3D Models

Dr. Francesco Banterle, francesco.banterle@isti.cnr.it banterle.com/francesco

3D Models

- A 3D model is a computational representation of a real-world object. This is typically:
- CO
- Closed (not always!)
- Discretized

3D Models

- Two main representations:
- Boundary representations (b-rep): a 3D object is represented as a collection of connected surface elements; i.e., the boundary between solid and non-solid
- Volume representations: a 3D object is represented by its interior volume. For example, 3D volumes or volume mesh (FEM)

Our focus is on

boundary representations

Polygonal Meshes

3D Representation: Polygonal Meshes

- Discretize the surface in a set of simple primitives:
- Many points
- Triangles
- Quads
- Polygons
- Our focus is on:
- simplicial complexes, e.g., triangle!

Why triangular meshes?

- Two main practical reasons:
- Data-structures are straightforward
- Graphics hardware (e.g., a GPU) uses triangles;

Why triangular meshes?

- Two main theoretical reasons:
- Nice theory, i.e., simplicial complexes
- Less limiting cases:
- a triangle is always planar!
- if we remove a vertex, we get another simplicial!

Simplex

- A k-simplex, σ, is convex combination of $(k+1)$ points $\left(\mathbf{p}_{\mathbf{i}}\right)$ that are linear independent in the d-dimensional Euclidian space, Rk:

$$
\begin{array}{r}
\mathbf{x}=\sum_{p_{i} \in S} \alpha_{i} \mathbf{p}_{i} \\
\sum_{i} \alpha_{i}=1 \wedge \alpha_{i} \geq 0 \forall i
\end{array}
$$

- A point \mathbf{p}_{i} is called a vertex
- k is the order of the simplex

Simplices Example

Sub-Simplex

- A sub-simplex σ^{\prime} is called a face of a simplex σ if it is a sub-set of vertices of σ.

Simplicial Complexes

- A semplicial complex, $\boldsymbol{\Sigma}$, is a finite collection of K simplices such that:
(i) $\sigma_{1}, \sigma_{2} \in \Sigma \rightarrow \sigma_{1} \cap \sigma_{2} \leq \sigma_{1}, \sigma_{2}$

$$
\text { (ii) } \sigma \in \Sigma \wedge \tau \leq \sigma \rightarrow \tau \in \Sigma
$$

Simplicial Complexes Example

BAD!

Simplicial Complexes

- A simplex, $\boldsymbol{\sigma}$, is maximal in a simplicial complex, $\boldsymbol{\Sigma}$, if it does not belong to any other simplex σ_{2} of $\boldsymbol{\Sigma}$.
- A k-simplicial complex, $\boldsymbol{\Sigma}$, is maximal if all maximal simplices have order k.

A Non-Maximal Simplicial Complex Example

2-Manifold

- A surface, S, in R^{3} such that whose points all have open disks as neighborhoods.
- This means S that looks locally like the plane everywhere.

Non-manifold Examples

Borders

Orientability

- A surface, S, is orientable if it is possible to set a coherent normal to each point of the surface
- Note: Möbius strip and Klein bottle and nonmanifold surfaces are not orientable:

Möbius strip

Klein bottle

Orientability

Front
(counter-clockwise)
Back
(clockwise)

Mesh

- A mesh is maximal 2-simplicial complexes that is a 2-manifold orientable surface.
- We can have non 2-manifold meshes
- We assume that they are maximal

Genus

- The genus is the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected

0

1

2

- Genus —> "the number of handles"

Euler Characteristic

- Given V vertices, E edges, and F faces of a polygonal closed and orientable surface with genus G, we have that:

$$
\begin{gathered}
2-2 G=V-E+F \\
\chi=V-E+F
\end{gathered}
$$

- More in general for a 2-manifold orientable polygonal mesh (with S connected components and B borders):

$$
V-L+F=2(S-G)-B
$$

Euler Characteristic Example

Adjacency Relations

- Given two simplices, σ_{1} and σ_{2}, they are incident if σ_{1} is a face of σ_{2} or vice-versa.
- Two k-simplices are m-adjacent ($k>m$) if a msimplex exists such that it is a face of both.
- For example:
- Two triangles sharing an edge are 1-adjacent
- Two triangle sharing a vertex are 0-adjacent

