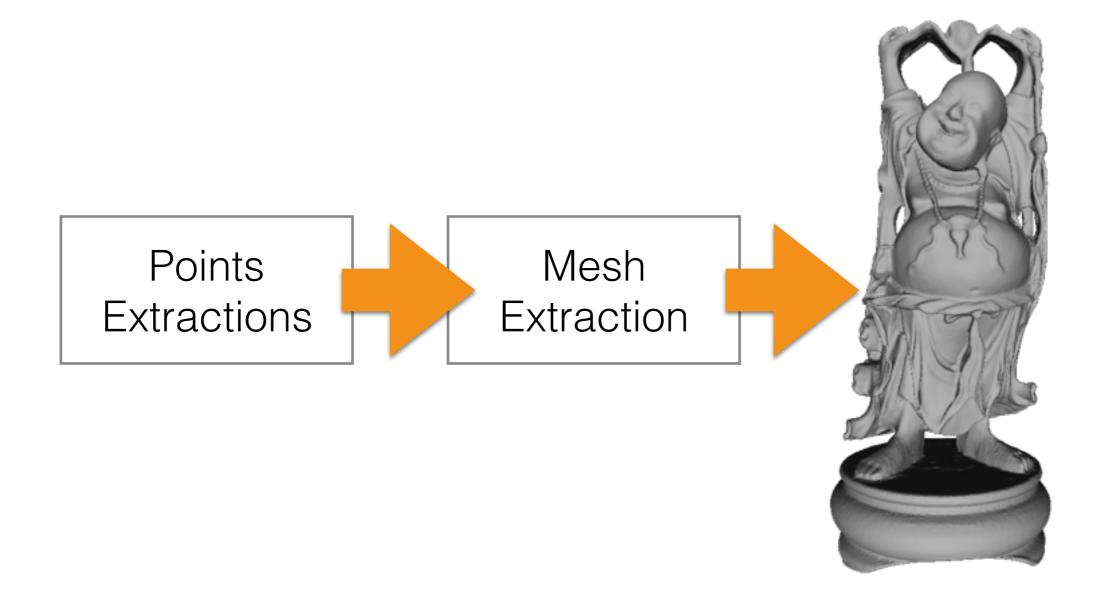
The Main Pipeline

The Processing Pipeline



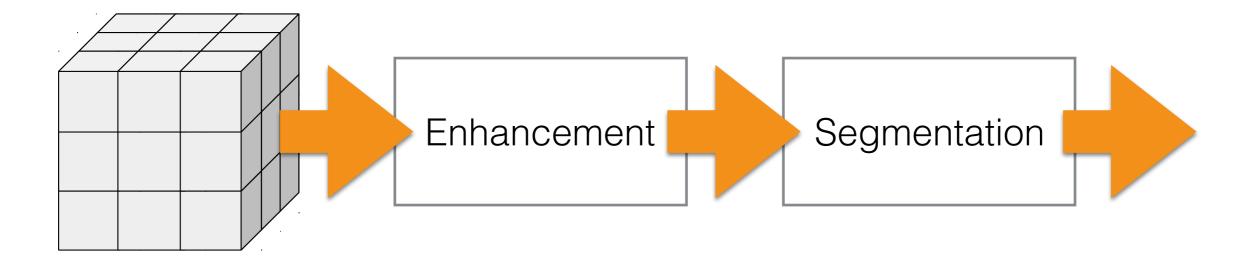
RAW Volume

The Processing Pipeline



3D Mesh

The Processing Pipeline



RAW Volume

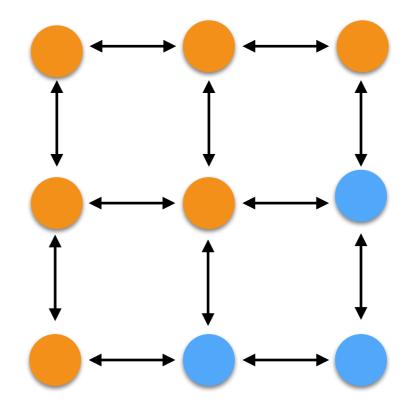
Image Enhancement

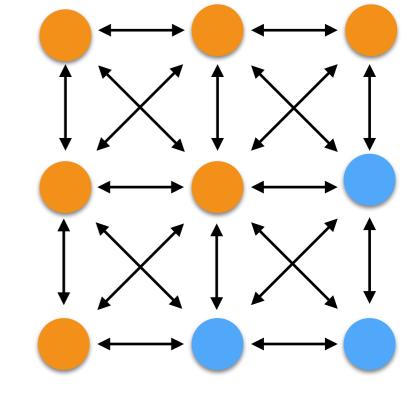
- Step 1: we have to improve the dynamic range of the input images in the volume; i.e., increase/ decrease it.
- **Step 2**: we have to filter the image in order to elicit some features and/or to remove noise (salt-and-pepper, Gaussian noise, etc).

2D Images

2D Images

• A 2D image is a graph:





8-connected pixel adjacency graph

4-connected pixel adjacency graph

2D Image, 3x3 pixels

A Graph

- A graph is a pair G = (V,E), where:
 - V is a set of vertices. Each element of V is called a vertex of G.
 - E is a pairs of elements in V; e.g, (V₁; V₂), etc.
 Each element of E is called an edge of G.

Image Coordinate System

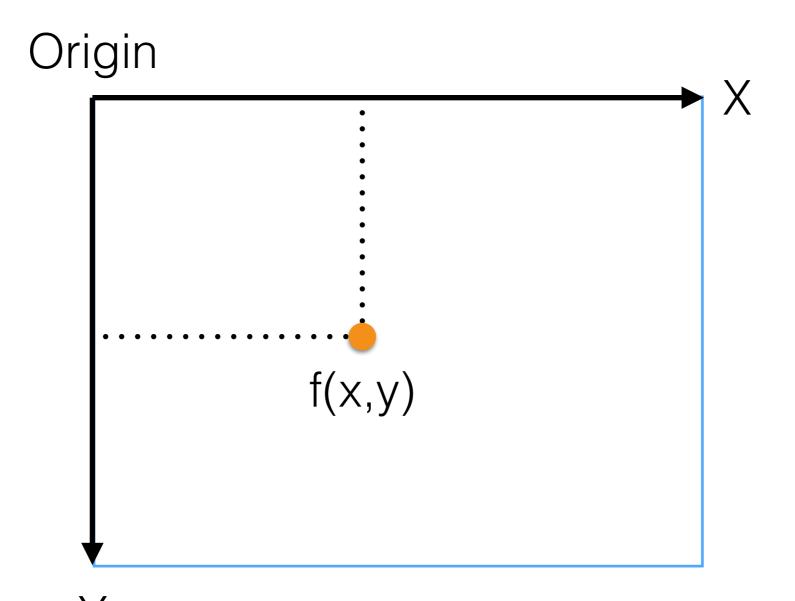


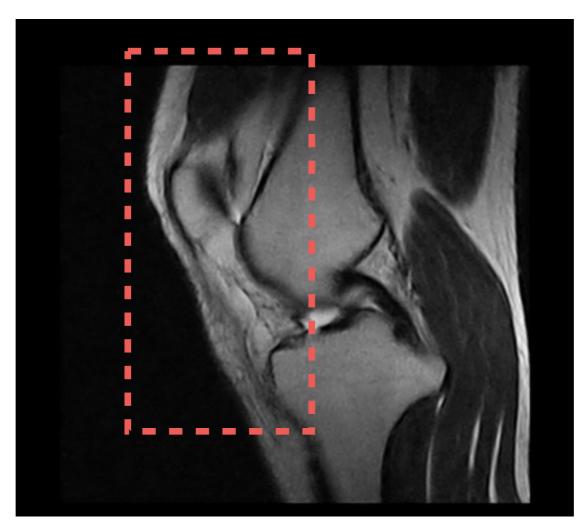
Image Coordinate System: MATLAB

- MATLAB origin —> (1,1)
- Given an image, img, as m-n matrix to access to f:

f = img(y, x)

Region Of Interest (ROI)

- We may be interested to process not the full image/ volume but an area/volume.
- This area is typically called region of interest (ROI).



- Images are not perfect: device, patient moves, etc.
- What we really see is:

 $f(x,y) \approx f'(x,y)$ $f(x,y) = [(f'+n_T) \otimes h](x,y) \cdot g(x,y) + n(x,y)$

- Images are not perfect: device, patient moves, etc.
- What we really see is:

$$f(x,y) \approx f'(x,y)$$

$$f(x,y) = [(f' + n_T) \otimes h](x,y) \cdot g(x,y) + n(x,y)$$
Other tissues

- Images are not perfect: device, patient moves, etc.
- What we really see is:

$$f(x,y) \approx f'(x,y)$$

$$f(x,y) = [(f' + n_T) \otimes h](x,y) \cdot g(x,y) + n(x,y)$$

discrete spatial-temporal
process

- Images are not perfect: device, patient moves, etc.
- What we really see is:

$$f(x,y) \approx f'(x,y)$$

$$f(x,y) = [(f'+n_T) \otimes h](x,y) \cdot g(x,y) + n(x,y)$$

$$\int_{\text{discrete spatial-temporal process}}$$

- Images are not perfect: device, patient moves, etc.
- What we really see is:

$$f(x,y) \approx f'(x,y)$$

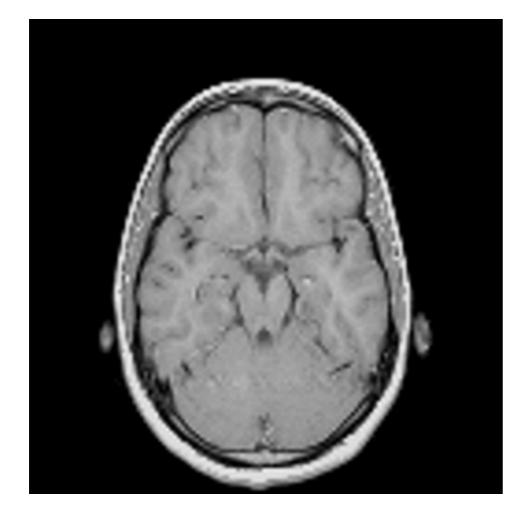
$$f(x,y) = [(f'+n_T) \otimes h](x,y) \cdot g(x,y) + n(x,y)$$

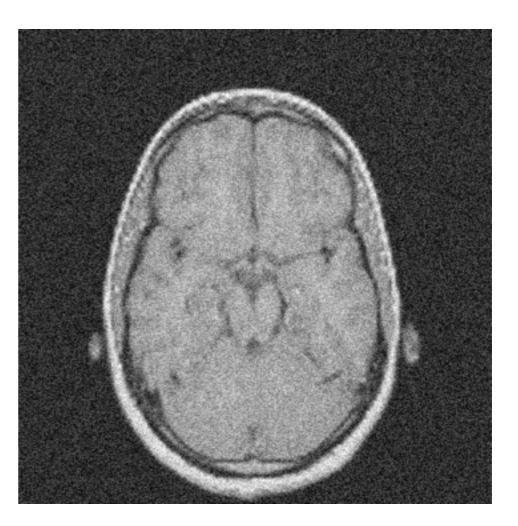
$$\int$$

device noise

Noise Measure

• A classic: $SNR = \frac{\mu}{\sigma}$





SNR = 0.8

SNR = 1.5

Medical File Format

DICOM

- Digital Imaging and COmmunications in Medicine
- It is a standard for producing, storing, displaying, printing, and sending, retrieving, and querying medical images
- Data: 2D images (may be compressed using JPG/ JPG2000)
- Metadata: patient's personal information, date of the exam, position of the patient, etc.
- Issue: many extra fields, which are filled without consistency amongst different software/scanners

DICOM

- File extension: name_file.dcm
 - The media format does not allow files to have and extension; the folders structure gives meaning to the file!
- Standard official web-site: <u>http://DICOM.nema.org</u>
- MATLAB and Slicer can open them natively.

Point-wise Operators

Point-wise Operators

- An operator takes as input one or two images, and the result is another image.
- Unary operator T₁:

$$g(x,y) = T_1\left[f(x,y)\right]$$

• Binary operator T₂:

$$g(x,y) = T_2\left[f(x,y);h(x,y)\right]$$

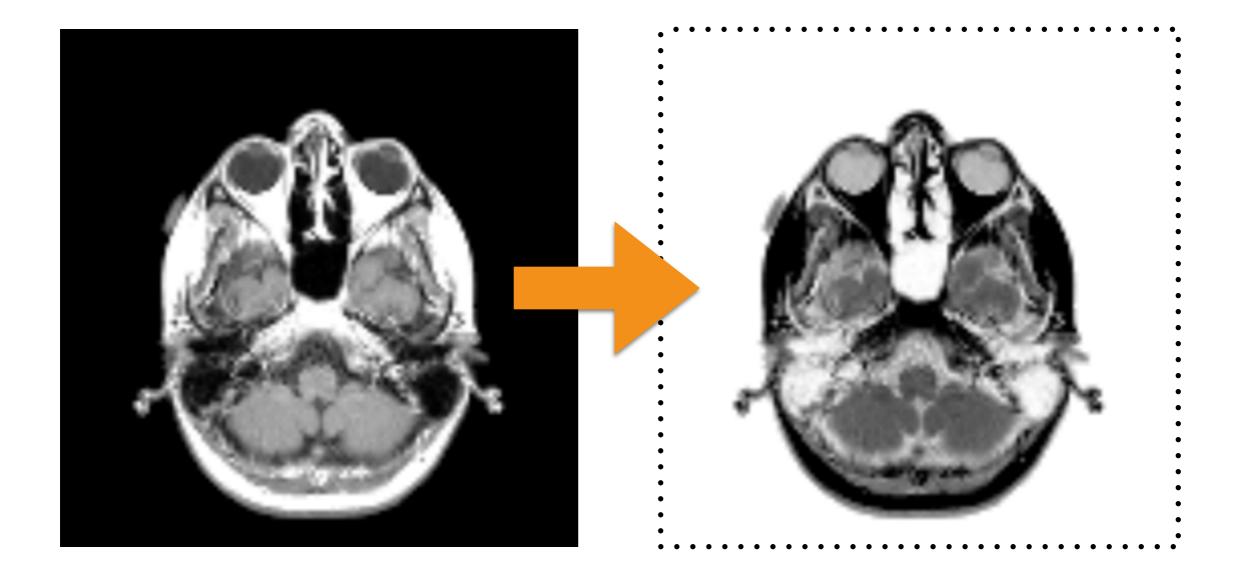
Unary Operators: Negative

• Negative or inverter:

$$g(x, y) = Neg[f(x, y)] = 1.0 - f(x, y)$$

- It is usually helpful to highlight some structures.
- Note: this operator assumes images' values are in the rage [0,1].

Negative: Example



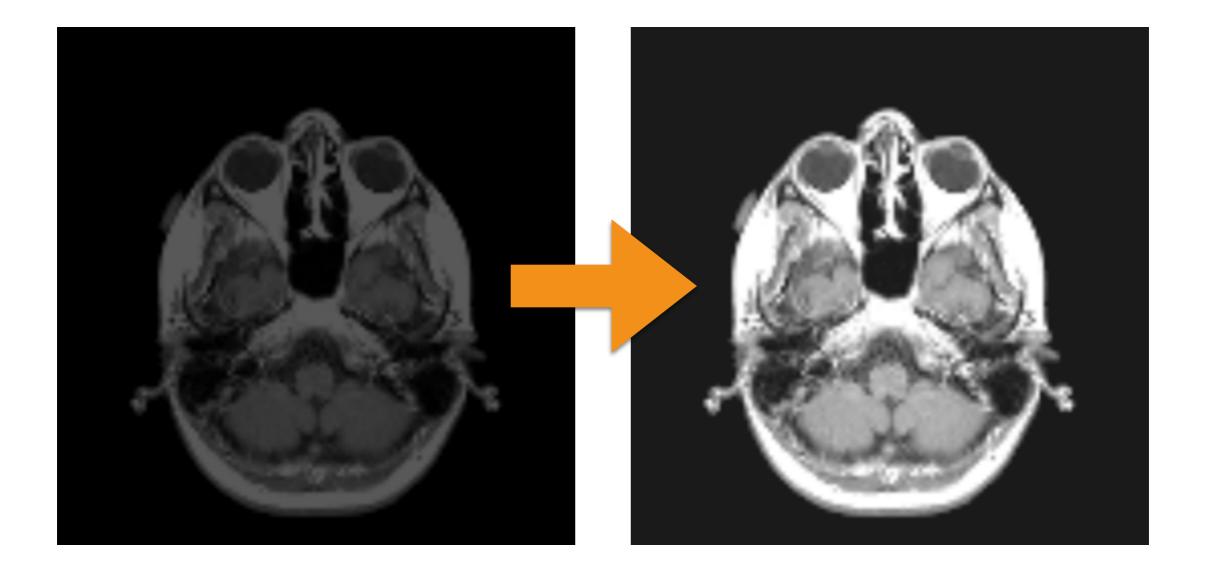
Unary Operators: Contrast Stretching

• This operator increases the dynamic range of the input image linearly:

$$g(x,y) = \operatorname{CS}\left[f(x,y); E_{\min}; E_{\max}\right] =$$
$$= (f(x,y) - \min(f)) \frac{E_{\max} - E_{\min}}{\max(f) - \min(f)} + E_{\min}$$

• It is useful when the contrast is low.

