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Note: in these slides the optical 
center is placed back to simplify 
drawing and understanding.
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Camera Pose Calibration

• We have seen methods for estimating the intrinsic 
matrix K, and the extrinsic matrix G = [R | t] using a 
calibration pattern: 

• DLT 

• Zhang’s algorithm



How do we get the 
camera’s pose without 

the pattern?



Camera Pose Calibration

• Let’s assume that: 

• We have K for each photograph. 

• We have matches between images.



A Two-Camera 
Example
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A Two-Camera Example: 
Epipolar Geometry

• The epipolar line is defined as 

• where an epipole ei is defined as 

e1 ' P1 ·C2

e2 ' P2 ·C1

m1(t) = (Q1 ·Q�1
2 ) · t+ e1

P1[Q1|q1] P2[Q2|q2]

m1(t) ' (Q1 ·Q�1
2 ) · t+ e1



A Two-Camera Example
• We have K1 and K2. 

• Let’s assume that G1 is set in the origin and aligned 
with the reference frame: 

Note that we need to estimate both R and t !

G1 = [I|0] ! P1 = K1 ·G1

P2 = K2 · [R|t]



A Two-Camera Example

• To simplify, let’s remove K matrices: 

• To points as well:

P 0
1 = K�1

1 · P1 = [I|0]
P 0
2 = K�1

2 · P2 = [R|t]

m̂1 = K�1
1 ·m1

m̂2 = K�1
2 ·m2



A Two-Camera Example

• To simplify, let’s remove K matrices: 

• To points as well:

P 0
1 = K�1

1 · P1 = [I|0]
P 0
2 = K�1

2 · P2 = [R|t]

Normalized 
coordinates

m̂1 = K�1
1 ·m1

m̂2 = K�1
2 ·m2



A Two-Camera Example
• Given the Longuet-Higgins equation, we know that: 

• where: 

• and: 

E = [t]⇥ ·R

[t]⇥ =

2

4
0 �t3 t2
t3 0 �t1
�t2 t1 0

3

5

m̂>
2 · E · m̂1 = 0



The Essential Matrix
• E is called the essential matrix, and it is a 3×3 

matrix. 

• If we have the K matrices and apply the Longuet-
Higgins equation we obtain: 

• F is called the fundamental matrix:

F = K�>
2 · E ·K�1

1

m>
1 · F ·m2 = 0



The Essential Matrix: 
8-points algorithm

• From: 

• We can define a linear system as 

• Given enough matches we can solve the system using the SVD. How 
many do we need? 8 is the minimum, as usual the more the better! 

• This method is called 8-points algorithm.

A · b = 0

A =

2

664

(p1
1)

> ⌦ (p1
2)

>

(p2
1)

> ⌦ (p2
2)

>

. . .
(pn

1 )
> ⌦ (pn

2 )
>

3

775 b = vec(E)

m̂>
2 · E · m̂1 = 0

A =

2

64
(m̂1

1)
> ⌦ (m̂1

2)
>

...
(m̂n

1 )
> ⌦ (m̂n

2 )
>

3

75 b = vec(E)



The Essential Matrix
• The Kronecker product is defined as 

• where A is m×n matrix, and B is a r×s matrix.

A⌦B =

2

6664

a1,1 ·B . . . a1,n ·B
a2,1 ·B . . . a2,n ·B

... . . .
...

am,1 ·B . . . am,n ·B

3

7775



The Essential Matrix: 
Practice 

• Typically, we do not estimate E directly, but F. Then, 
we compute E from F, K1, and K2. 

• When estimation F, we use homogenous 
coordinates for mi, such that ui ∈ [0, w] and             
vi ∈ [0, h]. 

• However, solving the linear system with such values 
we can get numerical instabilities!



The Essential Matrix: 
Practice 

• For removing numerical instabilities, it would be 
nice to have values with average distance       from 
the origin. 

• Given the input n points mi, we compute: 

û =
1

n

nX

i=1

ui v̂ =
1

n

nX

i=1

vi mi =

2

4
ui

vi
1

3

5

s =
1

n
p
2

nX

i=1

p
(vi � û)2 + (ui � v̂)2

p
2



The Essential Matrix: 
Practice 

• Finally, we shift and scale all n points using the 
following: 

• We can now solve the linear system! 

• Note that this operation, shift and scale, needs to 
be done for estimating a homography as well!

