
3D from Photographs:
Structure From Motion

Dr Francesco Banterle
francesco.banterle@isti.cnr.it

mailto:francesco.banterle@isti.cnr.it

Note: in these slides the optical
center is placed back to simplify
drawing and understanding.

3D model

3D from Photographs
Automatic

Matching of
Images

Camera
Calibration

Dense
Matching

Photographs

Surface
Reconstruction

3D model

3D from Photographs
Automatic

Matching of
Images

Camera
Calibration

Dense
Matching

Photographs

Surface
Reconstruction

Camera Pose
Calibration

Camera Pose Calibration

• We have seen methods for estimating the intrinsic
matrix K, and the extrinsic matrix G = [R | t] using a
calibration pattern:

• DLT

• Zhang’s algorithm

How do we get the
camera’s pose without

the pattern?

Camera Pose Calibration

• Let’s assume that:

• We have K for each photograph.

• We have matches between images.

A Two-Camera
Example

A Two-Camera Example
M

m1

m2

C1

C2

Camera 1

Camera 2

A Two-Camera Example:
Epipolar Geometry

M

m1

m2

C1

C2

Camera 1

Camera 2

C1C2 is called baseline

A Two-Camera Example:
Epipolar Geometry

M

m1

m2

C1

C2

Camera 1

Camera 2

C1C2 is called baseline

e2

e1

A Two-Camera Example:
Epipolar Geometry

M

m1

m2

C1

C2

Camera 1

Camera 2

e1m1 is an epipolar line

e2

e1

A Two-Camera Example:
Epipolar Geometry

• The epipolar line is defined as

• where an epipole ei is defined as

e1 ' P1 ·C2

e2 ' P2 ·C1

m1(t) = (Q1 ·Q�1
2) · t+ e1

P1[Q1|q1] P2[Q2|q2]

m1(t) ' (Q1 ·Q�1
2) · t+ e1

A Two-Camera Example
• We have K1 and K2.

• Let’s assume that G1 is set in the origin and aligned
with the reference frame:

Note that we need to estimate both R and t !

G1 = [I|0] ! P1 = K1 ·G1

P2 = K2 · [R|t]

A Two-Camera Example

• To simplify, let’s remove K matrices:

• To points as well:

P 0
1 = K�1

1 · P1 = [I|0]
P 0
2 = K�1

2 · P2 = [R|t]

m̂1 = K�1
1 ·m1

m̂2 = K�1
2 ·m2

A Two-Camera Example

• To simplify, let’s remove K matrices:

• To points as well:

P 0
1 = K�1

1 · P1 = [I|0]
P 0
2 = K�1

2 · P2 = [R|t]

Normalized
coordinates

m̂1 = K�1
1 ·m1

m̂2 = K�1
2 ·m2

A Two-Camera Example
• Given the Longuet-Higgins equation, we know that:

• where:

• and:

E = [t]⇥ ·R

[t]⇥ =

2

4
0 �t3 t2
t3 0 �t1
�t2 t1 0

3

5

m̂>
2 · E · m̂1 = 0

The Essential Matrix
• E is called the essential matrix, and it is a 3×3

matrix.

• If we have the K matrices and apply the Longuet-
Higgins equation we obtain:

• F is called the fundamental matrix:

F = K�>
2 · E ·K�1

1

m>
1 · F ·m2 = 0

The Essential Matrix:
8-points algorithm

• From:

• We can define a linear system as

• Given enough matches we can solve the system using the SVD. How
many do we need? 8 is the minimum, as usual the more the better!

• This method is called 8-points algorithm.

A · b = 0

A =

2

664

(p1
1)

> ⌦ (p1
2)

>

(p2
1)

> ⌦ (p2
2)

>

. . .
(pn

1)
> ⌦ (pn

2)
>

3

775 b = vec(E)

m̂>
2 · E · m̂1 = 0

A =

2

64
(m̂1

1)
> ⌦ (m̂1

2)
>

...
(m̂n

1)
> ⌦ (m̂n

2)
>

3

75 b = vec(E)

The Essential Matrix
• The Kronecker product is defined as

• where A is m×n matrix, and B is a r×s matrix.

A⌦B =

2

6664

a1,1 ·B . . . a1,n ·B
a2,1 ·B . . . a2,n ·B

... . . .
...

am,1 ·B . . . am,n ·B

3

7775

The Essential Matrix:
Practice

• Typically, we do not estimate E directly, but F. Then,
we compute E from F, K1, and K2.