Contrast Stretching Example



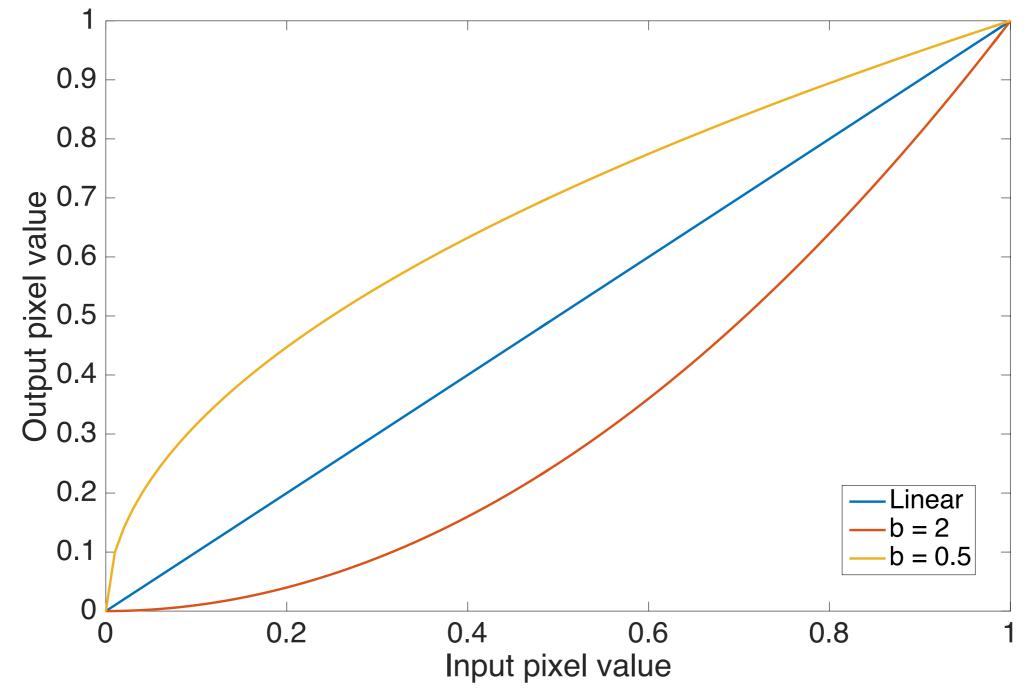
Unary Operators: Gamma

Another method for increasing the dynamic range:

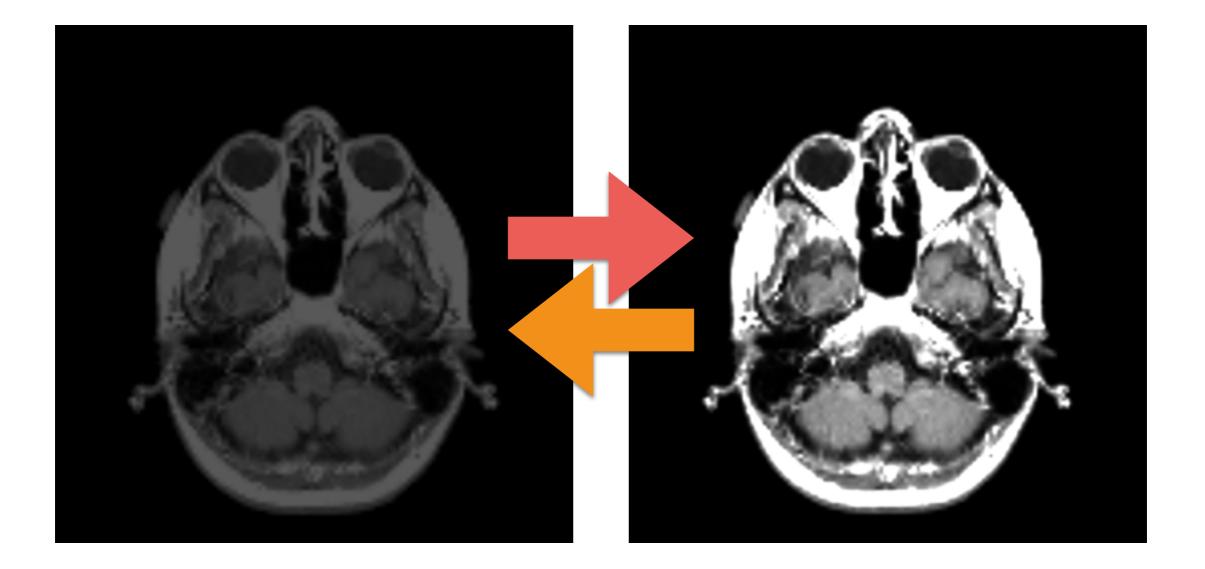
$$g(x, y) = G[f(x, y); k; \gamma] =$$
$$= k \cdot f(x, y)^{\gamma}$$

• It is more intuitive.

Unary Operators: Gamma



Gamma Example

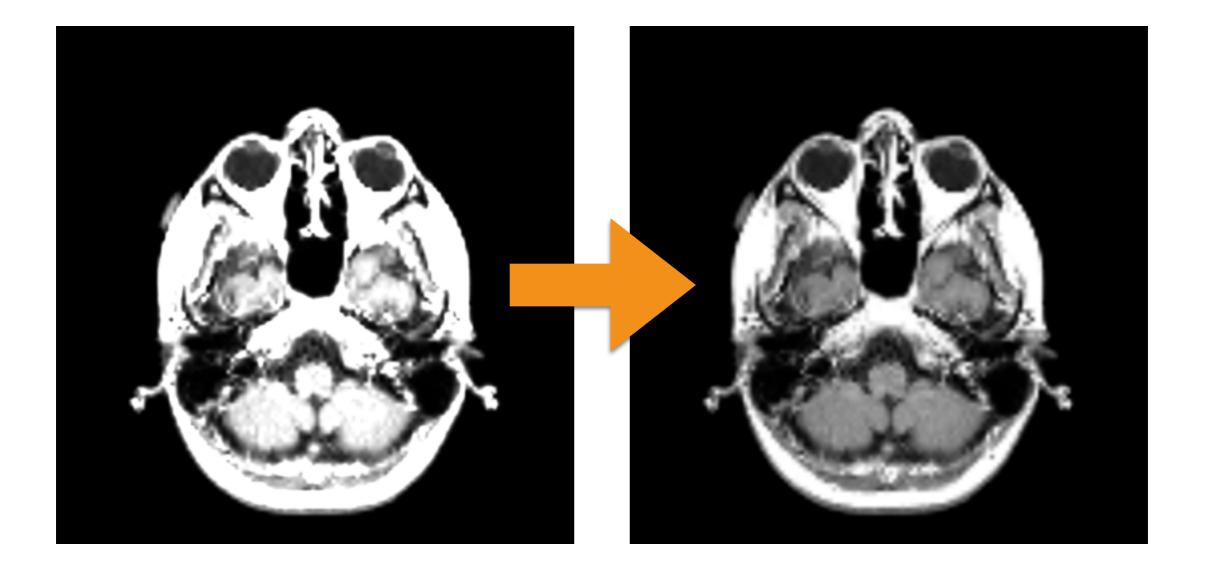


Unary Operators: Logarithmic Operator

- The dynamic range may be too large, (16-bit), and most monitors handle only 8-bit!
- The operator is defined as

$$g(x, y) = \log[f(x, y); E_{\min}; E_{\max}] = \\ = (E_{\max} - E_{\min}) \cdot \frac{\log(1 + f(x, y))}{\log(1 + \max(f))} + E_{\min}$$

Logarithmic Example



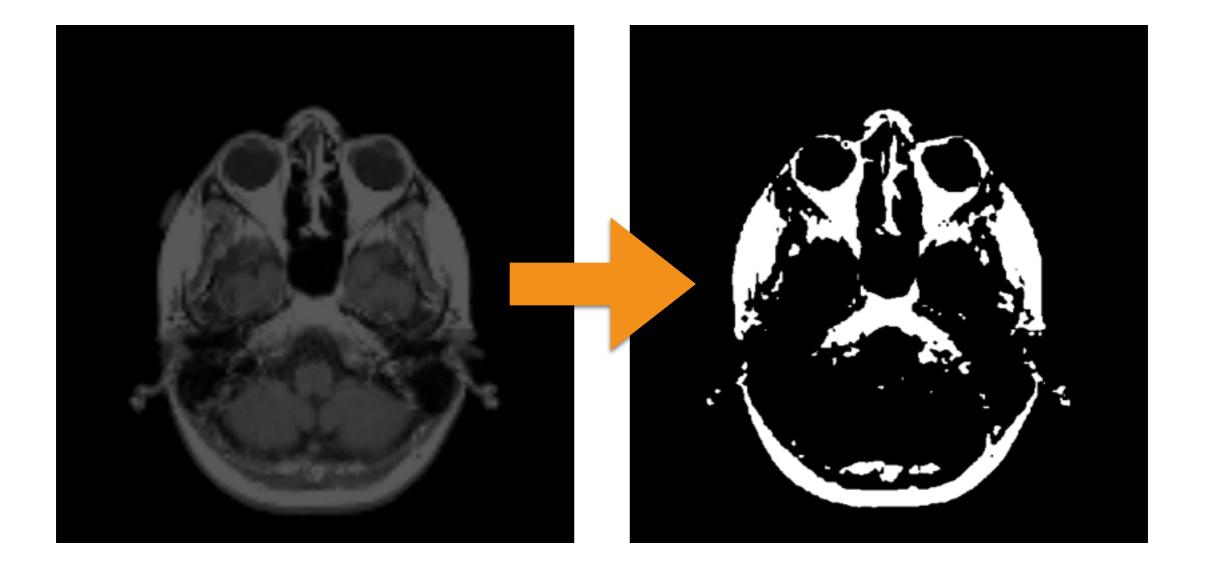
Unary Operators: Thresholding

• This operator creates a mask (0 or 1 values):

$$g(x,y) = \operatorname{Thr}[f(x,y);a;b] = \begin{cases} 1 & \text{if } f(x,y) \in [a,b], \\ 0 & \text{otherwise.} \end{cases}$$

• It can be used for segmentation.

Thresholding Example



Binary Operators

Binary operators are typically the classic arithmetic operators defined over images:

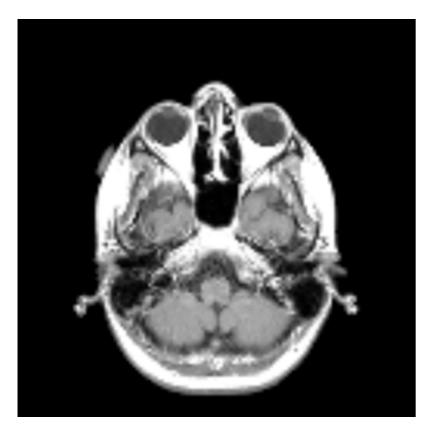
- Note that using + and *, we can increase the dynamic range and obtaining values in [0,2]:
 - Logarithmic operator
 - Linear scaling in [0,1]

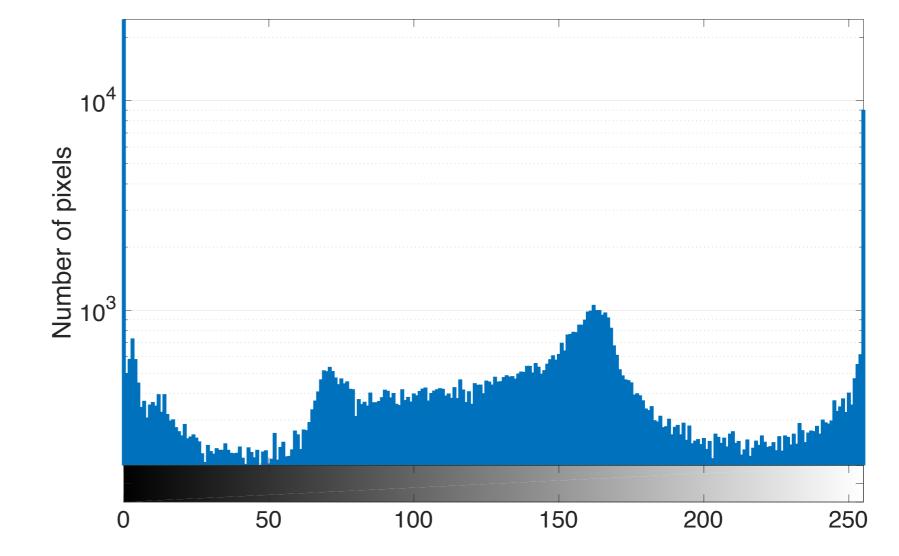
Histograms

Image Histogram

- The distribution of intensity pixel values.
 - This can be seen as the probability of a pixel of having a given intensity value.
- How to compute?
 - For each unique intensity value J:
 - Count how many pixels have J as intensity
 - MATLAB: **imhist** built-in function

Example

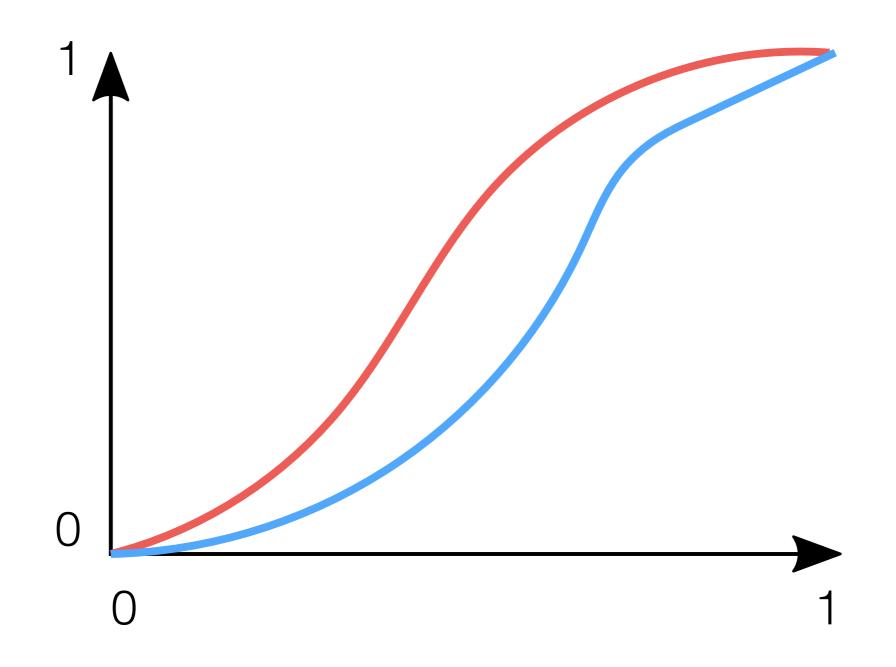


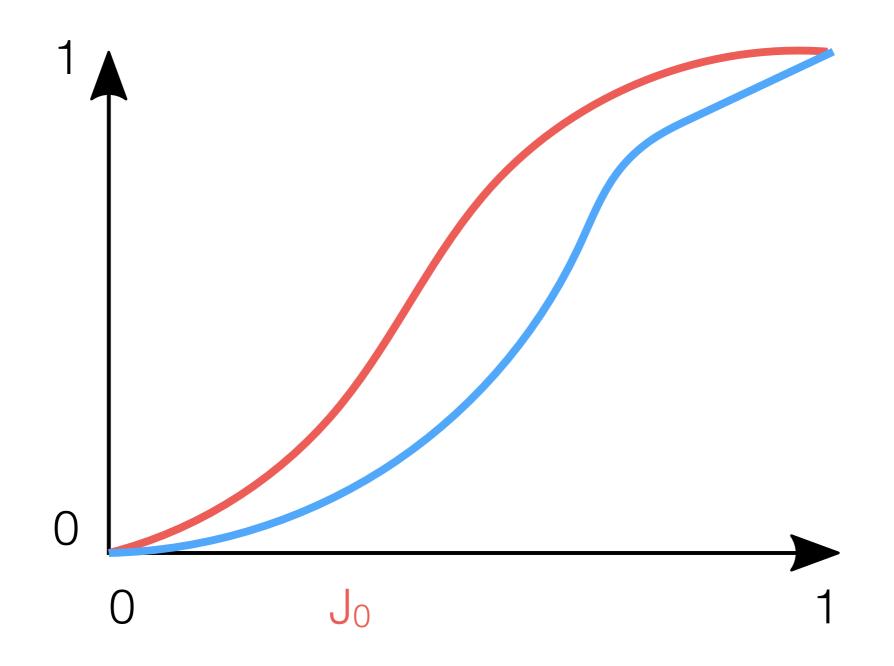


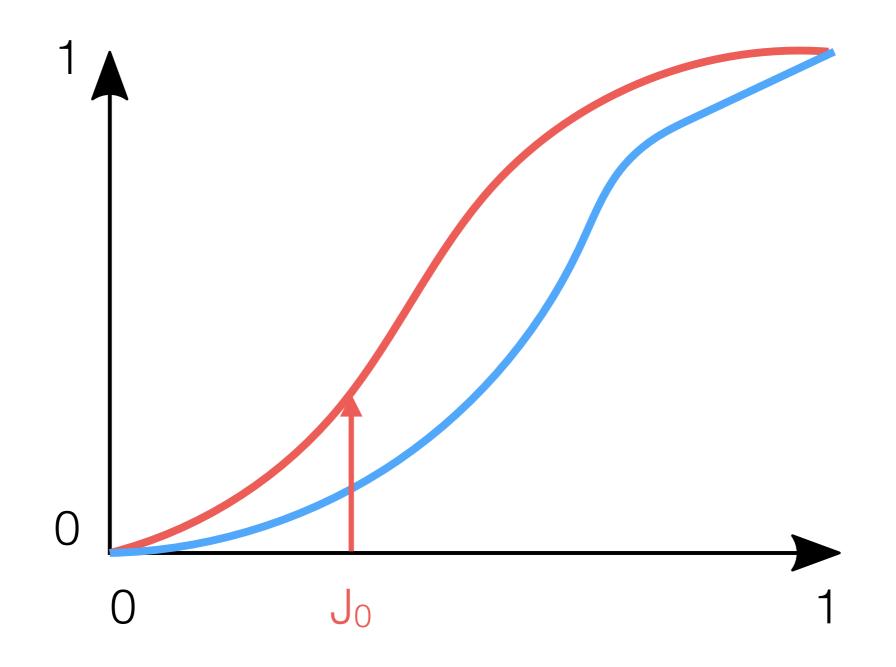
Each intensity value is called "bin"

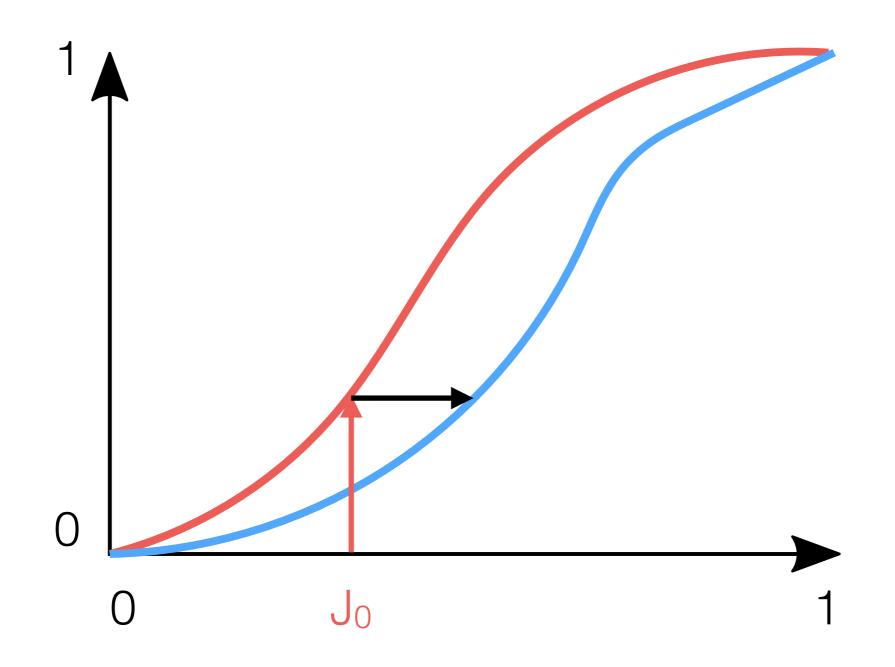
Histogram Equalization

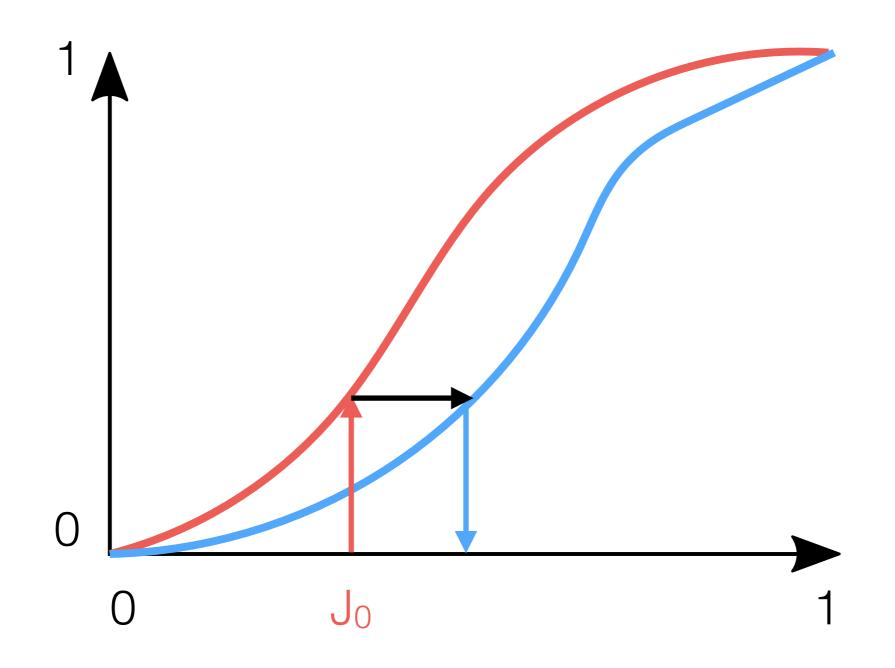
- A technique to improve automatically the contrast of the image.
- The main idea is to have an histogram in which each intensity value J (or bin) has the **same** (more or less) number of pixels:
 - $H[J] = n_{pixels_image} / 2^{n_{bit}}$
- How? Matching the CDF (cumulative distribution function) of the histogram with the CDF of a uniform histogram.
 - This uniform CDF $\longrightarrow y(x) = x$ with x in [0,1]



