
3D Models
Dr. Francesco Banterle,

francesco.banterle@isti.cnr.it
banterle.com/francesco

mailto:francesco.banterle@isti.cnr.it
http://banterle.com/francesco

3D Models

• A 3D model is a computational representation of a
real-world object. This is typically:

• C0

• Closed (not always!)

• Discretized

3D Models
• Two main representations:

• Boundary representations (b-rep): a 3D object
is represented as a collection of connected
surface elements; i.e., the boundary between
solid and non-solid

• Volume representations: a 3D object is
represented by its interior volume. For example,
3D volumes or volume mesh (FEM)

Our focus is on

boundary representations

Polygonal Meshes

3D Representation:
Polygonal Meshes

• Discretize the surface in a set of simple primitives:

• Many points

• Triangles

• Quads

• Polygons

• Our focus is on:

• simplicial complexes, e.g., triangle!

Why triangular meshes?

• Two main practical reasons:

• Data-structures are straightforward

• Graphics hardware (e.g., a GPU) uses triangles;

Why triangular meshes?
• Two main theoretical reasons:

• Nice theory, i.e., simplicial complexes

• Less limiting cases:

• a triangle is always planar!

• if we remove a vertex, we get another
simplicial!

• A k-simplex, σ, is convex combination of (k+1) points (pi)
that are linear independent in the d-dimensional Euclidian
space, Rk:

• A point pi is called a vertex

• k is the order of the simplex

Simplex

x =
X

pi2S

↵ipi

X

i

↵i = 1 ^ ↵i � 0 8i

Simplices Example

k=0 k=1 k=2 k=3

Sub-Simplex

• A sub-simplex σ’ is called a face of a simplex σ if it
is a sub-set of vertices of σ.

Simplicial Complexes
• A semplicial complex, 𝜮, is a finite collection of K

simplices such that:

(i) �1,�2 2 ⌃ ! �1 \ �2 �1,�2

(ii) � 2 ⌃ ^ ⌧ � ! ⌧ 2 ⌃

Simplicial Complexes
Example

OK BAD!

Simplicial Complexes

• A simplex, σ, is maximal in a simplicial complex, 𝜮,
if it does not belong to any other simplex σ2 of 𝜮.

• A k-simplicial complex, 𝜮, is maximal if all maximal
simplices have order k.

A Non-Maximal
Simplicial Complex Example

2-Manifold

• A surface, S, in R3 such that whose points all have
open disks as neighborhoods.

• This means S that looks locally like the plane
everywhere.

Non-manifold Examples

Grafica al Calcolatore Modelllazione geometrica - 7

Maglie poligonali

• Una maglia (mesh) triangolare è 2-complesso simpliciale puro che è anche una varietà

bidimensionale con bordo.

• I triangoli della maglia si chiamano anche facce.

• La condizione di essere varietà si traduce nei seguenti vincoli ulteriori sulla struttura del

complesso simpliciale:

NO!

– uno spigolo appartiene

al massimo a due triangoli (quelli

eventuali che appartengono ad uno

solo formano il bordo della maglia)

NO!

– se due triangoli incidono sullo stesso

vertice allora devono appartenere

alla chiusura transitiva della

relazione di 1-adiacenza, ovvero

devono formare un ventaglio o un

ombrello.

R. Giannitrapani, A. Fusiello Verona, a.a. 2009-10

Borders

Border

Closed sequence
of edges with only
a face

Orientability
• A surface, S, is orientable if it is possible to set a

coherent normal to each point of the surface

• Note: Möbius strip and Klein bottle and non-
manifold surfaces are not orientable:

Möbius strip Klein bottle

Orientability

Front
(counter-clockwise)

Back
(clockwise)

V1

V2

V3

V1

V2

V3

Mesh

• A mesh is maximal 2-simplicial complexes that is a
2-manifold orientable surface.