ũi =
ui � û

s

ṽi =
vi � v̂

s



Non-Linear Optimization
• As seen before, we need to refine E using a geometric 

error, note that we compute E indirectly so we minimize F: 

• where d𝜋  is the distance point-line, and n is the number 
of matched points. 

• Again we can solve it with Nelder-Mead method 
(fminsearch in MATLAB).

argmin
E

nX

i=1

d⇡(F ·mi
1,m

i
2)

2 + d⇡(F
> ·mi

2,m
i
1)

2

argmin
E

nX

i=1

d⇡(F ·mi
1,m

i
2)

2 + d⇡(F
> ·mi

2,m
i
1)

2
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Now we have E, and 
so what?



E Factorization
• Once we have estimated E, we would like estimate 

R and t to get the pose of the camera: 

• As you may notice we have: 

• [t]× = S is an anti-symmetric matrix. 

• R is orthogonal matrix.

E = [t]⇥ ·R



E Factorization
• Given a m×n  matrix A, its SVD decomposition is defined 

as: 

• where: 

• U is an m×m orthogonal matrix. 

• Σ is a diagonal m×n matrix. 

• V* is the conjugate transpose of an orthogonal matrix.

SVD(A) = U · ⌃ · V ⇤



E Factorization
• Theorem: “A 3×3 matrix is an essential matrix if 

and only if two singular values are equal and the 
third is zero”. 

• This means that: 

• Note that 

SVD(E) = U · diag(1, 1, 0) · V >

diag(1, 1, 0) = W · Z

W =

2

4
0 �1 0
1 0 0
0 0 1

3

5 Z =

2

4
0 1 0
�1 0 0
0 0 0

3

5



E Factorization

• Lemma: Given R a rotation matrix, and U and V two 
orthogonal matrices, we have that: 

• R' is still a rotation matrix!

R0 = det(U · V >) · U ·R ·R>



E Factorization

• Given that: 

• We can have four possible factorizations of E such 
that E = S . R: 

SVD(E) = U · diag(1, 1, 0) · V >

S = U · (±Z) · U>

R = U ·W · V >
or R = U ·W> · V >



E Factorization: 
The Four Cases
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Which is the correct 
configuration?



C1 C2



Why?



Both points are seen 
by the cameras!



How do we find it?



We need to find a case in which 
all 3D points are in the positive 

frustum of both cameras!



Triangulation



Triangulation

• Input: n matched 2D feature points in two images 
and their P matrices (i.e., we know K, G, and t). 

• Output: n 3D points.



Triangulation:  
Pure Rotational Motion Case
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Triangulation:  
Pure Translational Motion Case
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Triangulation

• We first fix the frame of reference to one of the two 
cameras. Then, we know that: 

• So, we can obtain:

(
f

z

= �u1
x

f

z

= � u2
x�b

z =
b · f

u2 � u1



Triangulation: 
The General Case
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Similar to DLT 
but different!



Triangulation: Eigen Method

P =
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p>
3

3
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Triangulation: Eigen Method
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• This leads to: 

• Given that: 

Triangulation: Eigen Method

(
(p1 � u · p1)> ·M = 0

(p2 � v · p1)> ·M = 0

Pi =

2

4
(pi
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>
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Triangulation: Eigen Method
• We obtain: 

• For l cameras, this leads to: 

2

664
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1 � u1 · p1

3)
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(p1
2 � v1 · p1

3)
>

(p2
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Triangulation: Eigen Method
• Again, we solve this linear system using SVD; i.e., 

the kernel of V. 

• Again, we minimized an algebraic error without a 
geometric meaning! 

• Again, we use this initial solution for a non-linear 
method that minimizes a geometric error: 

argmin
M

nX

j=1

✓
uj �

(pj
1)

> ·M
(pj

3)
> ·M

◆2

+

✓
vj �

(pj
2)

> ·M
(pj

3)
> ·M

◆2l



Triangulation: Example
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Structure From Motion

• Input: n matched points (corners computed with 
Harris algorithm) between two images, and K for all 
cameras. 

• Output: n 3D points, and G for the two cameras.



Structure From Motion

• The algorithm is: 

• Estimation of E. 

• Factorization of E to obtain G. 

• Triangulation of the n matched points using P1 
and P2.



So far we have only used 
only a two cameras!



Structure From Motion: 
Multi-View

• We compute G for different views using the 
previous algorithm. 

• We use a reference view for computing the different 
G matrices. For example, we can use the first 
image.



Structure From Motion: 
Multi-View Example
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Structure From Motion: 
Multi-View Example

P1

P2
P3 Reference

We compute G12



Structure From Motion: 
Multi-View Example

P1

P2
P3 Reference

We compute G13



Hang on, was it a good 
reference the one before?