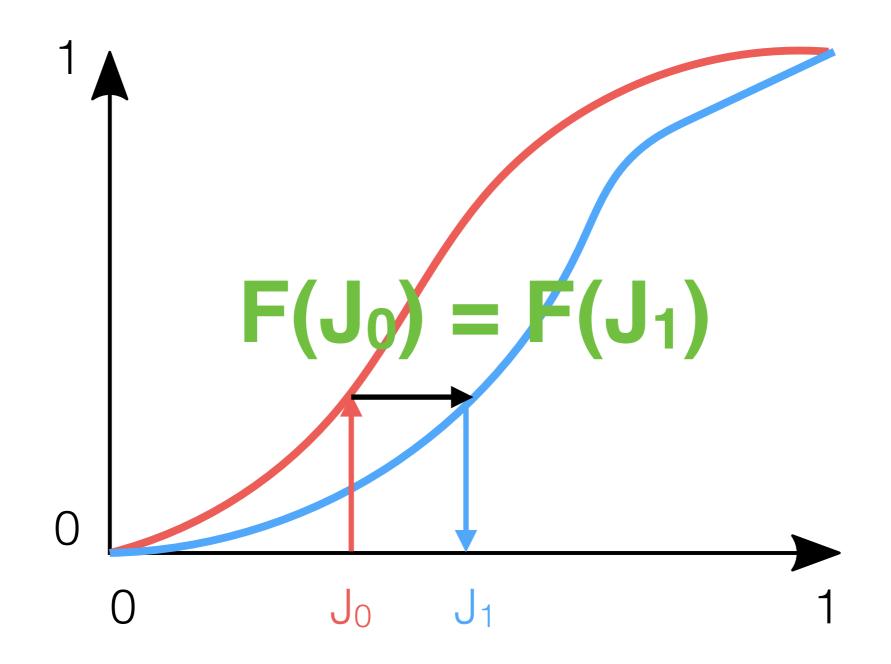




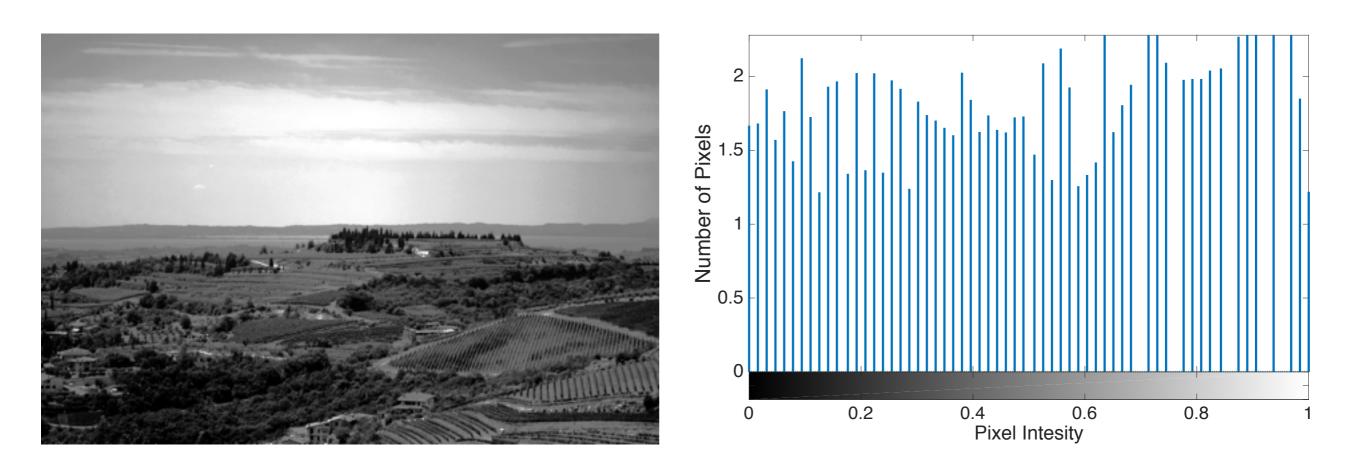


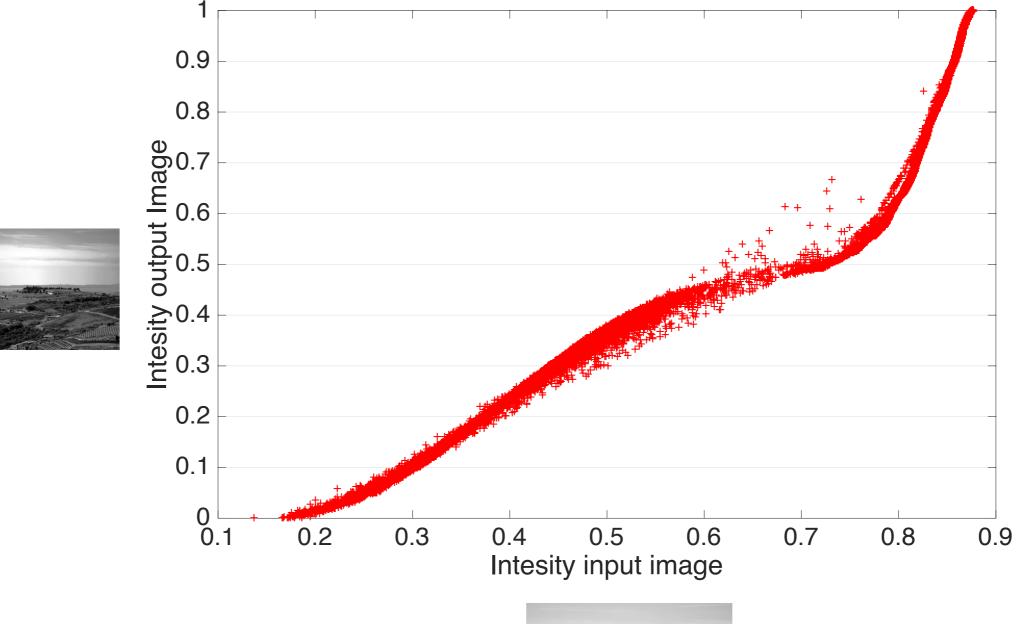


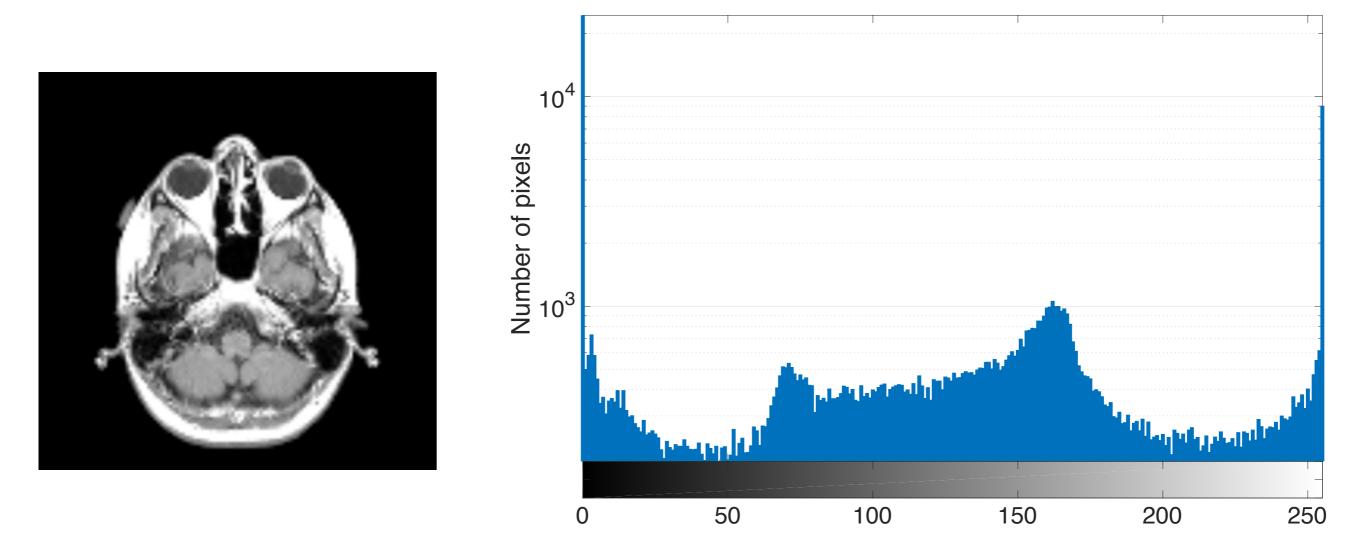












ROI helps in cases of huge peaks (see I=0)

Linear Filters

1D Convolution

 Given two functions f and g, f convolved g is defined as

$$(f \otimes g)[x] = \int_{-\infty}^{+\infty} f(t) \cdot g(t-x) dx =$$
$$= \int_{-\infty}^{+\infty} f(x-t) \cdot g(x) dx$$

• In the discrete world, this leads to:

$$(f \otimes g)[i] = \sum_{j=-N}^{N} f[i-j] \cdot g[j]$$

2D Convolution

• In the 2D world, this leads to:

$$(f \otimes g)[i,j] = \sum_{k=-N}^{N} \sum_{l=-M}^{M} f[i-k,j-l] \cdot g[k,l]$$

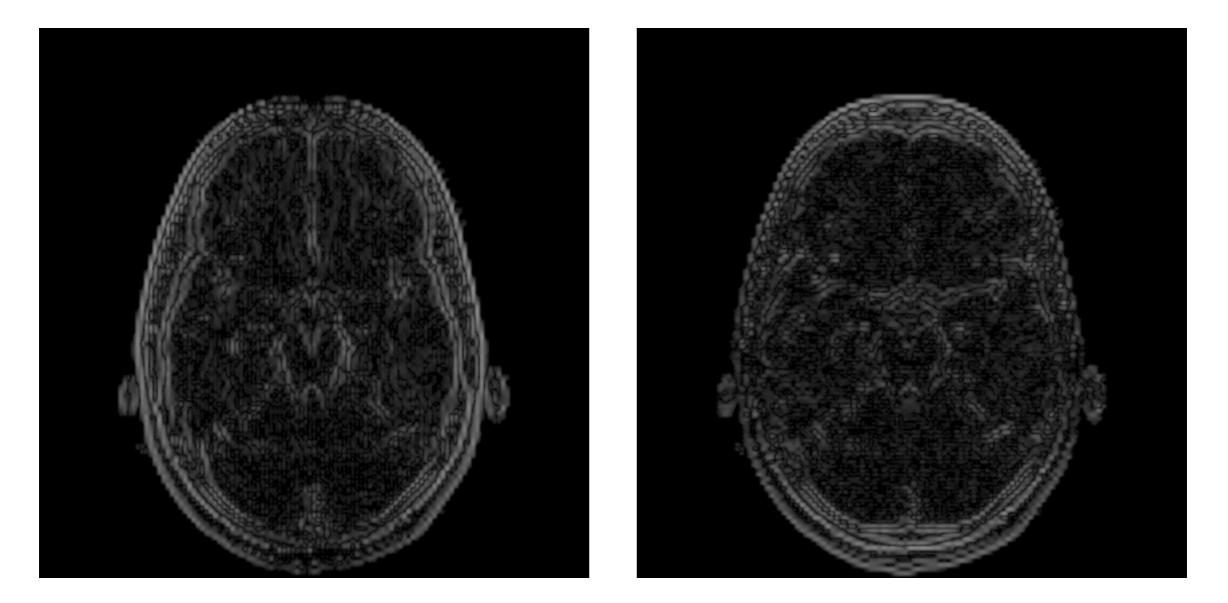
- where g is a (2n)-(2m) matrix, called kernel.
 - For sake of simplicity, let's assume negative addresses!
- MATLAB: conv (1D convolution), and conv2 (2D convolution) built-in functions

Gradient Filter

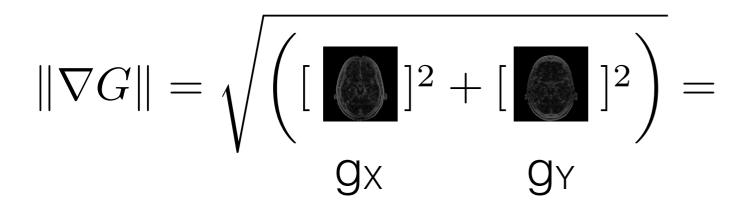
- The gradient of an image is an important piece of information:
 - Where it is high implies we may have an edge; i.e., a boundary between two different regions.
- Typically, kernels for computing gradients are defined as

$$g_X = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad g_Y = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

Gradient Operator Example

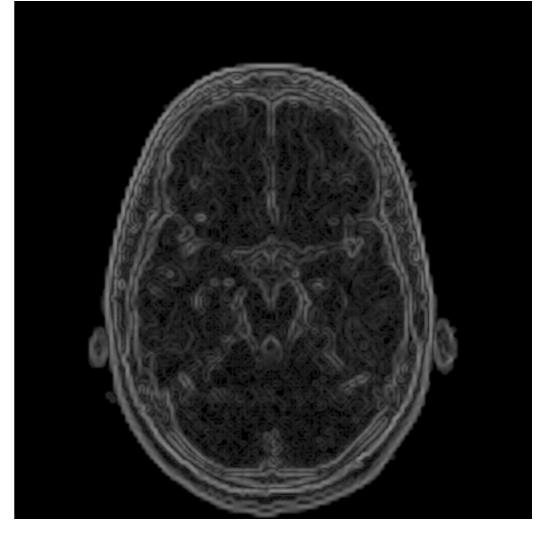


Gradient Operator Example



Gradient Operator Example

$$\|\nabla G\| = \sqrt{\left(\begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}^2 + \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}^2 \right)} = \mathbf{g}_{\mathsf{X}} \qquad \mathbf{g}_{\mathsf{Y}}$$

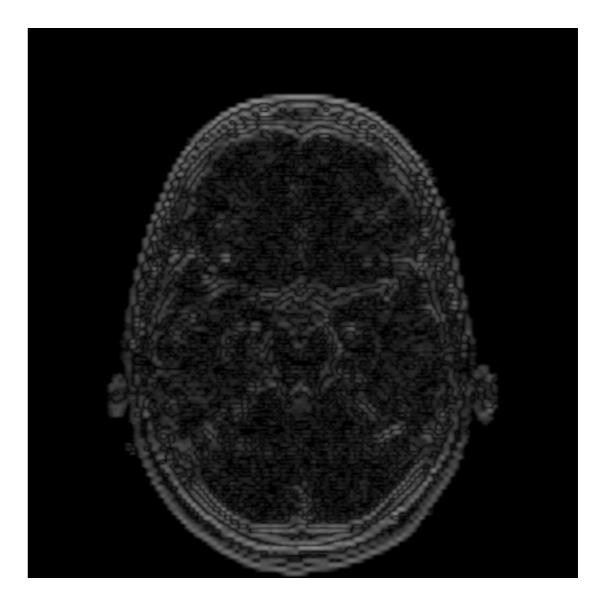


Sobel Gradient Operator

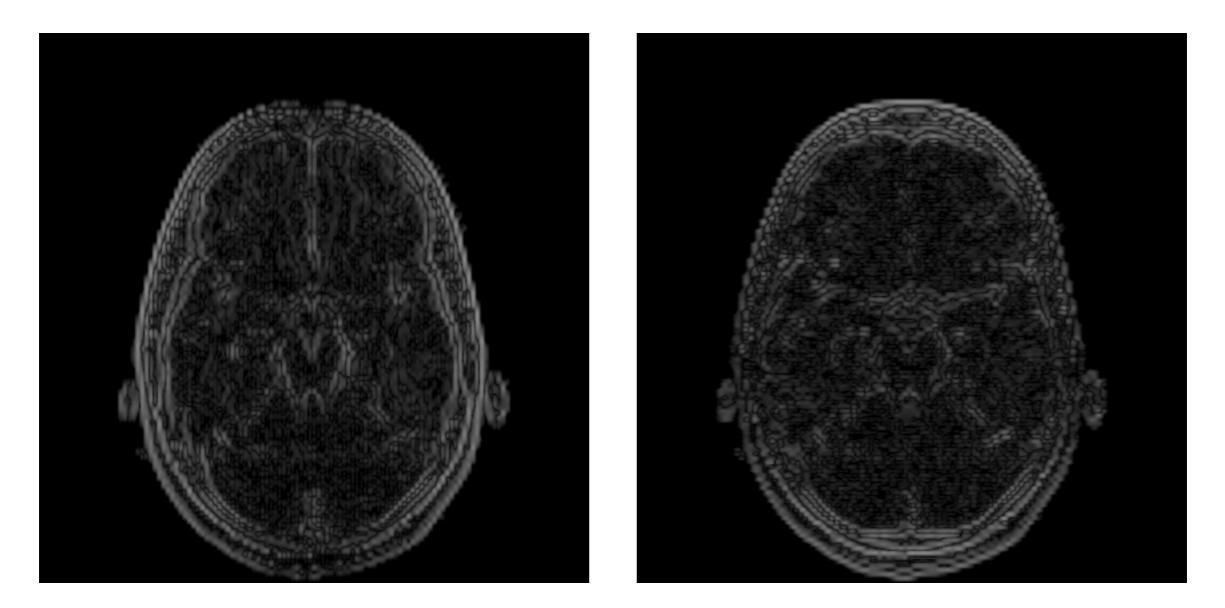
- Technically speaking, it is just another discrete differential operator!
- It emphasizes more edges, which is good.

$$g_X = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad g_Y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & 1 \end{bmatrix}$$

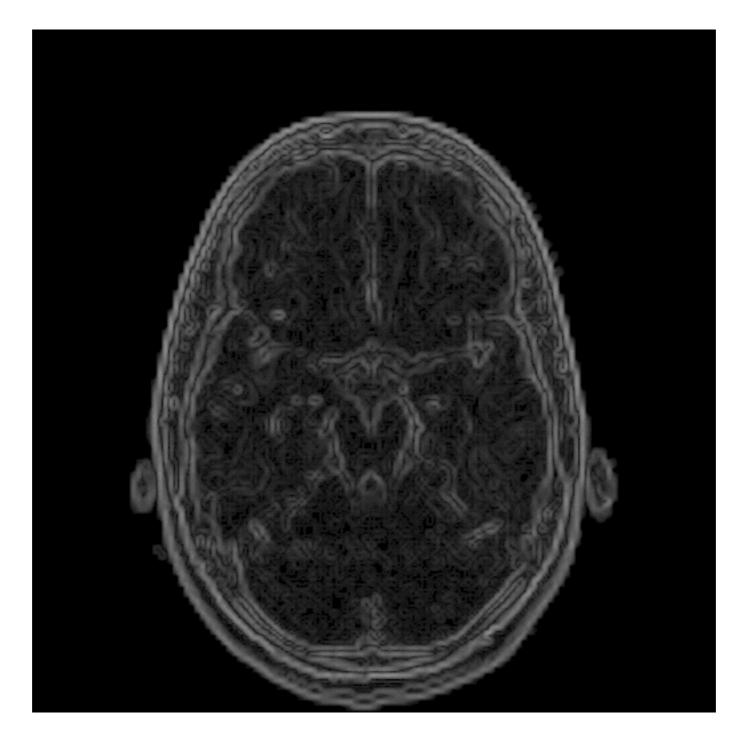
Sobel Gradient Operator Example



Sobel Gradient Operator Example



Sobel Gradient Operator Example



Edge Detectors

- Edges are can be helpful for defining regions
- They help in the visualization of what we want to segment

Edge Detectors

- Steps:
 - Compute gradients (magnitude and angle of orientation [atan2])
 - Non-maximum suppression —> remove low power stuff
 - Apply double thresholding; classification: strong, weak, and no edge
 - Edge tracking; a weak edge is a strong one if it is connected to a strong edge!