• We can have non 2-manifold meshes

• We assume that they are maximal

Genus
• The genus is the maximum number of cuttings

along non-intersecting closed simple curves without
rendering the resultant manifold disconnected

• Genus —> “the number of handles”
0 1 2

• Given V vertices, E edges, and F faces of a
polygonal closed and orientable surface with
genus G, we have that:

• More in general for a 2-manifold orientable
polygonal mesh (with S connected components
and B borders):

Euler Characteristic

� = V � E + F
2� 2G = V � E + F

V � L+ F = 2(S �G)�B

27

Euler characteristics

 = 2 for any simply connected polyhedron

 proof by construction…

 play with examples:

χEuler Characteristic
Example

29

Euler characteristics

 where g is the genus of the surface

χ=2−2g

Adjacency Relations
• Given two simplices, σ1 and σ2, they are incident if
σ1 is a face of σ2 or vice-versa.

• Two k-simplices are m-adjacent (k > m) if a m-
simplex exists such that it is a face of both.

• For example:

• Two triangles sharing an edge are 1-adjacent

• Two triangle sharing a vertex are 0-adjacent

Adjacency Relations
• An adjacency relations is an ordered couple of the

following elements:

• E —> edge

• F —> Face

• V —> Vertex

• For example: (E,E), (V,V), (F,F), (E,F), (F,E), (E,V),
(V,E), (F,V), (V,F), (E,V), and (V,E).

Adjacency Relations
Example

• Meaning of some relations:

• FF —> adjacency between triangles

• FV —> vertices of a triangle

• VF —> triangles sharing a vertex

Adjacency Relations
Example

FV VF

Adjacency Relations
Example

EF FE

Normals

Normals

• A normal is an important
attribute for a vertex:

• It defines the direction
of the object boundary

n

inside

outside

How to compute triangle
normal?

• Given a triangle (V1, V2, and V3),
its normal (outer-pointing
normal):

• This means that vertices order is
important! Typically is counter-
clockwise

V1 V2

V3

n
~n = (V3 � V2)⇥ (V1 � V2)

~n =
~n

k~nk

How to compute per
vertex normal?

• We compute normals for each triangle

• For each vertex:

• We compute the sum of normals of all triangles
sharing that vertex:

• We normalize this sum

• Note: per-vertex normals are useful but not correct!

~ns(V) =
X

{i|V 2Ti}

~nTi

Data Structures
for

3D Meshes

List of Triangles
• For each triangle of the 3D

model, we store its
coordinates.

• For example:
e1

e2

e3

T1

a b

c d

T2

Triangle 1: (3,-2,5); (2,2,4); (-6,2,4)
Triangle 2: (2,2,4) ; (0,-1,-2); (9,4,0)
Triangle 3: (1,2,-2); (3,-2,5); (-6,2,4)

….
Triangle n: (-8,2,7); (-2,3,9); (1,2,-7)

What’s very wrong
with this??

Triangle 1: (3,-2,5); (2,2,4); (-6,2,4)
Triangle 2: (2,2,4) ; (0,-1,-2); (9,4,0)
Triangle 3: (1,2,-2); (3,-2,5); (-6,2,4)

….
Triangle n: (-8,2,7); (-2,3,9); (1,2,-7)

What’s very wrong
with this??

Triangle 1: (3,-2,5); (2,2,4); (-6,-2,4)
Triangle 2: (2,2,4) ; (0,-1,-2); (9,4,0)
Triangle 3: (1,2,-2); (3,-2,5); (-6,-2,4)

….
Triangle n: (-8,2,7); (-2,3,9); (1,2,-7)

List of Triangles
• Disadvantages:

• Wasted disk and memory space:

• Vertices are duplicated!

• Memory: |V| * |T|

• Difficult to manage:

• if we modify a vertex of a triangle, we will need to find and
update its clones!

• How do we query neighbors?

List of Unique Vertices
• We store vertices in a list

• For each triangle of the
3D model, we store
indices to the vertices’ list

Vertices:
 1. (-1.0, -1.0, -1.0)
 2. (-1.0, -1.0, 1.0)
 3. (-1.0, 1.0, -1.0)
 4. (-1, 1, 1.0)
 5. (1.0, -1.0, -1.0)
 6. (1.0, -1.0, 1.0)
 7. (1.0, 1.0, -1.0)
 8. (1.0, 1.0, 1.0)

Faces:
 1. 1 2 4
 2. 5 7 6
 3. 1 5 2
 4. 3 4 7
 5. 1 7 5

e1

e2

e3

T1

a b

c d

T2

List of Unique Vertices
• Wasted disk and memory space:

• Common edges between two triangles are stored
two times in the list of faces!