Hang on, what can 
possibly go wrong?



We are accumulating 
error, and we will drift 

from the solution!



Structure From Motion: 
Multi-View

• To avoid error accumulation, we minimize in a non-
linear way at the same time both poses estimation 
and 3D points generation: 

• where d is the Euclidian distance, l is the number of 
cameras, and n is the number of points.

arg min
Ri,ti,Mj

lX

i=1

nX

j=1

d

✓
Ki · [Ri|ti] ·Mj ,mj

i

◆2



Structure From Motion: 
Multi-View

• Typically, the method is difficult to minimize as a 
whole thing. This is because there are many 
parameters to minimize. 

• A two-step approach: 

•  First, minimize (or viceversa) all extrinsic 
parameters (G) without modifying the 3D points. 

• Then, minimize (or viceversa) 3D points 
coordinates without modifying G.



Structure From Motion: 
Example
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Structure From Motion: 
Example



Structure From Motion: 
Multi-View

• To obtain something of interesting: 

• we need to feed into the system hundreds of 
images. 

• we need to manage thousands of features 
(corners)! 

• Even the two-step approach would struggle a bit.



Structure From Motion: 
Multi-View

• To make the problem computational tractable, we 
can notice this:
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Structure From Motion: 
Multi-View
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Structure From Motion: 
Multi-View

• The idea is to divide the scene into clusters. 

• For each cluster we compute SfM. 

• We combine all 3D reconstructions and camera 
poses together. 



Structure From Motion: 
Conclusions

• Advantages: 

• It requires only photographs/videos: cheap and fast. 

• We can recover color information from photographs! 

• Disadvantages: 

• The output model may be skewed; it is hard to keep two 
things going at the same time (3D points and cameras’ 
poses). 

• We do not have a scale!



One thing…





RANSAC
• Random sample consensus (RANSAC) is an 

iterative method for estimating the parameters of a 
model in a robust way. 

• The main idea is to get a subset of the set of 
samples and to estimate the model with this 
subset: 

• We estimate the model using the best subset of 
samples!



RANSAC

• Input: a set of n samples S, and a model 𝜋. 

• Output: parameters, P, for the model 𝜋.



RANSAC
• e = +∞ and Sb = ∅ 

• For each iteration: 

• Si ⊂ S where Si is random. 

• Estimate Pi for 𝜋 using Si  

• Compute the error ei for Pi 

• if ei < e then 

• e = ei  and Sb = Si



RANSAC: Example
𝜋: a straight line 

Si and Sb



RANSAC: Example

Iteration 0 
e = +∞

𝜋: a straight line 

Si and Sb



RANSAC: Example

Iteration 1 
e = +∞

𝜋: a straight line 

Si and Sb



RANSAC: Example

Iteration 1 
e = +∞

𝜋: a straight line 

Si and Sb



RANSAC: Example

Iteration 1 
e = +∞

ei = 10

𝜋: a straight line 

Si and Sb



RANSAC: Example

Iteration 2 
e = 10

𝜋: a straight line 

Si and Sb



RANSAC: Example

Iteration 2 
e = 10

𝜋: a straight line 

Si and Sb



RANSAC: Example

Iteration 2 
e = 10

𝜋: a straight line 

Si and Sb



RANSAC: Example

Iteration 2 
e = 10

ei = 1𝜋: a straight line 

Si and Sb



RANSAC: Example

Iteration 2 
e = 1

𝜋: a straight line 

Si and Sb



and we continue for n 
iterations…



how many?



RANSAC: Iterations

• n has to be large; i.e., we need to have at least one 
subset containing only inliers Sinliers: 

• We are interested for P = 1.

P (|Si| = c) = 1�
✓
1�

✓
1� |S

outliers

|
|S|

◆c◆n

Si ✓ S
inliers



RANSAC
• When do we need to use it? 

• Estimation of the fundamental/essential matrix. 

• Estimation of a homography in the general case. 

• When we do not: 

• DLT and Zhang’s algorithm: corners are 
extracted in an accurate way using a calibration 
pattern!



RANSAC: 
Fundamental Matrix Estimation
• The algorithm is modified a bit: 

• We count the inliers of each set given a threshold: 

• terr takes into account this constraint: 

• If we have a set with more inliers of the previous 
one it is accepted. 

• We compute the F using only the inliers!

m>
1 · F ·m2 = 0



that’s all folks!