Edge Detector Example

thr = 0.001

thr = 0.01

thr = 0.1

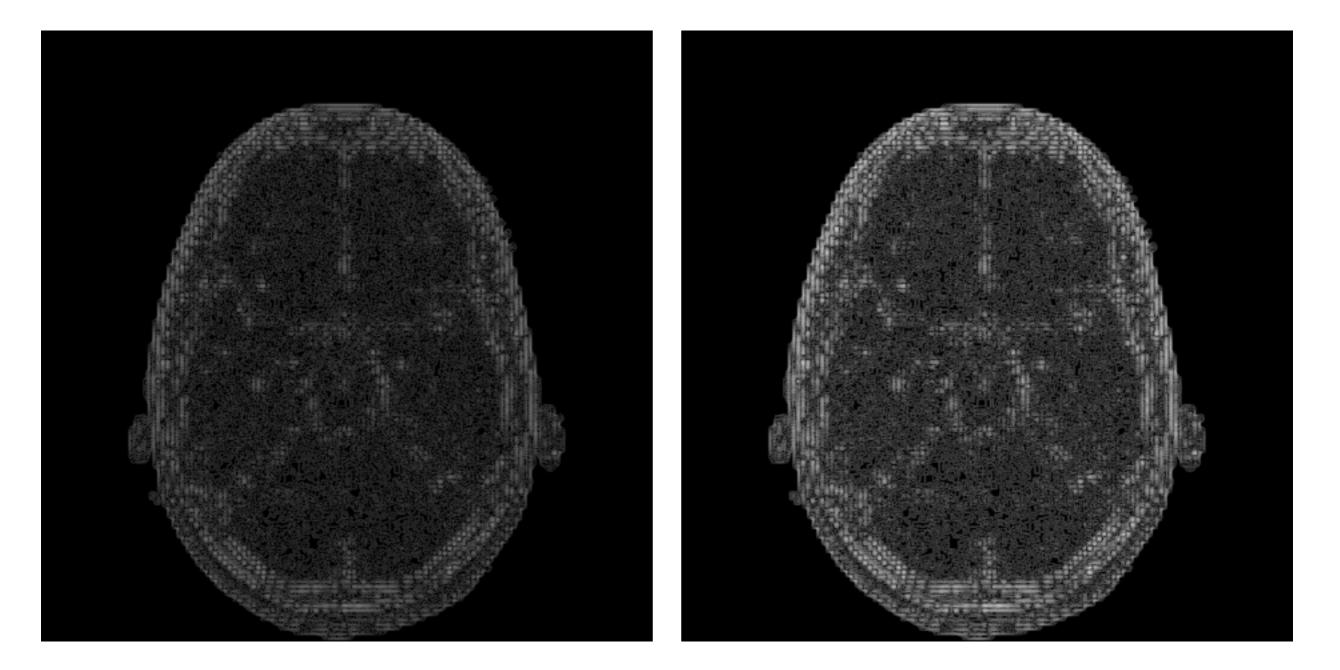
Laplacian Filter

- If you really want... we can also define a Laplacian operator... Why?
 - The Laplacian of an image highlights regions of rapid intensity change and is therefore often used for edge detection
 - oh, jolly good!

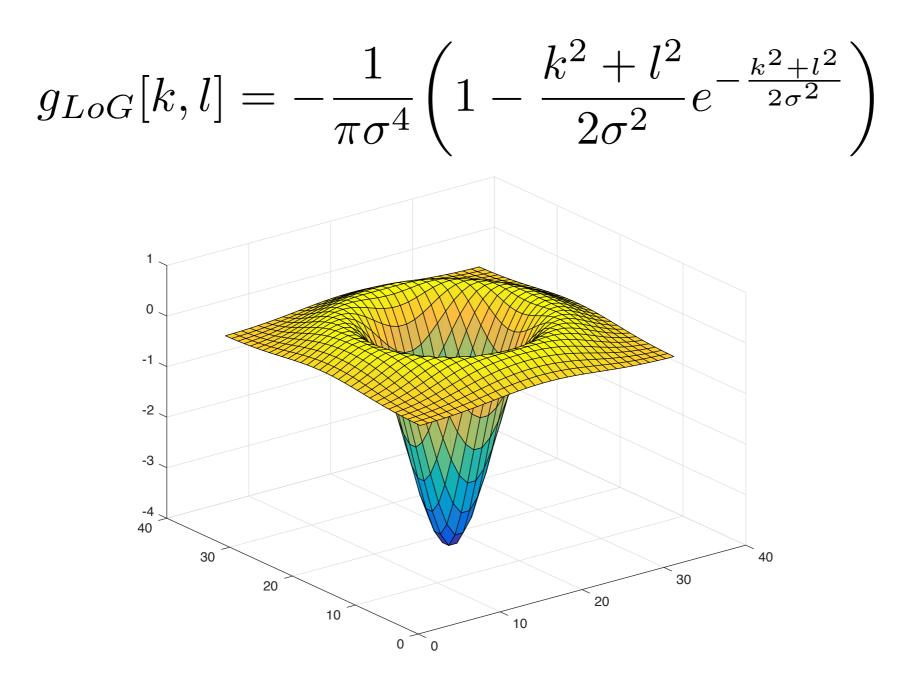
Laplacian Filter

$$g_{L_4} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad g_{L_8} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Laplacian Filter Example



Laplacian Filter Extra

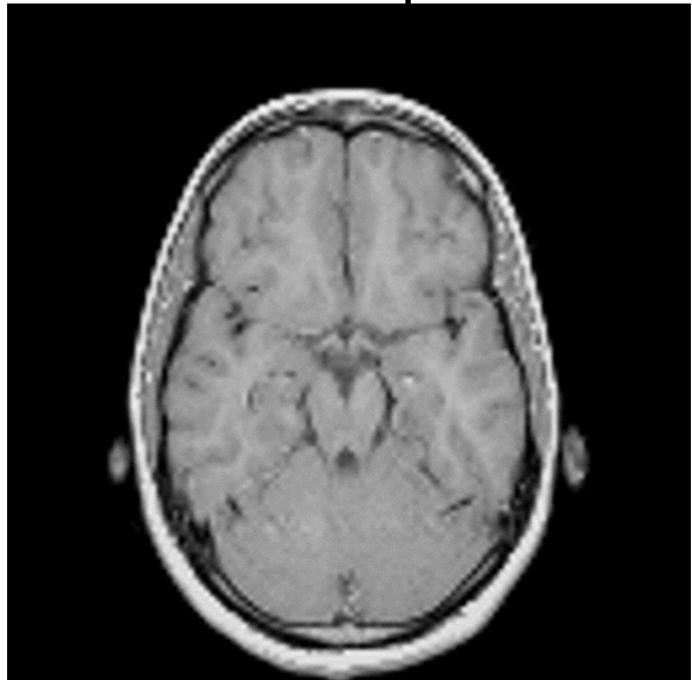


Laplacian Filter Bonus

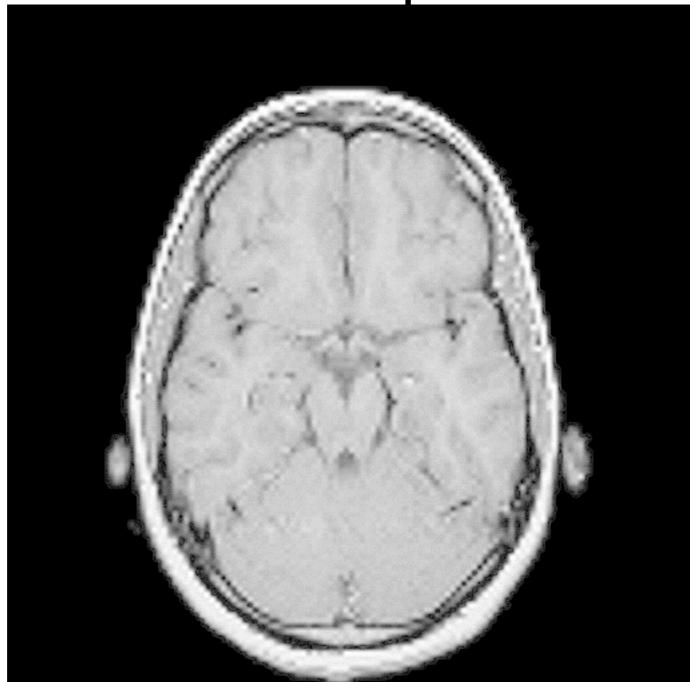
• With a small change (+1) we can increase sharpness in the image:

$$g_{\rm sharp} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Laplacian Filter Bonus Example



Laplacian Filter Bonus Example



Box Filter

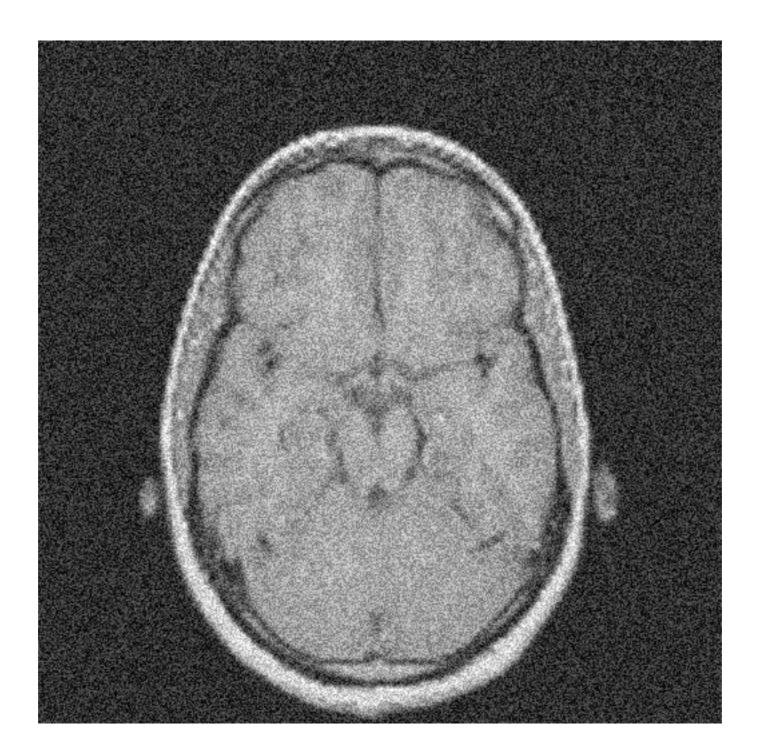
• This is a very simple filter low-pass filter:

$$g[k,l] = 1 \quad \forall k \land \forall l$$

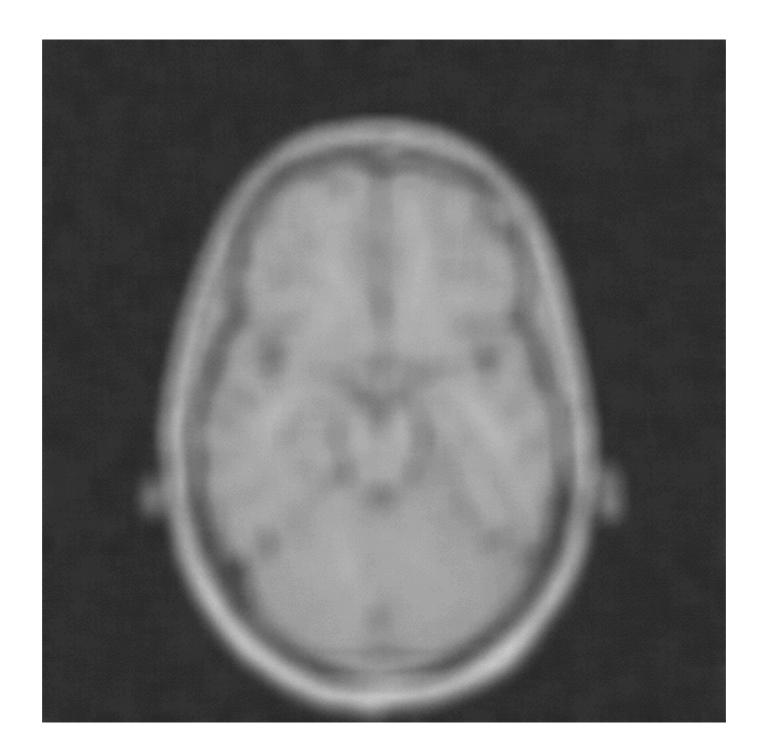
- What does it do? It blurs the signal!
- This kernel has to be normalized:

$$g[k, l] = \frac{g[k, l]}{\sum_{k=-N}^{N} \sum_{l=-M}^{M} g[k, l]}$$

Box Filter Example



Box Filter Example



Gaussian Filter

• We use a Gaussian kernel defined as

$$g[k,l] = G\left(\sqrt{k^2 + l^2}\right)$$

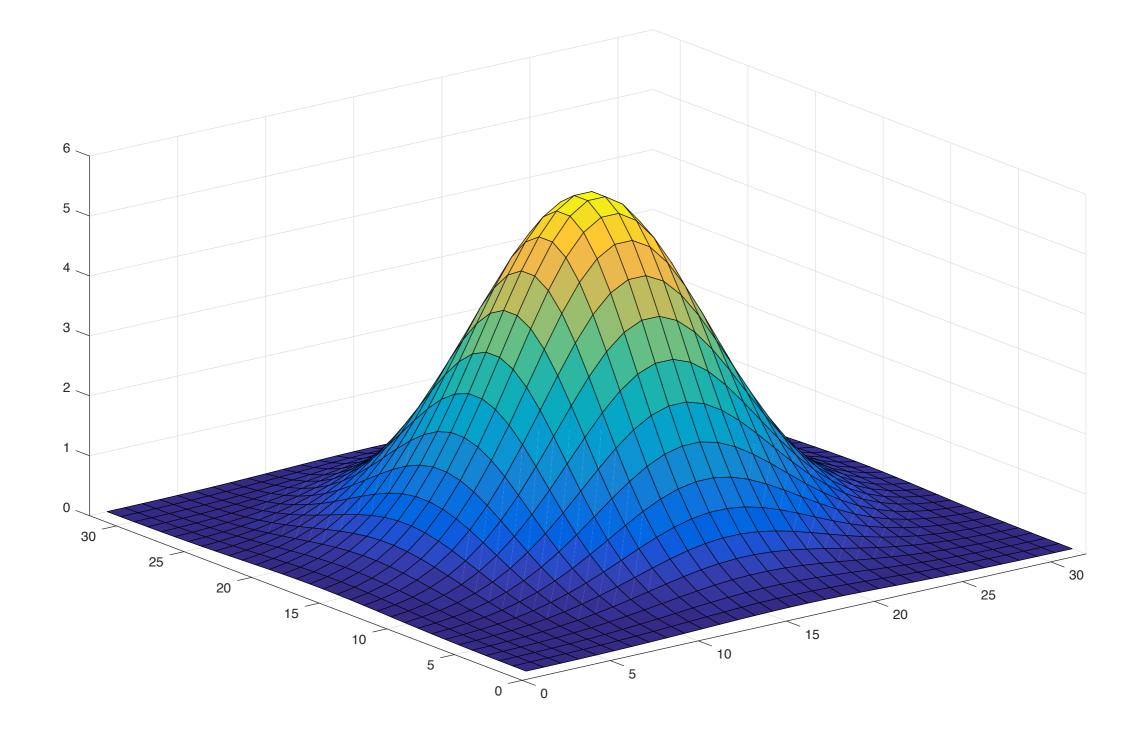
• where G is:

$$G(x) = \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

• Note that g has to be normalized:

$$g[k, l] = \frac{g[k, l]}{\sum_{k=-N}^{N} \sum_{l=-M}^{M} g[k, l]}$$

Gaussian Filter



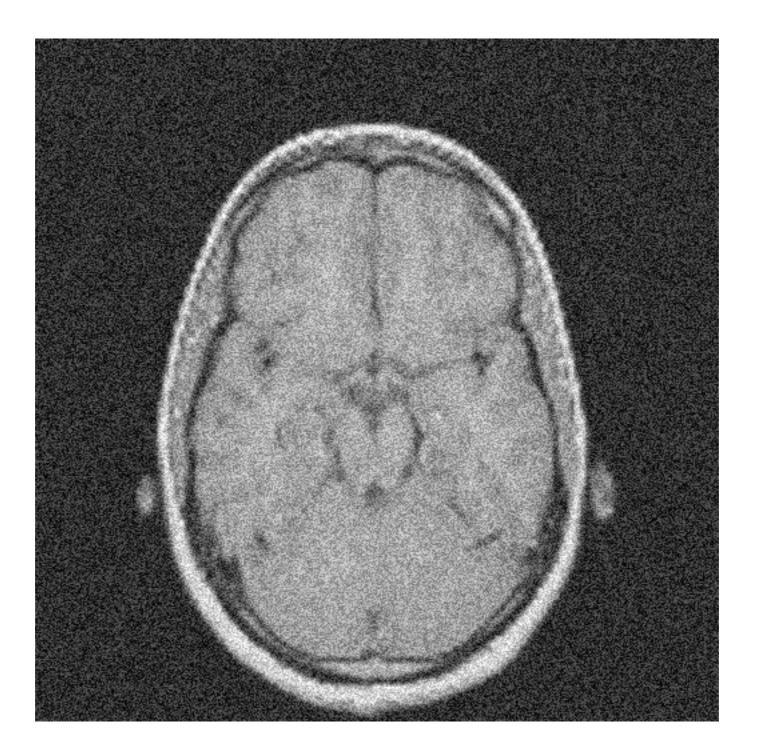
Gaussian Filter: how large?