• Memory: |V| + |T|

• Better management:

• Easy to edit a vertex’s attribute (e.g., its position)!

• How do we query neighbors?

List of Unique Edges
• We store vertices in a list

• For each edge, we store
indices to the vertices’ list

• For each triangle of the 3D
model, we store indices to
edges’s list

Vertices:
 1. (-1.0, -1.0, -1.0)
 2. (-1.0, -1.0, 1.0)
 3. (-1.0, 1.0, -1.0)
 4. (-1, 1, 1.0)

Faces:
 1. 1 2 5
 2. 2 4 3

Edges:
 1. 1 2
 2. 2 3
 3. 4 2
 4. 3 4
 5. 1 3

e1

e2

e3

T1

a b

c d

T2

List of Unique Edges

• Better management:

• Easy to edit an edge’s attribute (e.g., its color)!

• We can do some queries, but not all of them!

Extended List of
Unique Edges

• We add to an edge the indices
of its left and right triangle

• This simplifies edge-face
queries!

Vertices:
 1. (-1.0, -1.0, -1.0)
 2. (-1.0, -1.0, 1.0)
 3. (-1.0, 1.0, -1.0)
 4. (-1, 1, 1.0)

Faces:
 1. 1 2 5
 2. 2 4 3

Edges:
 1. 1 2
 2. 2 3
 3. 4 2
 4. 3 4
 5. 1 3

e1

e2

e3

T1

a b

c d

T2

Faces:
 1. -1 1
 2. 1 2
 3. -1 2
 4. -1 2
 5. 1 -1

File Formats

File Formats
• There are many 3D file formats. The most used, and de-facto

standard:

• STL

• PLY

• OBJ

• Standards:

• COLLADA: https://www.khronos.org/collada/

• X3D: http://www.web3d.org/x3d/

https://www.khronos.org/collada/
http://www.web3d.org/x3d/

STL File Format
• Standard Triangle Language (STL) created by 3D

Systems

• This format represents only the 3D geometry:

• No color/texture

• No other attributes

• The format specifies both ASCII and binary
representations

STL File Format

• Data structure: list of triangles

• Vertices are ordered using the right-hand rule

• 3D coordinates must be positive

• No scale metadata; i.e., units are arbitrary

STL File Format
• The file begins as

• A face is defined as

solid name

facet normal nx ny nz
 outer loop
 vertex v1x v1y v1z
 vertex v2x v2y v2z
 vertex v3x v3y v3z
 endloop
endfacet

STL File Format:
An Example

solid triangle
facet normal 0 1 0
 outer loop
 vertex 0.0 0.0 0.0
 vertex 1.0 0.0 0.0
 vertex 0.0 1.0 1.0
 endloop
endfacet
endsolid triangle

PLY File Format
• Polygon File Format (PLY) is a popular format

created by Stanford University (Greg Turk)

• The format is very flexible:

• we can add many attributes

• we can define triangular and polygonal meshes

• The format specifies both ASCII and binary
representations

STL File Format
• Data structure: list of unique vertices

• No scale metadata; i.e., units are arbitrary

• The file is divided into two parts:

• Header that specifies vertices and faces

• Body that specifies the concrete data

PLY File Format: Header
• The file begins as

• Vertex specification is defined as

ply
format ascii 1.0

element vertex num_vertices
property float x
property float y
property float z

properties can be: char, uchar, short, ushort, int, uint float, double, etc.

PLY File Format: Header
• Faces are defined as

element face num_faces
property list uchar int vertex_indices

end_header

PLY File Format: Body
• Each i-th vertex is specified as

• Each face is specified as

vix viy viz

3 index_v1 index_v2 index_v2

PLY File Format: An Example
ply
format ascii 1.0
element vertex 4
property float x
property float y
property float z
element face 4
property list uchar int vertex_indices
end_header
-0.60 -0.97 0.37
-0.34 0.98 0.76
0.037 0.65 -1.06
0.88 -0.75 -0.25
3 1 3 2
3 0 1 2
3 0 3 1
3 3 0 2

Acknowledgements

• Some images and text are based on work by:

• Dr. Paolo Cignoni:

• http://vcg.isti.cnr.it/~cignoni/

http://vcg.isti.cnr.it/~cignoni/