Adjacency Relations

- An adjacency relations is an ordered couple of the following elements:
- $E \longrightarrow$ edge
- F \longrightarrow Face
- V $->$ Vertex
- For example: (E,E), (V,V), (F,F), (E,F), (F,E), (E,V), (V,E), (F,V), (V,F), (E,V), and (V,E).

Adjacency Relations Example

- Meaning of some relations:
- FF \longrightarrow adjacency between triangles
- FV \longrightarrow vertices of a triangle
- VF \longrightarrow triangles sharing a vertex

Adjacency Relations Example

FV

Adjacency Relations Example

EF
FE

Normals

Normals

- A normal is an important attribute for a vertex:
- It defines the direction of the object boundary

outside

How to compute triangle normal?

- Given a triangle $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right.$, and $\left.\mathrm{V}_{3}\right)$, its normal (outer-pointing normal):

$$
\begin{array}{r}
\vec{n}=\left(V_{3}-V_{2}\right) \times\left(V_{1}-V_{2}\right) \\
\vec{n}=\frac{\vec{n}}{\|\vec{n}\|}
\end{array}
$$

- This means that vertices order is important! Typically is counterclockwise

How to compute per vertex normal?

- We compute normals for each triangle
- For each vertex:
- We compute the sum of normals of all triangles sharing that vertex:

$$
\vec{n}_{s}(V)=\sum_{\left\{i \mid V \in T_{i}\right\}} \vec{n}_{T_{i}}
$$

- We normalize this sum
- Note: per-vertex normals are useful but not correct!

Data Structures for 3D Meshes

List of Triangles

- For each triangle of the 3D model, we store its coordinates.
- For example:

Triangle 1: (3,-2,5); (2,2,4); (-6,2,4)
Triangle 2: ($2,2,4$) ; ($0,-1,-2$); ($(9,4,0)$
Triangle 3: (1,2,-2); (3,-2,5); (-6,2,4)
Triangle $n:(-8,2,7) ;(-2,3,9) ;(1,2,-7)$

What's very wrong with this??

Triangle 1: $(3,-2,5) ;(2,2,4) ; \quad(-6,2,4)$
Triangle 2: (2,2,4) ; (0,-1,-2); (9,4,0)
Triangle 3: (1,2,-2); (3,-2,5); (-6,2,4)
Triangle $n:(-8,2,7) ;(-2,3,9) ;(1,2,-7)$

What's very wrong with this??

Triangle 1: $(3,-2,5) ;(2,2,4) ; \quad(-6,-2,4)$
Triangle 2: $(2,2,4) ;(0,-1,-2) ;(9,4,0)$
Triangle 3: (1,2,-2); (3,-2,5); (-6,-2,4)
Triangle $n:(-8,2,7) ;(-2,3,9) ; \quad(1,2,-7)$

List of Triangles

- Disadvantages:
- Wasted disk and memory space:
- Vertices are duplicated!
- Memory: |V| * $|\mathrm{T}|$
- Difficult to manage:
- if we modify a vertex of a triangle, we will need to find and update its clones!
- How do we query neighbors?

List of Unique Vertices

- We store vertices in a list
- For each triangle of the 3D model, we store indices to the vertices' list

Vertices:

1. $(-1.0,-1.0,-1.0)$
2. $(-1.0,-1.0,1.0)$
3. $(-1.0,1.0,-1.0)$
4. $(-1,1,1.0)$
5. $(1.0,-1.0,-1.0)$
6. $(1.0,-1.0,1.0)$
7. $(1.0,1.0,-1.0)$
8. $(1.0,1.0,1.0)$

List of Unique Vertices

- Wasted disk and memory space:
- Common edges between two triangles are stored two times in the list of faces!
- Memory: $|\mathrm{V}|+|\mathrm{T}|$
- Better management:
- Easy to edit a vertex's attribute (e.g., its position)!
- How do we query neighbors?