- Typically, we have N = M;
- N and M depends on the sigma parameter:

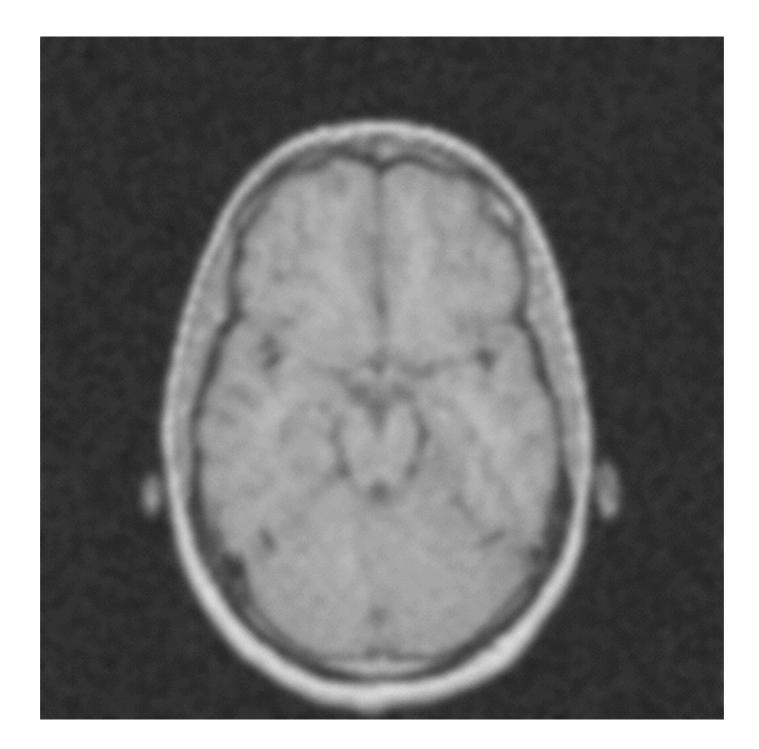
$$N = M = \frac{5}{2} \cdot \sigma \longrightarrow 98\%$$
 of energy

- Larger sigma the better but the slower!
- Note: when sigma is too large (e.g., more than 128 pixels) it is better to work in the Fourier domain!

Gaussian Filter Example

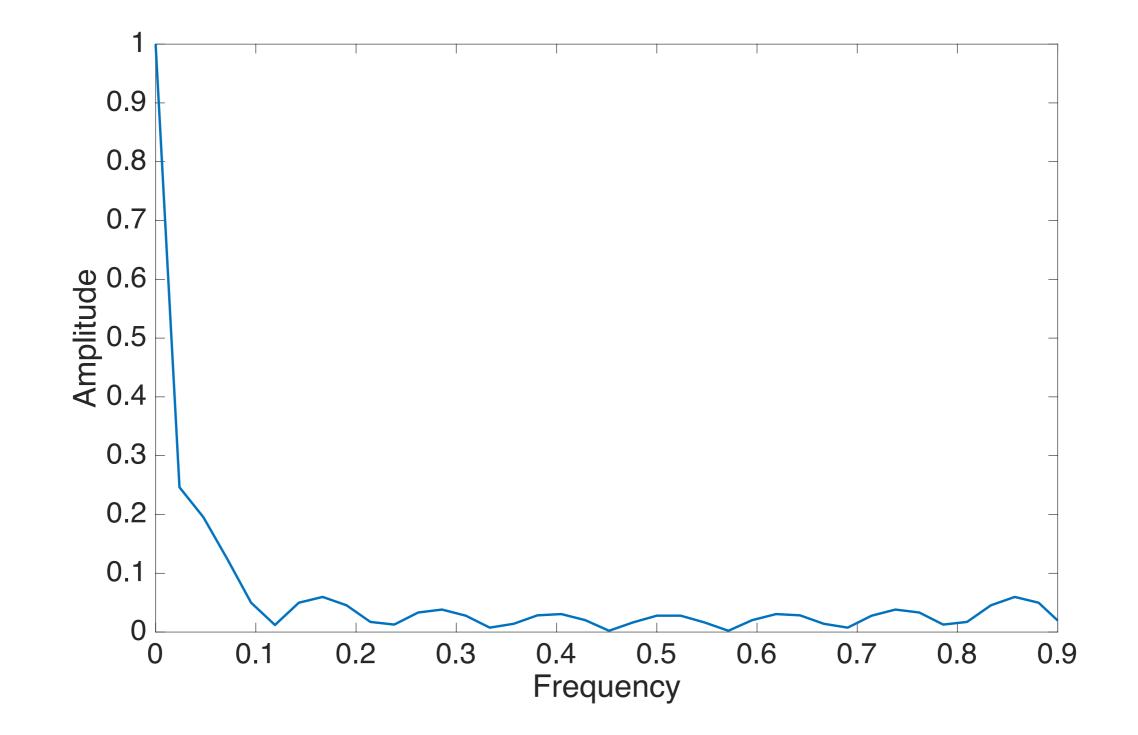


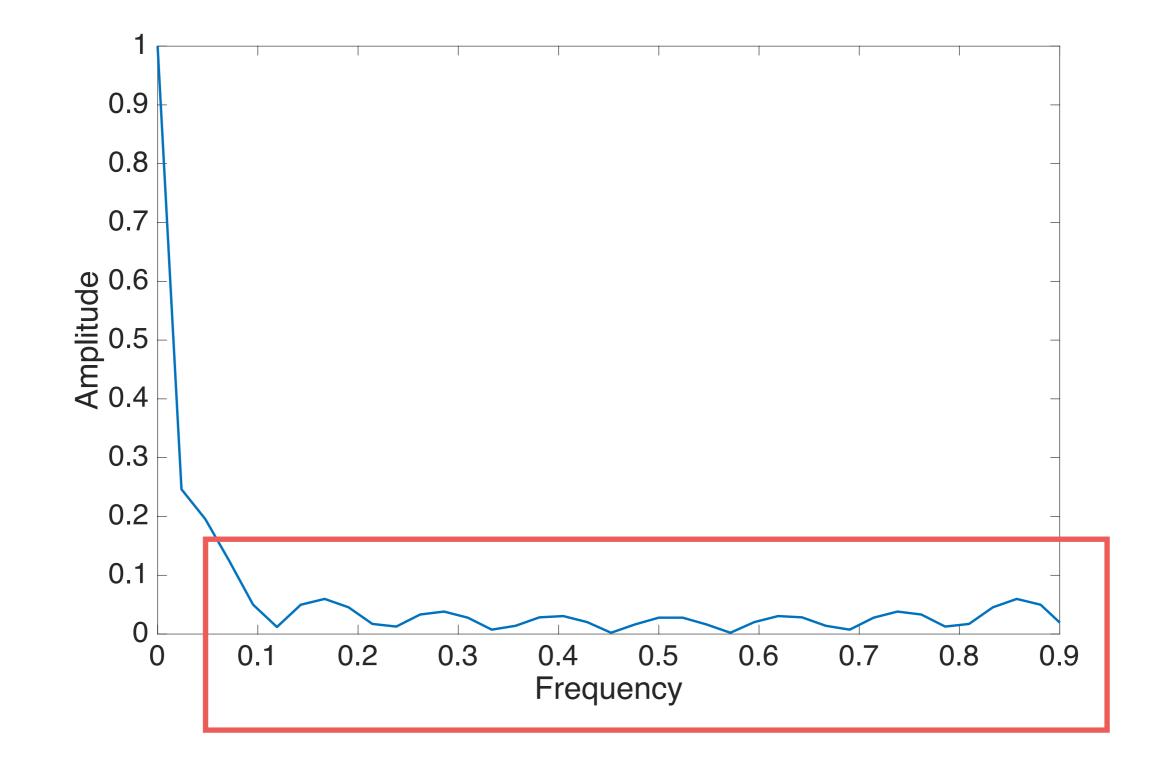
Gaussian Filter Example

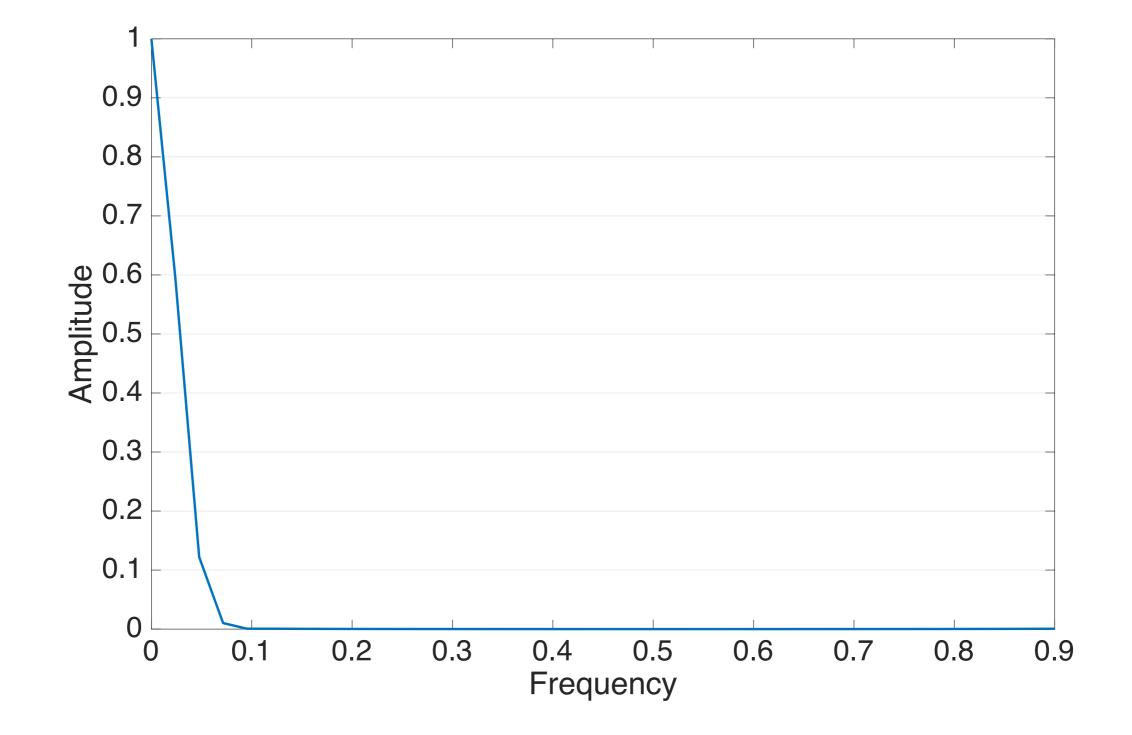


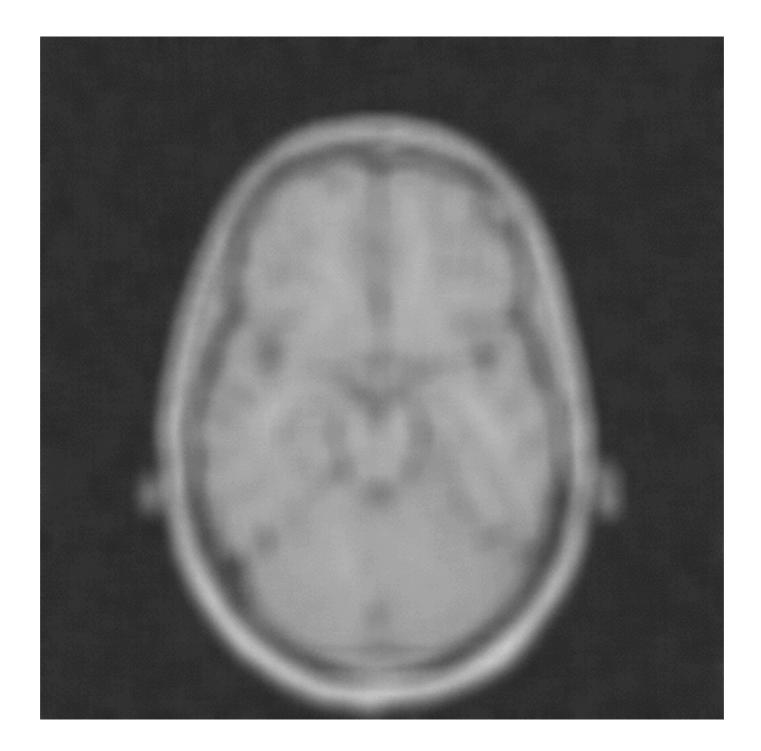
Box vs Gaussian

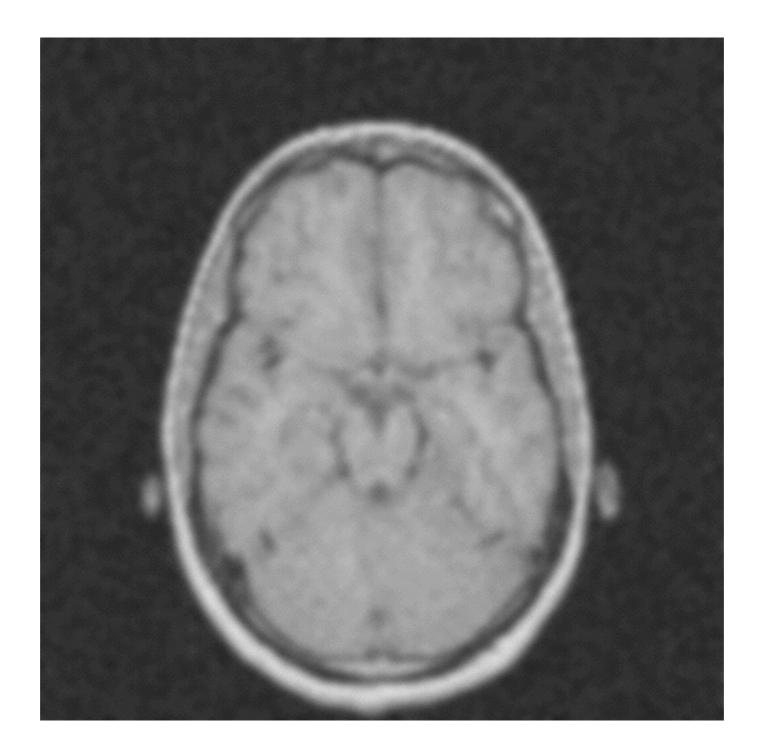
- As you probably know...
- The box filter cuts primarily high frequencies but it has oscillations for some low frequencies.
 - What does it mean? That is BAD!
- The Gaussian filter cuts mostly high frequencies!
 - That is GOOD!





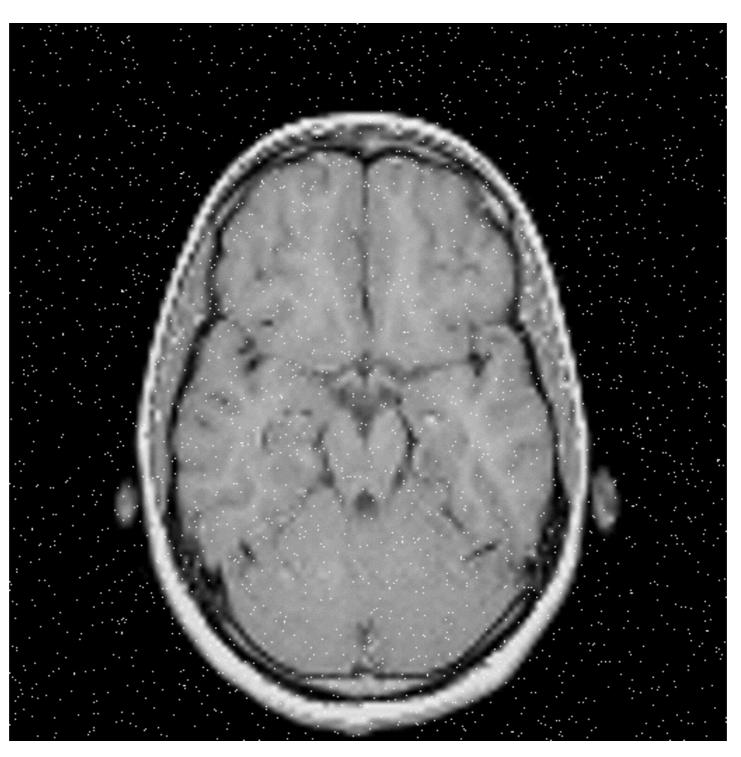




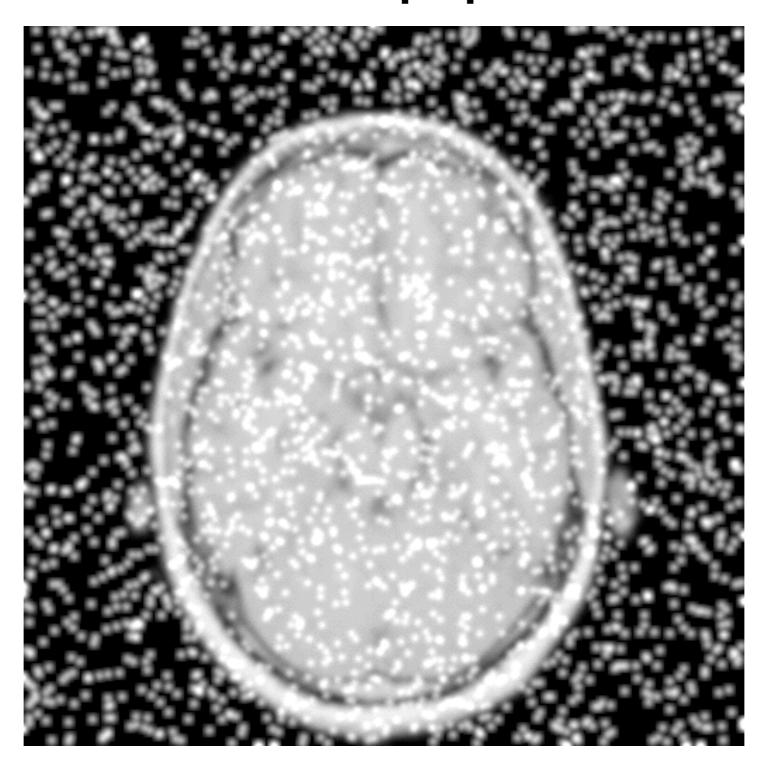


Non-Linear Filters

Salt and Pepper Noise



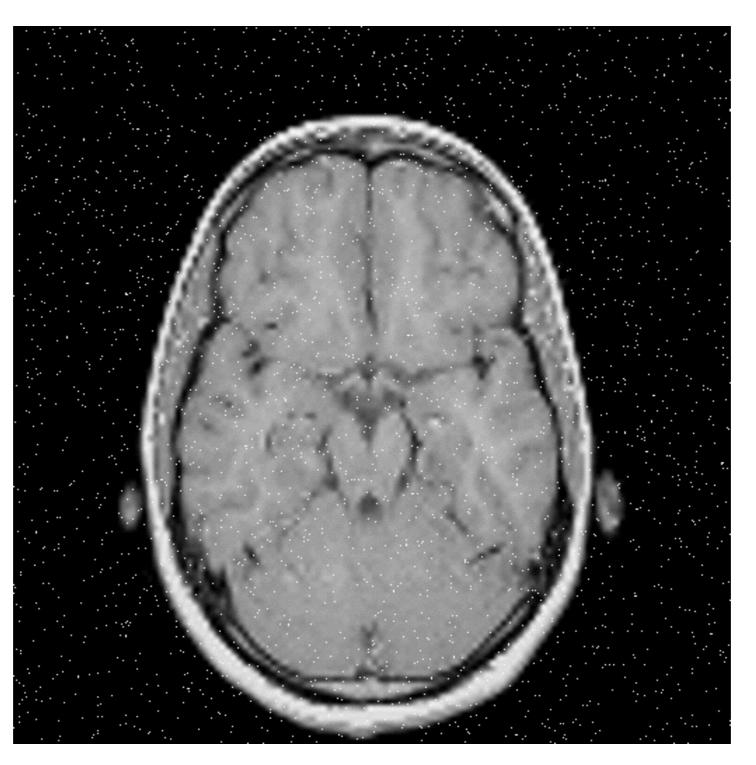
Salt and Pepper Noise



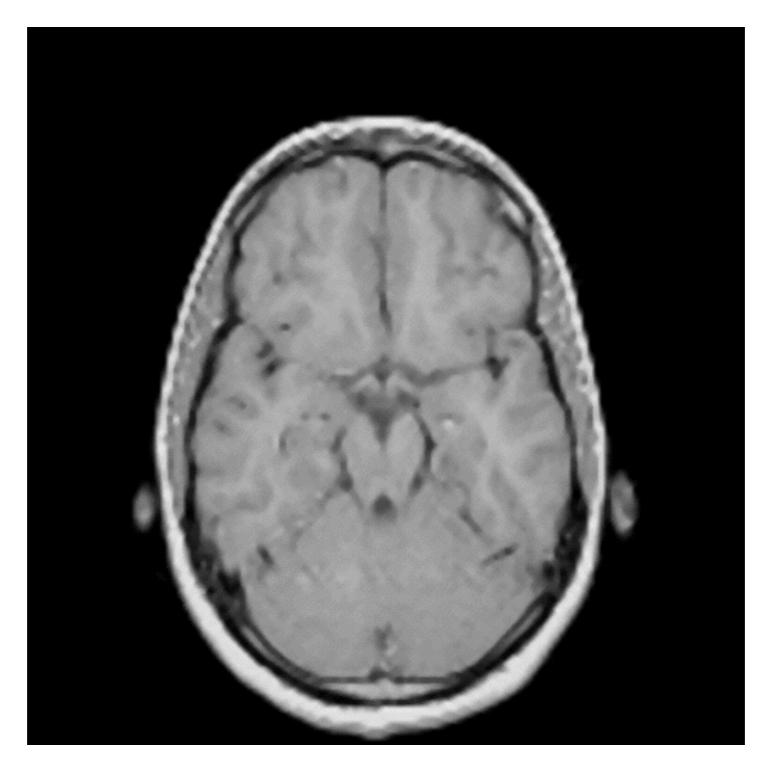
Median Filter

- This filter is mostly meant for tackling salt-andpepper noise!
 - Linear filters do a mess with salt-and-pepper!
- It exploits the fact that median is robust in separating the higher half of data sample from the lower part! Classist isn't it?