• When estimation F, we use homogenous
coordinates for mi, such that ui ∈ [0, w] and
vi ∈ [0, h].

• However, solving the linear system with such values
we can get numerical instabilities!

The Essential Matrix:
Practice

• For removing numerical instabilities, it would be
nice to have values with average distance from
the origin.

• Given the input n points mi, we compute:

û =
1

n

nX

i=1

ui v̂ =
1

n

nX

i=1

vi mi =

2

4
ui

vi
1

3

5

s =
1

n
p
2

nX

i=1

p
(vi � û)2 + (ui � v̂)2

p
2

The Essential Matrix:
Practice

• Finally, we shift and scale all n points using the
following:

• We can now solve the linear system!

• Note that this operation, shift and scale, needs to
be done for estimating a homography as well!

ũi =
ui � û

s

ṽi =
vi � v̂

s

Non-Linear Optimization
• As seen before, we need to refine E using a geometric

error, note that we compute E indirectly so we minimize F:

• where d𝜋 is the distance point-line, and n is the number
of matched points.

• Again we can solve it with Nelder-Mead method
(fminsearch in MATLAB).

argmin
E

nX

i=1

d⇡(F ·mi
1,m

i
2)

2 + d⇡(F
> ·mi

2,m
i
1)

2

argmin
E

nX

i=1

d⇡(F ·mi
1,m

i
2)

2 + d⇡(F
> ·mi

2,m
i
1)

2

Non-Linear Optimization
• As seen before, we need to refine E using a geometric

error, note that we compute E indirectly so we minimize F:

• where d𝜋 is the distance point-line, and n is the number
of matched points.

• Again we can solve it with Nelder-Mead method
(fminsearch in MATLAB).

argmin
E

nX

i=1

d⇡(F ·mi
1,m

i
2)

2 + d⇡(F
> ·mi

2,m
i
1)

2

argmin
E

nX

i=1

d⇡(F ·mi
1,m

i
2)

2 + d⇡(F
> ·mi

2,m
i
1)

2

This is a line

Non-Linear Optimization
• As seen before, we need to refine E using a geometric

error, note that we compute E indirectly so we minimize F:

• where d𝜋 is the distance point-line, and n is the number
of matched points.

• Again we can solve it with Nelder-Mead method
(fminsearch in MATLAB).

argmin
E

nX

i=1

d⇡(F ·mi
1,m

i
2)

2 + d⇡(F
> ·mi

2,m
i
1)

2

argmin
E

nX

i=1

d⇡(F ·mi
1,m

i
2)

2 + d⇡(F
> ·mi

2,m
i
1)

2

This is a line This is a line

Now we have E, and
so what?

E Factorization
• Once we have estimated E, we would like estimate

R and t to get the pose of the camera:

• As you may notice we have:

• [t]× = S is an anti-symmetric matrix.

• R is orthogonal matrix.

E = [t]⇥ ·R

E Factorization
• Given a m×n matrix A, its SVD decomposition is defined

as:

• where:

• U is an m×m orthogonal matrix.

• Σ is a diagonal m×n matrix.

• V* is the conjugate transpose of an orthogonal matrix.

SVD(A) = U · ⌃ · V ⇤

E Factorization
• Theorem: “A 3×3 matrix is an essential matrix if

and only if two singular values are equal and the
third is zero”.

• This means that:

• Note that

SVD(E) = U · diag(1, 1, 0) · V >

diag(1, 1, 0) = W · Z

W =

2

4
0 �1 0
1 0 0
0 0 1

3

5 Z =

2

4
0 1 0
�1 0 0
0 0 0

3

5

E Factorization

• Lemma: Given R a rotation matrix, and U and V two
orthogonal matrices, we have that:

• R' is still a rotation matrix!

R0 = det(U · V >) · U ·R ·R>

E Factorization

• Given that:

• We can have four possible factorizations of E such
that E = S . R:

SVD(E) = U · diag(1, 1, 0) · V >

S = U · (±Z) · U>

R = U ·W · V >
or R = U ·W> · V >

E Factorization:
The Four Cases

C1 C2 C1 C2

E Factorization:
The Four Cases

C1

C2 C1

C2

Which is the correct
configuration?

C1 C2

Why?

Both points are seen
by the cameras!

How do we find it?