List of Unique Edges

- We store vertices in a list
- For each edge, we store indices to the vertices' list
- For each triangle of the 3D model, we store indices to edges's list

Vertices:
1. $(-1.0,-1.0,-1.0)$
2. $(-1.0,-1.0,1.0)$
3. $(-1.0,1.0,-1.0)$
4. $(-1,1,1.0)$

List of Unique Edges

- Better management:
- Easy to edit an edge's attribute (e.g., its color)!
- We can do some queries, but not all of them!

Extended List of Unique Edges

- We add to an edge the indices of its left and right triangle
- This simplifies edge-face queries!

Vertices:

1. $(-1.0,-1.0,-1.0)$
2. $(-1.0,-1.0,1.0)$
3. $(-1.0,1.0,-1.0)$
4. $(-1,1,1.0)$

Edges:

1. 12
2. 23
3. 42
4. 34
5.13

Faces:
$\begin{array}{rrr}\text { 1. } & -1 & 1 \\ \text { 2. } & 1 & 2 \\ \text { 3. } & -1 & 2 \\ \text { 4. } & -1 & 2 \\ \text { 5. } & 1 & -1\end{array}$

Faces:

1. 125
2. 243

File Formats

File Formats

- There are many 3D file formats. The most used, and de-facto standard:
- STL
- PLY
- OBJ
- Standards:
- COLLADA: https://www.khronos.org/collada/
- X3D: http://www.web3d.org/x3d/

STL File Format

- Standard Triangle Language (STL) created by 3D Systems
- This format represents only the 3D geometry:
- No color/texture
- No other attributes
- The format specifies both ASCII and binary representations

STL File Format

- Data structure: list of triangles
- Vertices are ordered using the right-hand rule
- 3D coordinates must be positive
- No scale metadata; i.e., units are arbitrary

STL File Format

- The file begins as

solid name

- A face is defined as

```
facet normal nx ny nz
    outer loop
        vertex v1x v1y v1z
        vertex v2x v2y v2z
        vertex v3x v3y v3z
    endloop
endfacet
```


STL File Format: An Example

```
solid triangle
facet normal 010
outer loop
\[
\begin{aligned}
& \text { vertex } 0.00 .00 .0 \\
& \text { vertex } 1.00 .00 .0 \\
& \text { vertex } 0.01 .01 .0
\end{aligned}
\]
```

endloop
endfacet
endsolid triangle

PLY File Format

- Polygon File Format (PLY) is a popular format created by Stanford University (Greg Turk)
- The format is very flexible:
- we can add many attributes
- we can define triangular and polygonal meshes
- The format specifies both ASCII and binary representations

STL File Format

- Data structure: list of unique vertices
- No scale metadata; i.e., units are arbitrary
- The file is divided into two parts:
- Header that specifies vertices and faces
- Body that specifies the concrete data

PLY File Format: Header

- The file begins as

```
ply
format ascii 1.0
```

- Vertex specification is defined as

```
element vertex num_vertices
property float x
property float y
property float z
```

properties can be: char, uchar, short, ushort, int, uint float, double, etc.

PLY File Format: Header

- Faces are defined as

```
element face num_faces
property list uchar int vertex_indices
end_header
```


PLY File Format: Body

- Each i-th vertex is specified as

vix viy viz

- Each face is specified as

3 index_v1 index_v2 index_v2

PLY File Format: An Example


```
ply
format ascii 1.0
element vertex 4
property float x
property float y
property float z
element face 4
property list uchar int vertex_indices
end_header
-0.60-0.97 0.37
-0.34 0.98 0.76
0.037 0.65-1.06
0.88-0.75-0.25
3132
3012
3031
3302
```


Acknowledgements

- Some images and text are based on work by:
- Dr. Paolo Cignoni:
- http://vcg.isti.cnr.it/~cignoni/