Median Filter Example



Median Filter Example



- It is a non-linear filter, oh really?
- It works both spatial domain and intensity/range domain of the image.
- Basically, it is an adaptive linear filter:
 - It behaves as a linear filter in flat regions;
 - At strong edges (step-edge), filtering is "limited".

$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$
$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

Spatial Function

$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$
$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$
$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

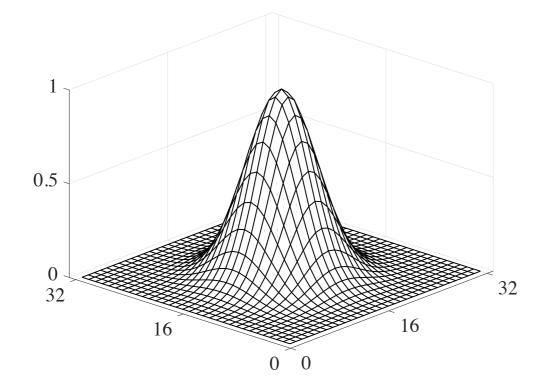
Range Function

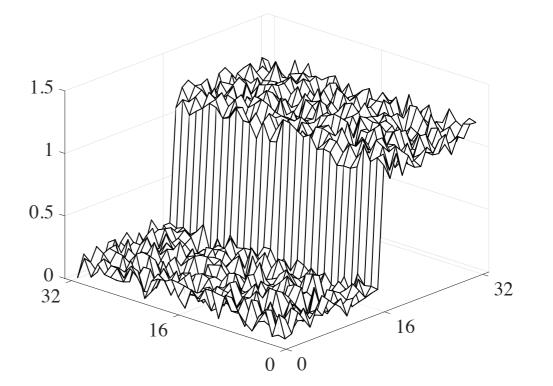
$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$
$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

$$BF[I](\mathbf{x}, f_s, g_r) = \frac{1}{K(\mathbf{x}, f_s, g_r)} \sum_{\mathbf{y} \in \Omega(\mathbf{x})} I(\mathbf{y}) f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$
$$K[I](\mathbf{x}, f_s, g_r) = \sum_{\mathbf{y} \in \Omega(\mathbf{x})} f_s(\|\mathbf{x} - \mathbf{y}\|) g_r(\|I(\mathbf{y}) - I(\mathbf{x})\|),$$

- Spatial function: a Gaussian function
- Range function: a Gaussian function
- How large is the kernel?
 - If the spatial function is a Gaussian:

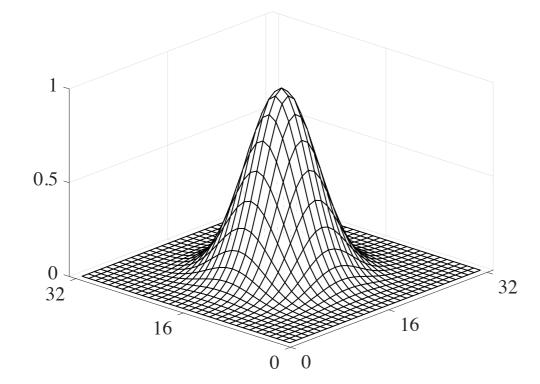
$$N = M = \frac{5}{2}\sigma_s$$

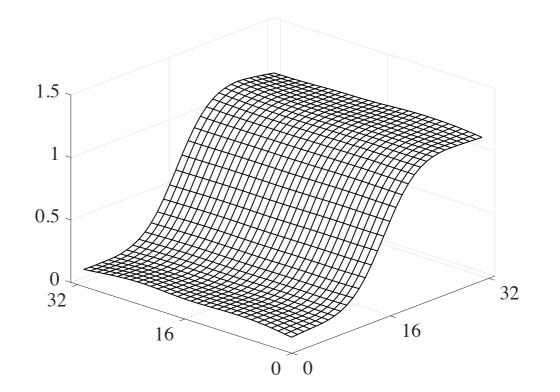




Kernel

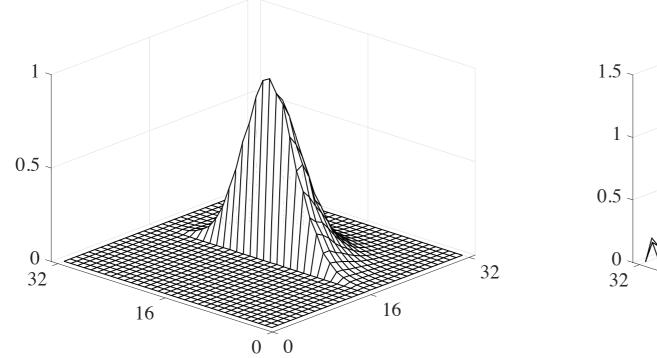
Image

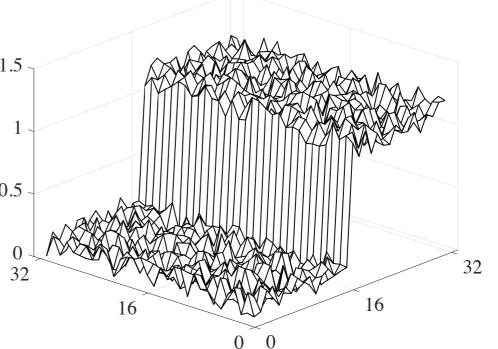




Kernel

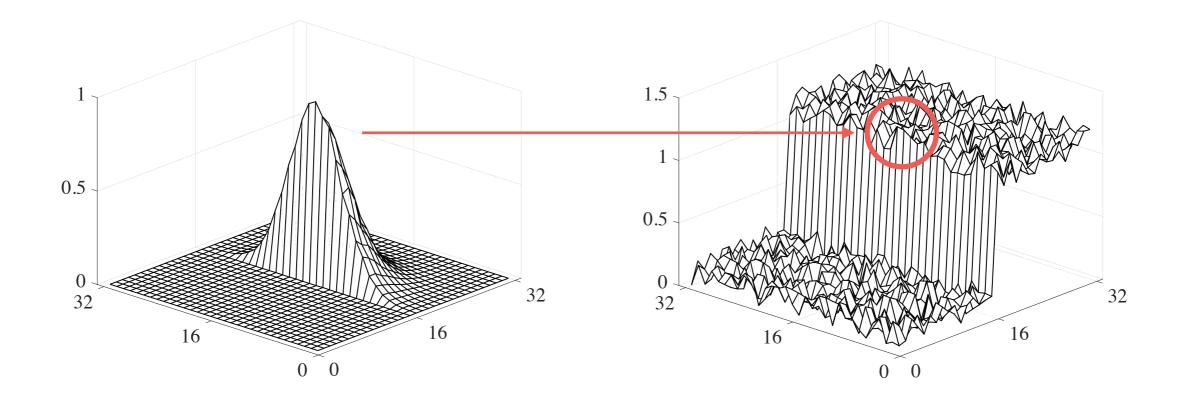
Image





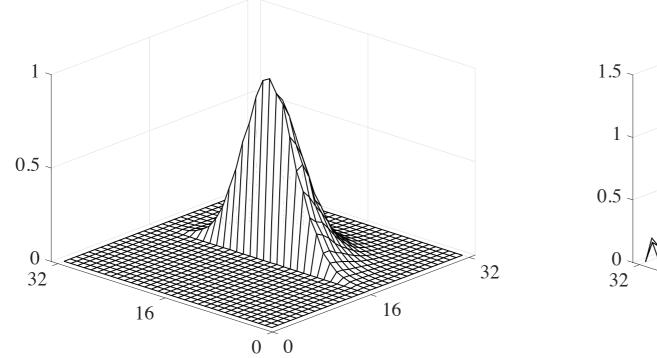
Kernel (change for each pixel!!)

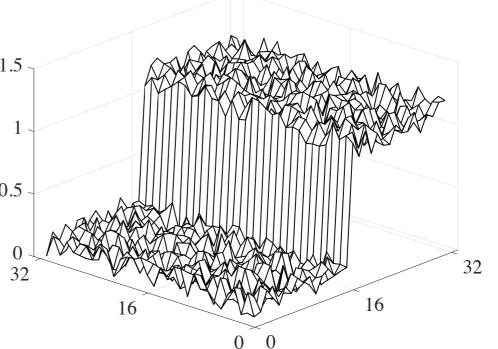
Image



Kernel (change for each pixel!!)

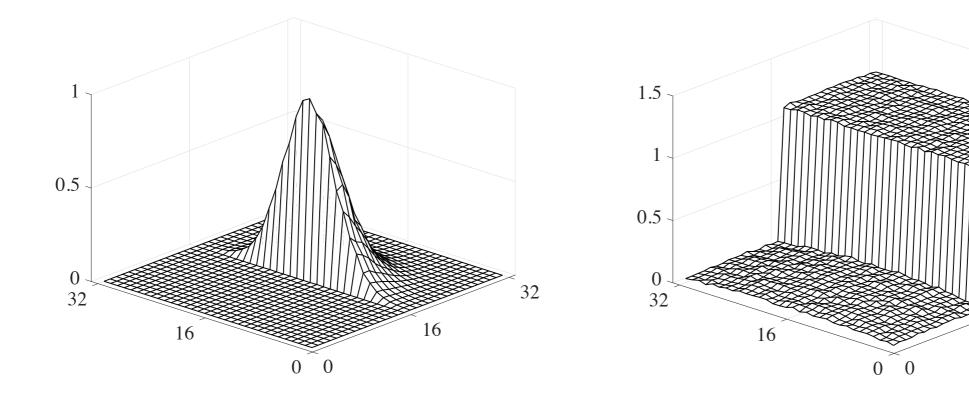
Image





Kernel (change for each pixel!!)

Image

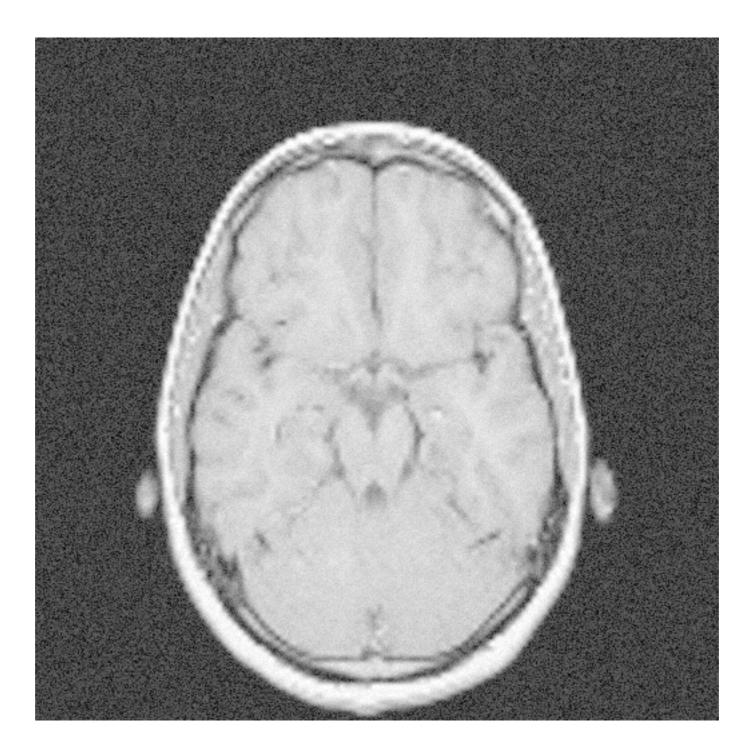


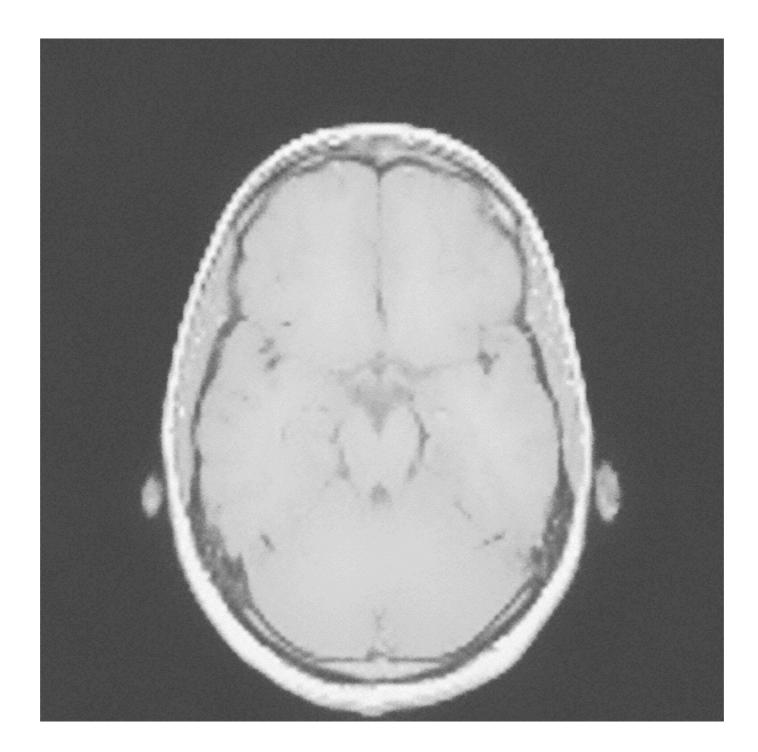
Kernel (change for each pixel!!)

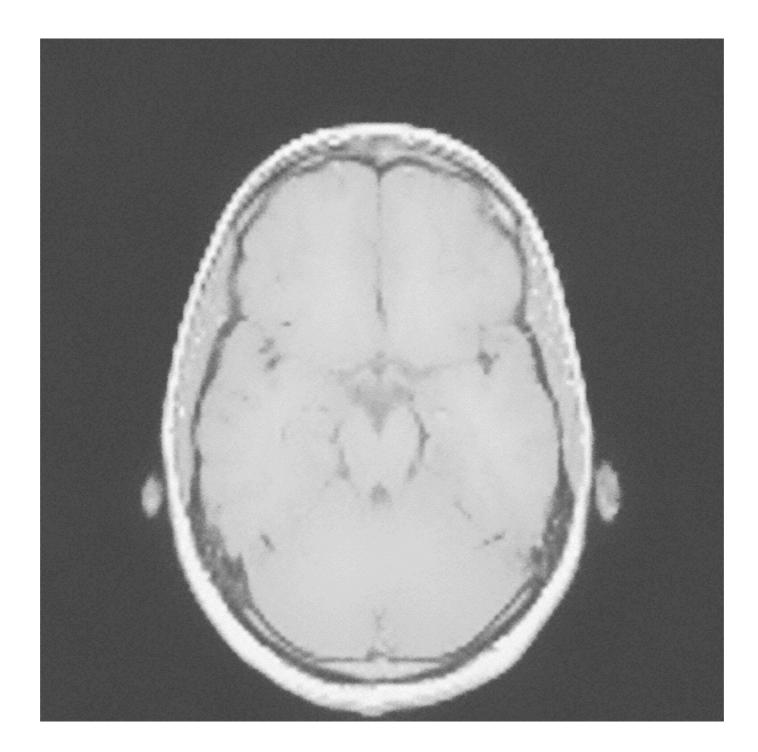
Image

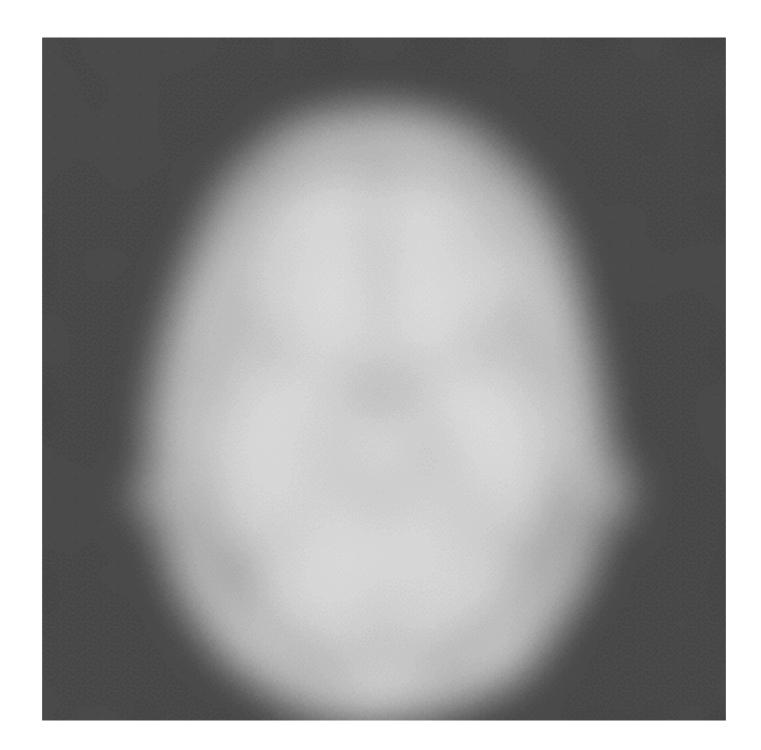
32

16







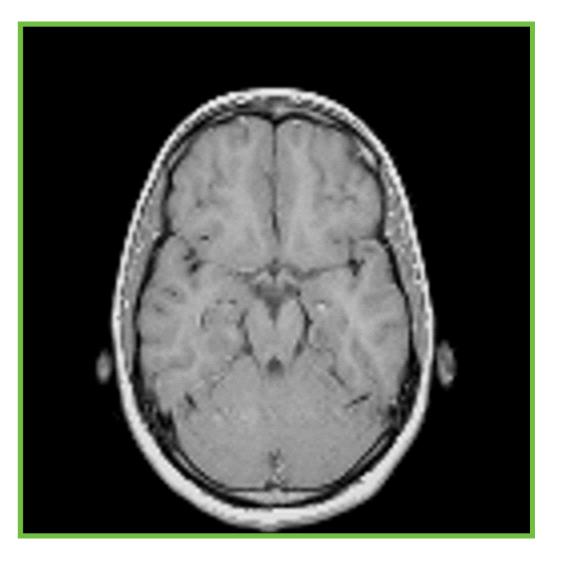


Local Contrast Enhancement

- Before, we have seen how to increase local contrast using the sharpening operator.
- We can achieve better results using a more general framework!