We need to find a case in which
all 3D points are in the positive

frustum of both cameras!

Triangulation

Triangulation

• Input: n matched 2D feature points in two images
and their P matrices (i.e., we know K, G, and t).

• Output: n 3D points.

Triangulation:
Pure Rotational Motion Case

X

Z M

m1 m2

M =

2

664

x

y

z

1

3

775

mi =

2

4
ui

vi
1

3

5

There is no displacement —> The same lines for intersection —> no 3D

Triangulation:
Pure Translational Motion Case

X

Z M

m1 m2

f

b

M =

2

664

x

y

z

1

3

775

mi =

2

4
ui

vi
1

3

5

Triangulation

• We first fix the frame of reference to one of the two
cameras. Then, we know that:

• So, we can obtain:

(
f

z

= �u1
x

f

z

= � u2
x�b

z =
b · f

u2 � u1

Triangulation:
The General Case

M

m1

m2

C1

C2

Camera 1

Camera 2

Similar to DLT
but different!

Triangulation: Eigen Method

P =

2

4
p>
1

p>
2

p>
3

3

5

8
<

:
u = p>

1 ·M
p>

3 ·M

v = p>
2 ·M

p>
3 ·M

Triangulation: Eigen Method

P =

2

4
p>
1

p>
2

p>
3

3

5

8
<

:
u = p>

1 ·M
p>

3 ·M

v = p>
2 ·M

p>
3 ·M

known!

Triangulation: Eigen Method

P =

2

4
p>
1

p>
2

p>
3

3

5

8
<

:
u = p>

1 ·M
p>

3 ·M

v = p>
2 ·M

p>
3 ·M

known! unknown!

• This leads to:

• Given that:

Triangulation: Eigen Method

(
(p1 � u · p1)> ·M = 0

(p2 � v · p1)> ·M = 0

Pi =

2

4
(pi

1)
>

(pi
2)

>

(pi
3)

>

3

5 mi =

2

4
ui

vi
1

3

5

Triangulation: Eigen Method
• We obtain:

• For l cameras, this leads to:

2

664

(p1
1 � u1 · p1

3)
>

(p1
2 � v1 · p1

3)
>

(p2
1 � u2 · p2

3)
>

(p2
2 � v2 · p2

3)
>

3

775 ·M = 0

2

666664

(p1
1 � u1 · p1

3)
>

(p1
2 � u1 · p1

3)
>

...
(pl

1 � u1 · pl
3)

>

(pl
2 � u1 · pl

3)
>

3

777775
·M = 0

Triangulation: Eigen Method
• Again, we solve this linear system using SVD; i.e.,

the kernel of V.

• Again, we minimized an algebraic error without a
geometric meaning!

• Again, we use this initial solution for a non-linear
method that minimizes a geometric error:

argmin
M

nX

j=1

✓
uj �

(pj
1)

> ·M
(pj

3)
> ·M

◆2

+

✓
vj �

(pj
2)

> ·M
(pj

3)
> ·M

◆2l

Triangulation: Example

C1

C2

Camera 1

Camera 2

Projected M
Corner mi

Triangulation: Example

C1

C2

Camera 1

Camera 2

Projected M
Corner mi

Structure
From

Motion

Structure From Motion

• Input: n matched points (corners computed with
Harris algorithm) between two images, and K for all
cameras.

• Output: n 3D points, and G for the two cameras.

Structure From Motion

• The algorithm is:

• Estimation of E.

• Factorization of E to obtain G.

• Triangulation of the n matched points using P1
and P2.

So far we have only used
only a two cameras!

Structure From Motion:
Multi-View

• We compute G for different views using the
previous algorithm.

• We use a reference view for computing the different
G matrices. For example, we can use the first
image.

Structure From Motion:
Multi-View Example

P1

P2
P3

Structure From Motion:
Multi-View Example

P1

P2 ReferenceP3

Structure From Motion:
Multi-View Example

P1

P2
P3 Reference

We compute G12

Structure From Motion:
Multi-View Example

P1

P2
P3 Reference

We compute G13

Hang on, was it a good
reference the one before?

Hang on, what can
possibly go wrong?

We are accumulating
error, and we will drift

from the solution!