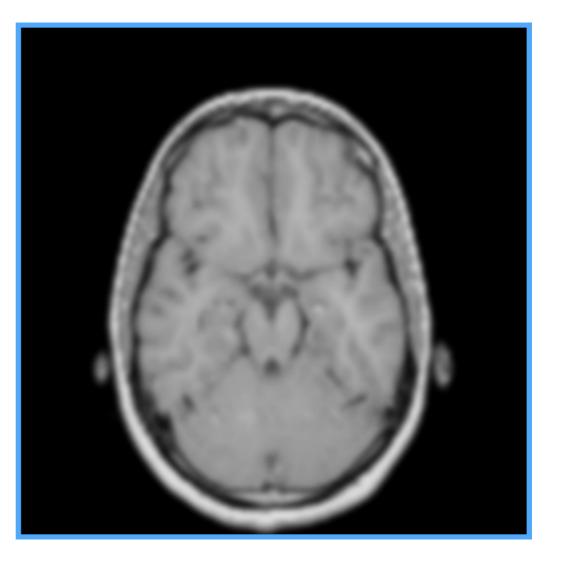
$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]}\right)$$

$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]}\right)$$



$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]}\right)$$

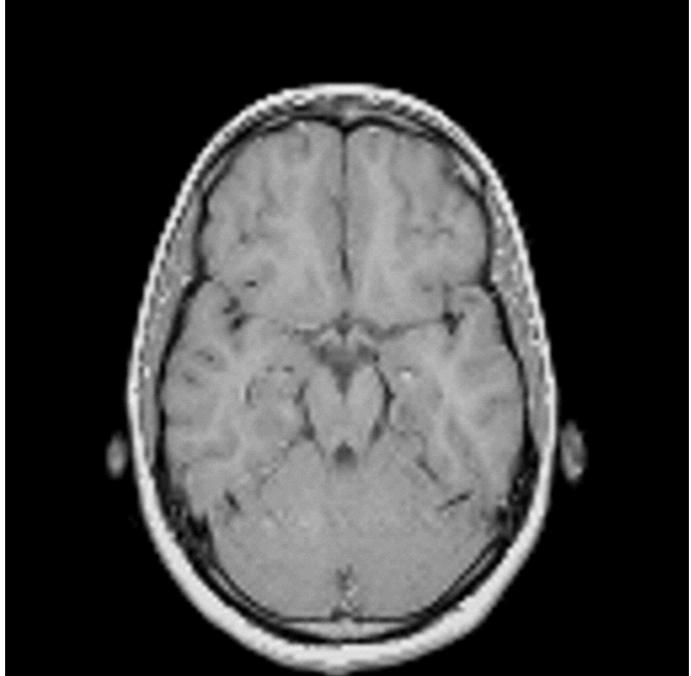
$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]} \right)$$

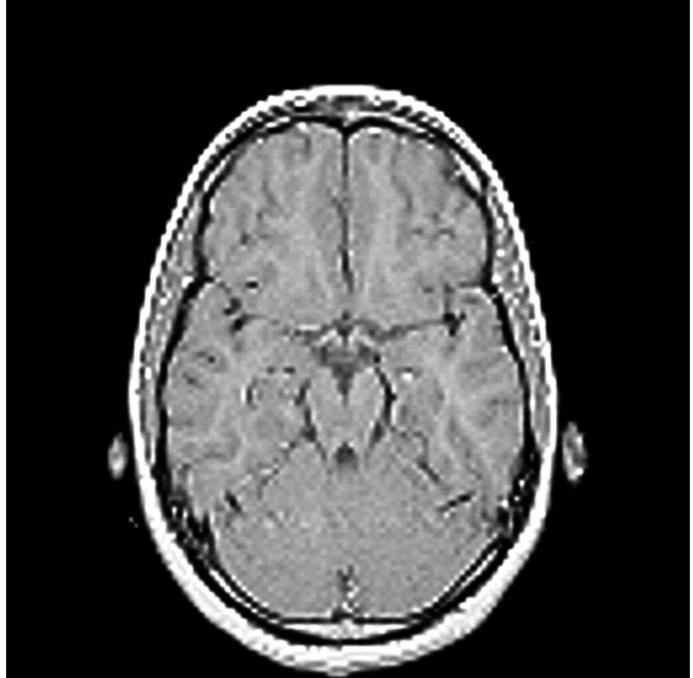


$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]}\right)$$

$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]}\right)$$

$$O[i,j] = f[i,j] \cdot \left(\frac{f[i,j]}{(f \otimes g)[i,j]}\right)$$





Bonus: Deconvolution

$$\begin{cases} I_0 = 0.5 \\ I_{i+1} = I_i \cdot \left(\frac{J}{I_i \otimes K} \otimes K^\top \right) \end{cases}$$

Richardson–Lucy deconvolution

Bonus: Deconvolution

$$\begin{cases} I_0 = 0.5 \text{ Input Blurred Image} \\ I_{i+1} = I_i \cdot \left(\underbrace{J}_{I_i \otimes K} \otimes K^\top \right) \end{cases}$$

Richardson–Lucy deconvolution

Bonus: Deconvolution

$$\begin{cases} I_0 = 0.5 \\ I_{i+1} = I_i \cdot \left(\frac{J}{I_i \otimes K} \otimes K^\top \right) \end{cases}$$

Richardson–Lucy deconvolution

Bonus: Deconvolution Example



Bonus: Deconvolution Example

Local Contrast Enhancement

- When using linear filters we may introduce halos!
 - halos —> BIAS!
- It is better to use non-linear filters such as the bilateral filter, the guided filter, WLS, etc.

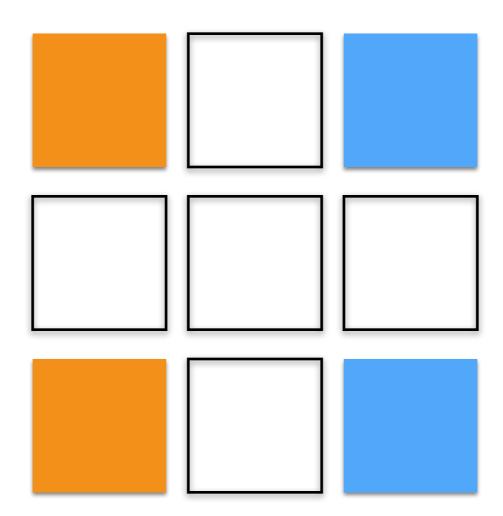
Image Upsampling

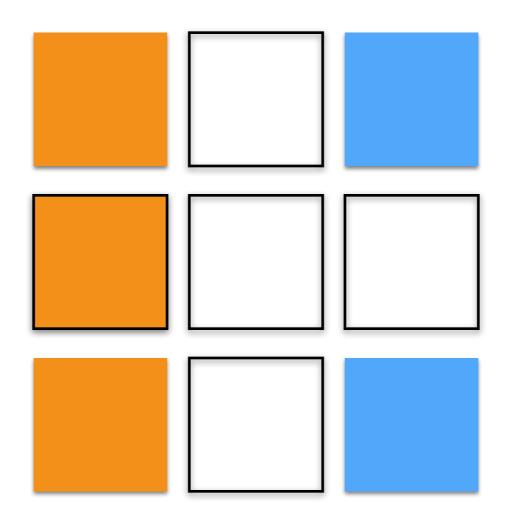
Why Upsampling?

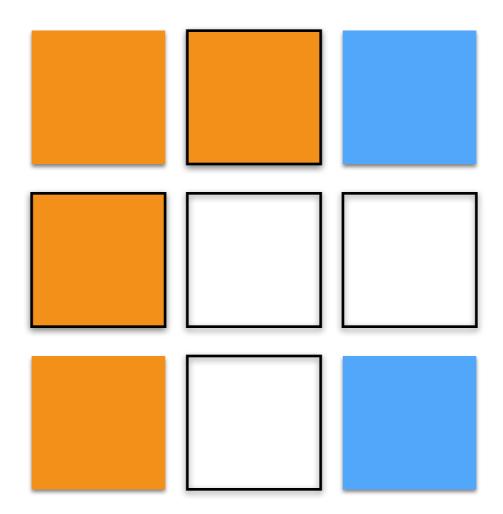
- The main reason why we want to upsample (we invent data basically) our input data is that they have a very low resolution
- Forget 4K for your flicks, we have 512x512 resolution in happy days

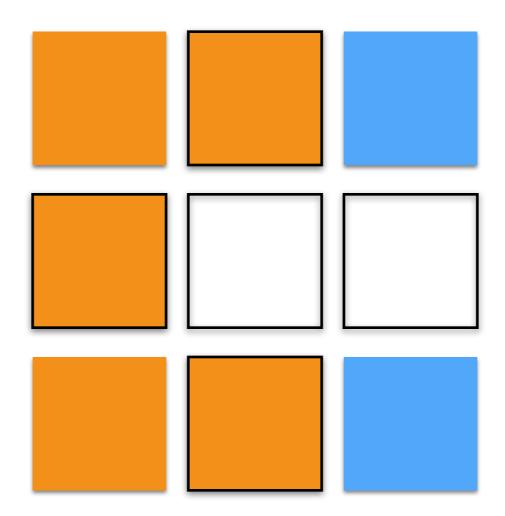
Upsampling

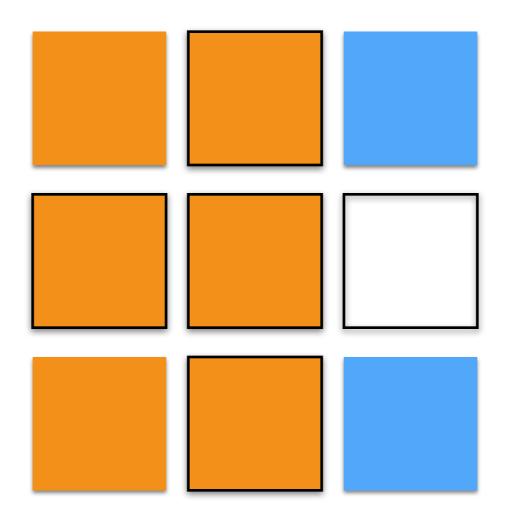
- When we upsample we need to invent the pixel in between the original ones...
- Basic solution:
 - For each missing pixel:
 - find the closest (norm 1, 2, whatever) "real" pixel with intensity/color Cn
 - Set the intensity/color of the missing pixel equals to Cn

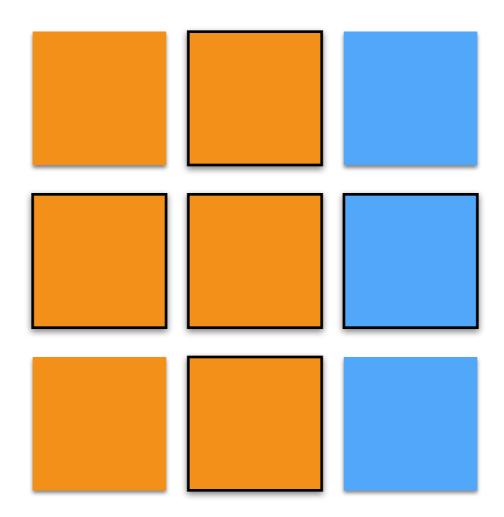


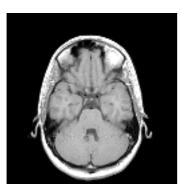




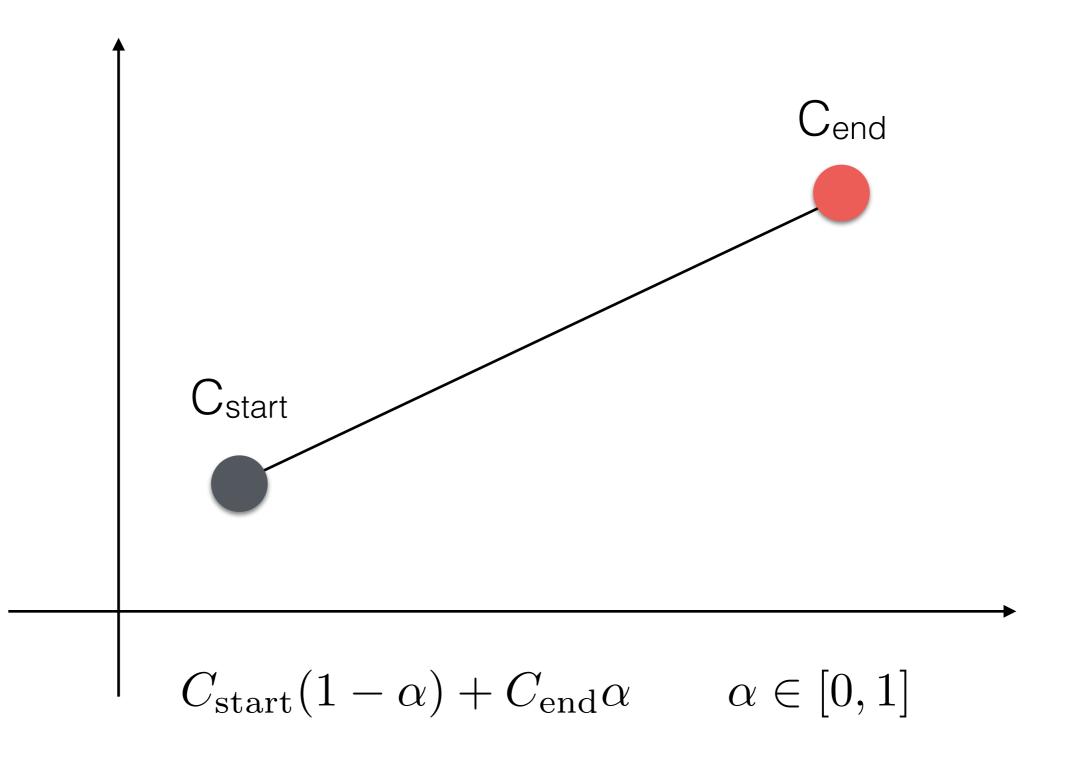




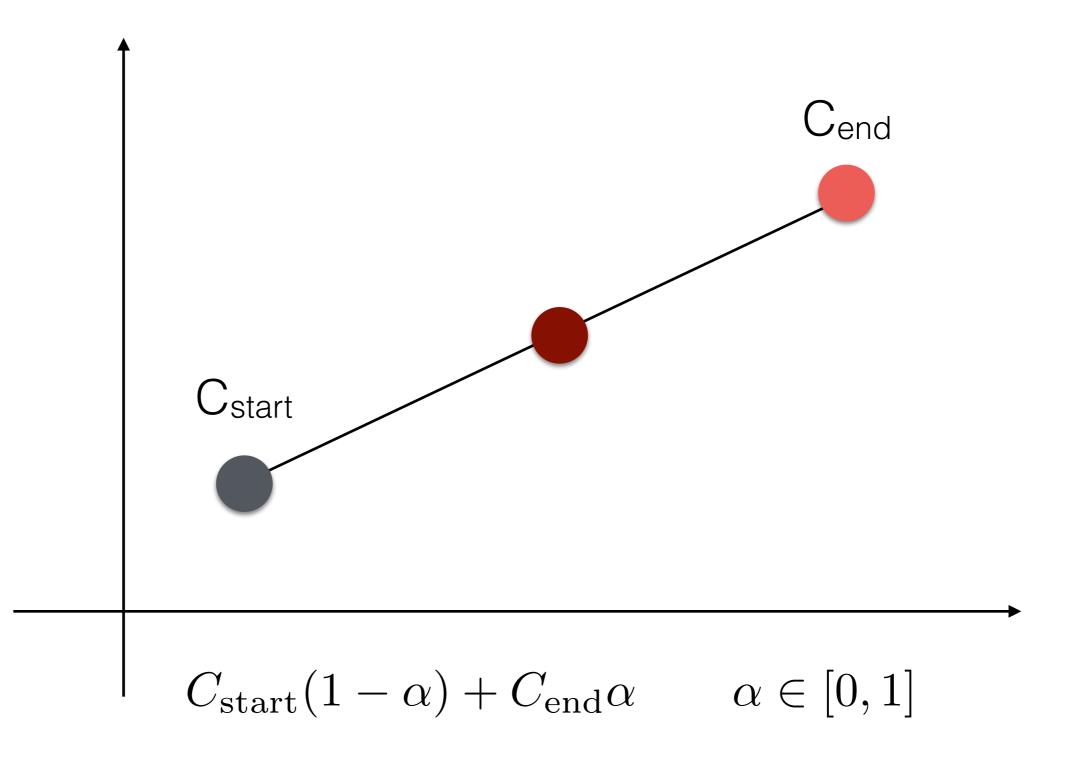




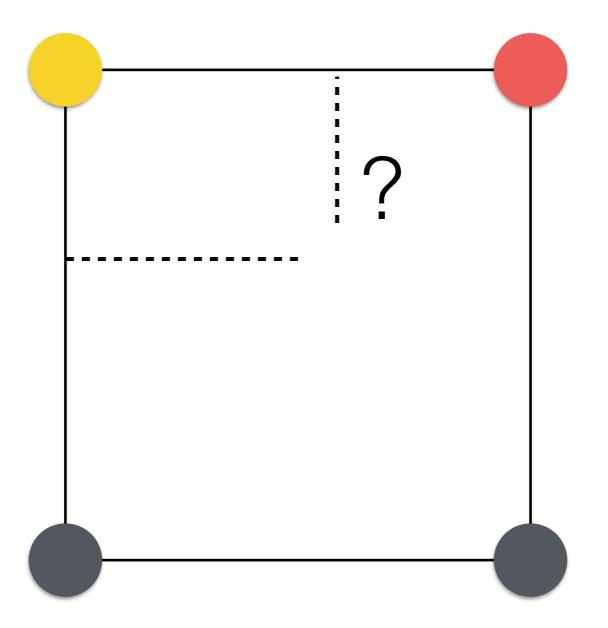
Upsampling 1D: Linear Interpolation

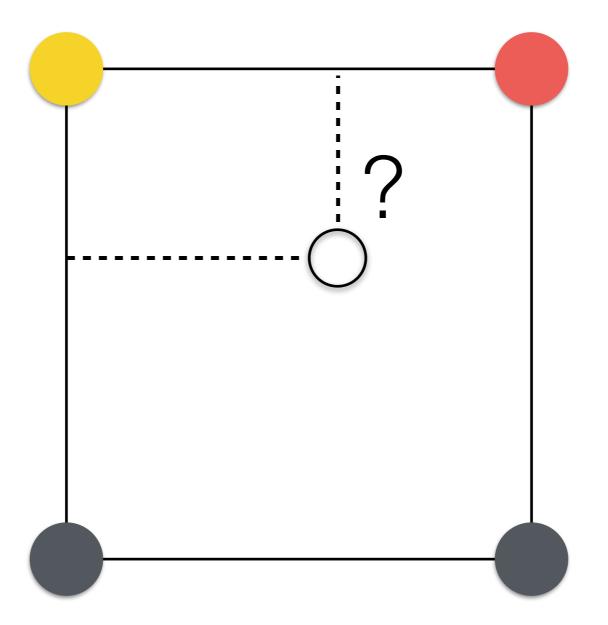


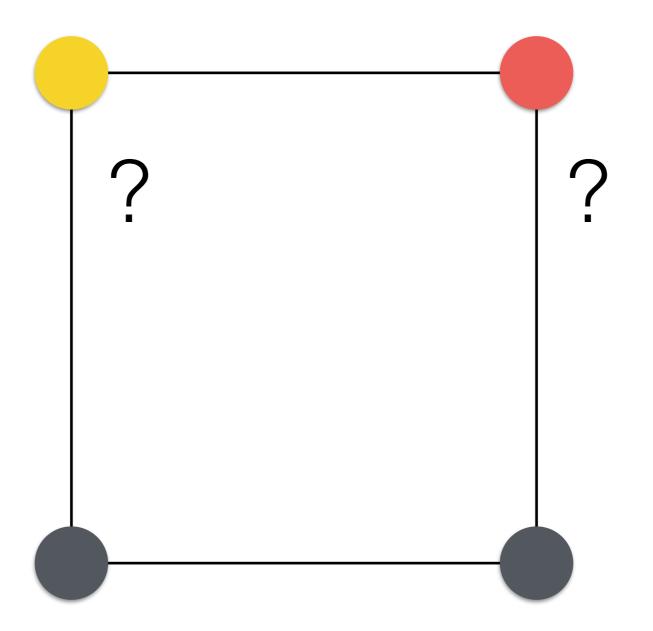
Upsampling 1D: Linear Interpolation

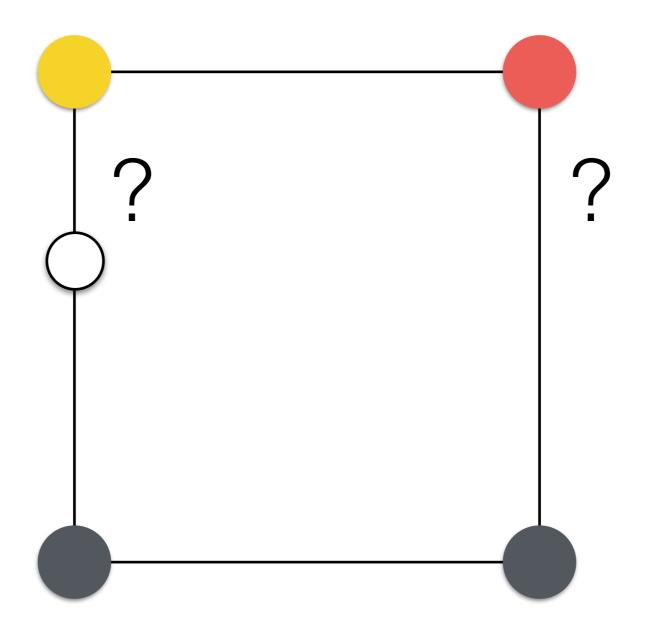


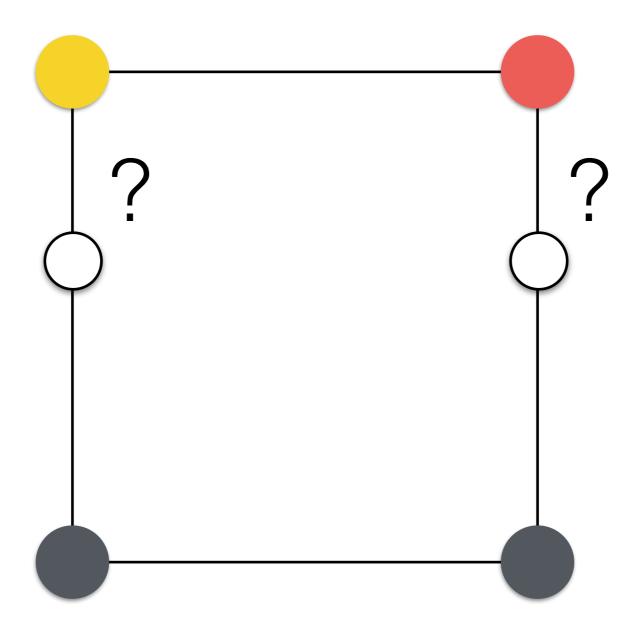
This becomes a bi-linear interpolation in 2D!

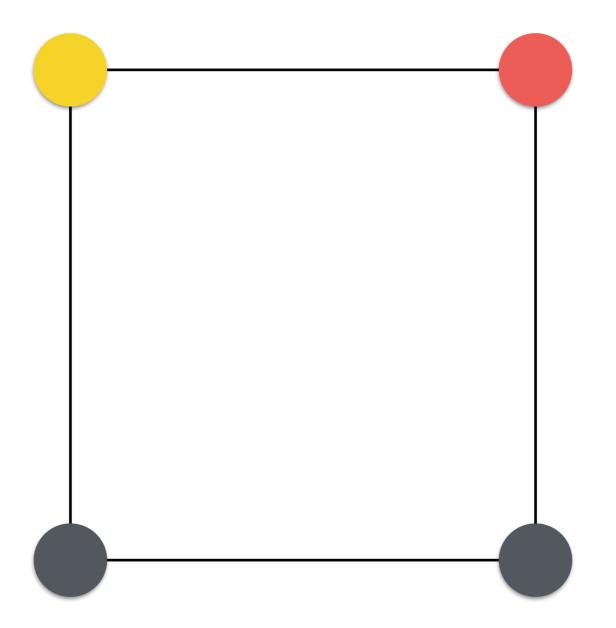


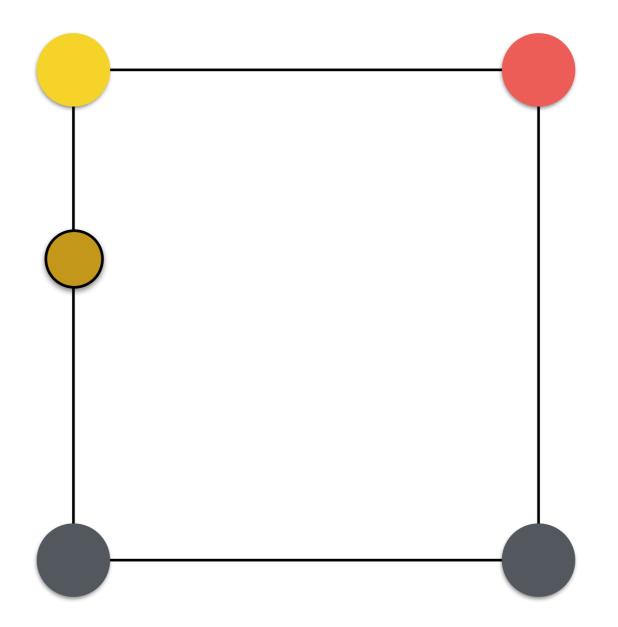


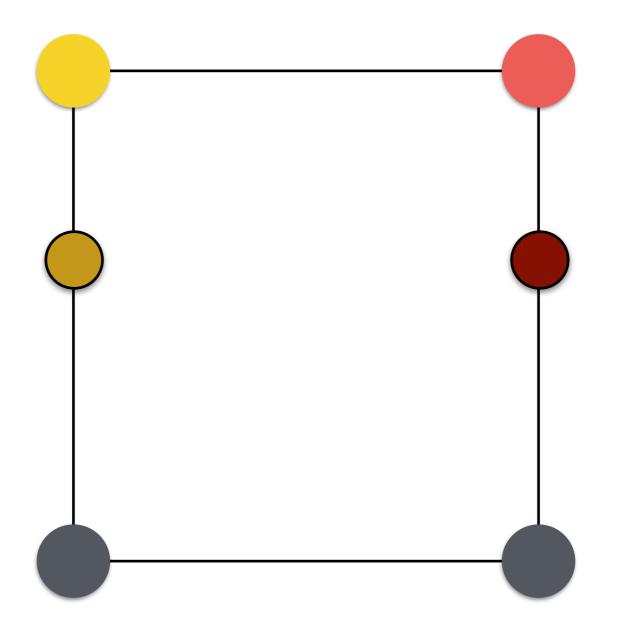


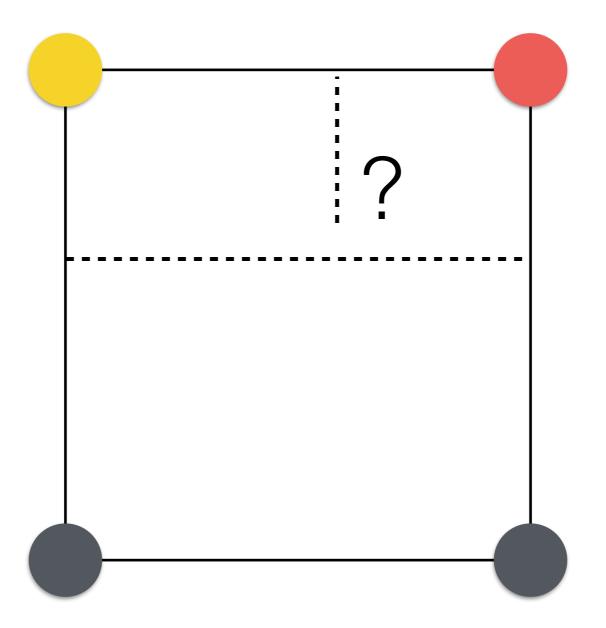


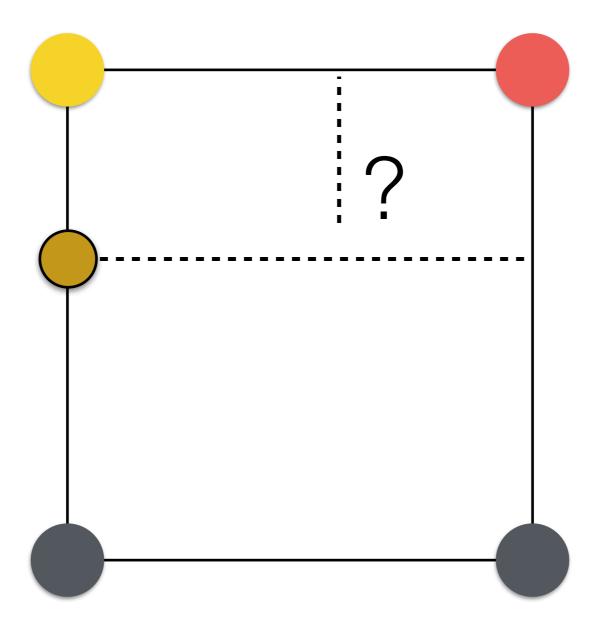


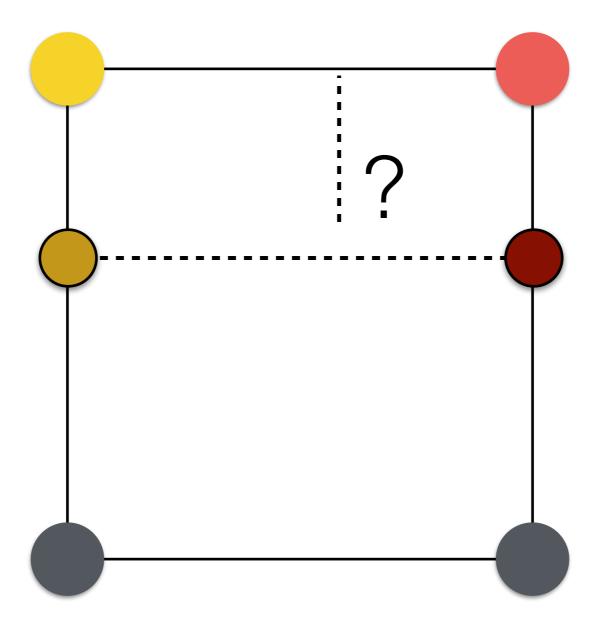


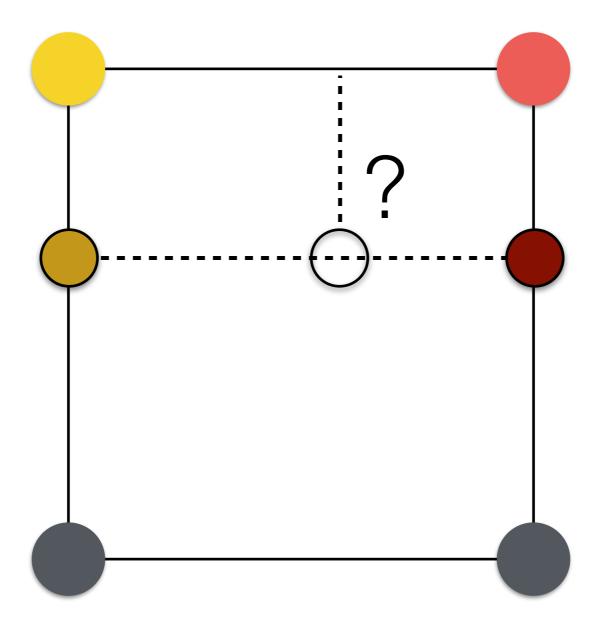


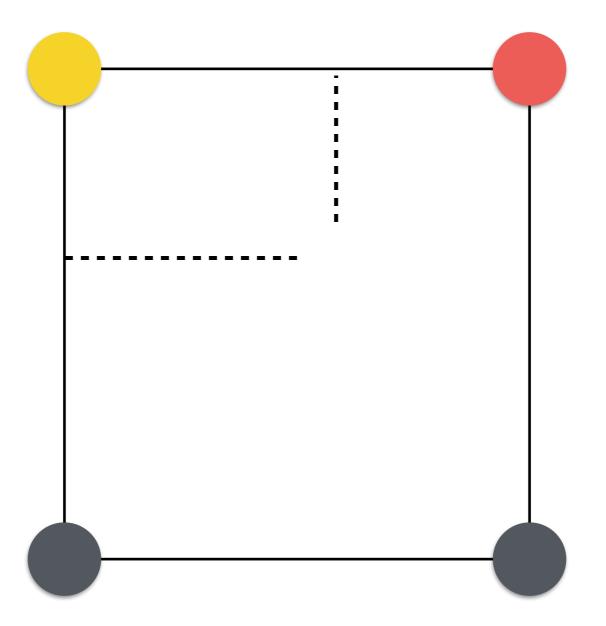


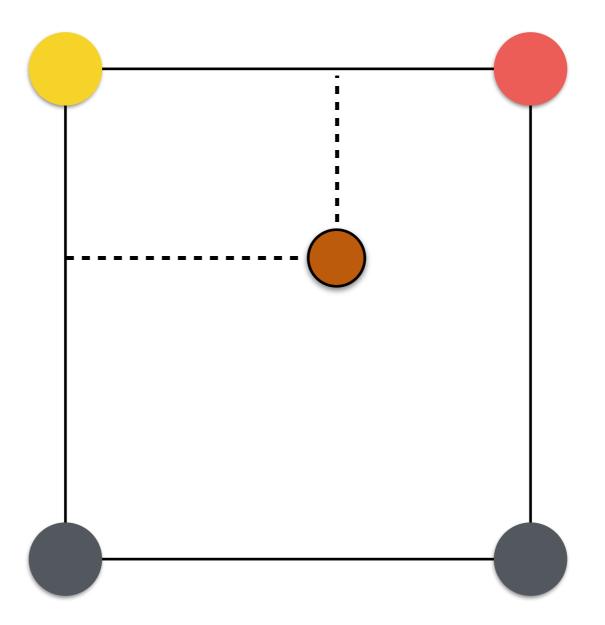




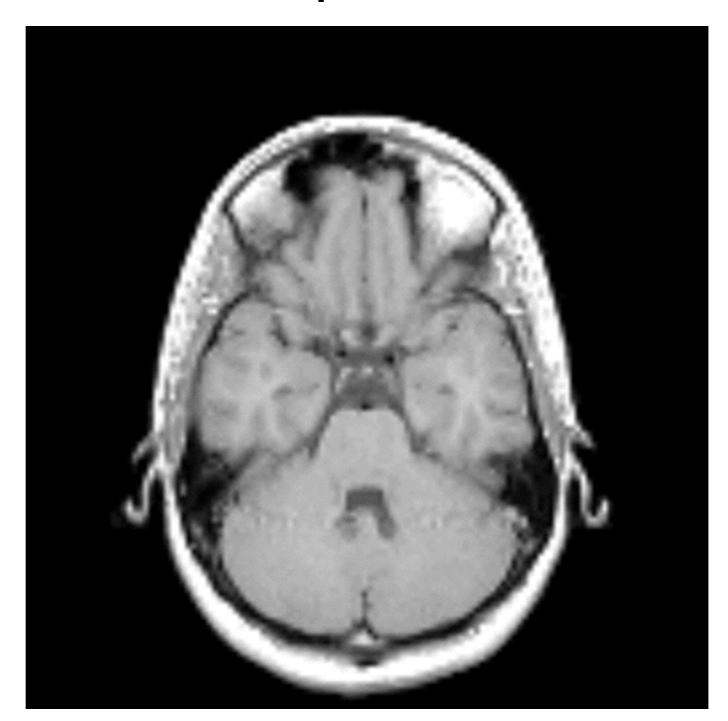






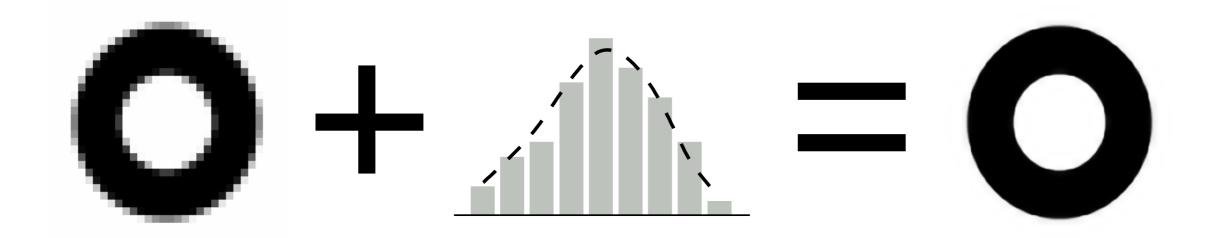


Bilinear Upsampling Example



Can we do it better?

Upsampling



that's all folks!