Structure From Motion:
Multi-View

• To avoid error accumulation, we minimize in a non-
linear way at the same time both poses estimation
and 3D points generation:

• where d is the Euclidian distance, l is the number of
cameras, and n is the number of points.

arg min
Ri,ti,Mj

lX

i=1

nX

j=1

d

✓
Ki · [Ri|ti] ·Mj ,mj

i

◆2

Structure From Motion:
Multi-View

• Typically, the method is difficult to minimize as a
whole thing. This is because there are many
parameters to minimize.

• A two-step approach:

• First, minimize (or viceversa) all extrinsic
parameters (G) without modifying the 3D points.

• Then, minimize (or viceversa) 3D points
coordinates without modifying G.

Structure From Motion:
Example

Structure From Motion:
Example

Structure From Motion:
Example

Structure From Motion:
Example

Structure From Motion:
Multi-View

• To obtain something of interesting:

• we need to feed into the system hundreds of
images.

• we need to manage thousands of features
(corners)!

• Even the two-step approach would struggle a bit.

Structure From Motion:
Multi-View

• To make the problem computational tractable, we
can notice this:

1

2 4

3 5

6 8

7 9

A B C D

Structure From Motion:
Multi-View

• To make the problem computational tractable, we
can notice this:

1

2 4

3 5

6 8

7 9

A B C D

Structure From Motion:
Multi-View

• To make the problem computational tractable, we
can notice this:

1

2 4

3 5

6 8

7 9

A B C D

Structure From Motion:
Multi-View

• To make the problem computational tractable, we
can notice this:

1

2 4

3 5

6 8

7 9

A B C D

Structure From Motion:
Multi-View

• The idea is to divide the scene into clusters.

• For each cluster we compute SfM.

• We combine all 3D reconstructions and camera
poses together.

Structure From Motion:
Conclusions

• Advantages:

• It requires only photographs/videos: cheap and fast.

• We can recover color information from photographs!

• Disadvantages:

• The output model may be skewed; it is hard to keep two
things going at the same time (3D points and cameras’
poses).

• We do not have a scale!

One thing…

RANSAC
• Random sample consensus (RANSAC) is an

iterative method for estimating the parameters of a
model in a robust way.

• The main idea is to get a subset of the set of
samples and to estimate the model with this
subset:

• We estimate the model using the best subset of
samples!

RANSAC

• Input: a set of n samples S, and a model 𝜋.

• Output: parameters, P, for the model 𝜋.

RANSAC
• e = +∞ and Sb = ∅

• For each iteration:

• Si ⊂ S where Si is random.

• Estimate Pi for 𝜋 using Si

• Compute the error ei for Pi

• if ei < e then

• e = ei and Sb = Si

RANSAC: Example
𝜋: a straight line

Si and Sb

RANSAC: Example

Iteration 0
e = +∞

𝜋: a straight line

Si and Sb

RANSAC: Example

Iteration 1
e = +∞

𝜋: a straight line

Si and Sb

RANSAC: Example

Iteration 1
e = +∞

𝜋: a straight line

Si and Sb

RANSAC: Example

Iteration 1
e = +∞

ei = 10

𝜋: a straight line

Si and Sb

RANSAC: Example

Iteration 2
e = 10

𝜋: a straight line

Si and Sb

RANSAC: Example

Iteration 2
e = 10

𝜋: a straight line

Si and Sb

RANSAC: Example

Iteration 2
e = 10

𝜋: a straight line

Si and Sb

RANSAC: Example

Iteration 2
e = 10

ei = 1𝜋: a straight line

Si and Sb

RANSAC: Example

Iteration 2
e = 1

𝜋: a straight line

Si and Sb

and we continue for n
iterations…

how many?

RANSAC: Iterations

• n has to be large; i.e., we need to have at least one
subset containing only inliers Sinliers:

• We are interested for P = 1.

P (|Si| = c) = 1�
✓
1�

✓
1� |S

outliers

|
|S|

◆c◆n

Si ✓ S
inliers

RANSAC
• When do we need to use it?

• Estimation of the fundamental/essential matrix.

• Estimation of a homography in the general case.

• When we do not:

• DLT and Zhang’s algorithm: corners are
extracted in an accurate way using a calibration
pattern!

RANSAC:
Fundamental Matrix Estimation
• The algorithm is modified a bit:

• We count the inliers of each set given a threshold:

• terr takes into account this constraint:

• If we have a set with more inliers of the previous
one it is accepted.

• We compute the F using only the inliers!

m>
1 · F ·m2 = 0

that’s all folks!

