#### MeshLab

Gianpaolo Palma

#### MeshLab

- Version MeshLab 2016
- http://www.meshlab.net/
- Video Tutorial
  - <u>https://www.youtube.com/user/MrPMeshLabTutor</u> <u>ials</u>

#### MeshLab

MeshLab doesn't have a undo. Please save your project frequently otherwise if MeshLab crashes or if you apply wrongly a filter that modifies your mesh you lose all your works.

## MeshLab – Mesh Data

- Per-vertex attribute
  - Position
  - Normal
  - Color (VN)
  - Quality (VQ)
  - Texture Coordinate (VT)
  - Vertex Radius (VR)
  - Curvature value (VK)
  - Curvature direction (VD)

## MeshLab – Mesh Data

- Per-face attribute
  - Vertex reference
  - Normal
  - Color (FC)
  - Quality (VQ)

## MeshLab – Mesh Data

- Wedge To assign a different attribute to the vertex depending on the face
  - Color (WC)
  - Texture Coordinate (WT)
  - Normal (WN)



#### Trackball

- Paradigm: Object in-hand
- Help  $\rightarrow$  On screen quick help

| Quick Help       |                                                               |
|------------------|---------------------------------------------------------------|
| 3D Wi            | indow                                                         |
| Drag:            | Rotate                                                        |
| Ctrl-Drag:       | Pan                                                           |
| Shift-Drag:      | Zoom                                                          |
| Wheel:           | Zoom                                                          |
| Alt-Drag:        | Z-Panning                                                     |
| Ctrl-Shift-Drag: | Change light direction                                        |
| Shift-Wheel:     | Change perspective (up to a orthographic camera)              |
| Ctrl-Wheel:      | Move near clipping plane                                      |
|                  | (in image space: 0 is viewer position, 1 is trackball center) |
| Double Click:    | Center on mouse                                               |
| Alt+enter:       | Enter/Exit fullscreen mode                                    |
| Ctrl-Shift H:    | Reset Trackball                                               |

## Edit Tools

Interactive tools

- Click on the tool icon to enter
- Click again to the icon to exit
- Click on the trackball icon to temporarily suspend from the edit mode, or press ESC
- Click again to the trackball icon to reactive the edit mode, or press ESC



## Layers





- Load different mesh on several layer
- Manage the layer visibility and rendering
- Help  $\rightarrow$  On screen quick help

#### **Layer Window**

Click on eye icon: Toggle visibility status of the layer Ctrl-Click on eye icon: Make Invisibile all other layers Alt-Click on eye icon: Make Visibile all other layers Shift-Click on eye icon: Invert visibility status of all the layers

| C:/Users/Gianpao            | lo/Deskto         | p/Sc         | anning_p                      | oipeline/la        | urana/laur      | ana.mlp     |        | 8 |
|-----------------------------|-------------------|--------------|-------------------------------|--------------------|-----------------|-------------|--------|---|
| > 🔹 14 B000                 | 03                | Ø            |                               | 0                  |                 |             |        | ^ |
| > 😻 15 B001                 | <b>0</b>          |              |                               | 0                  |                 |             |        |   |
| > 😻 16 B002                 | <b>1</b>          | Ø            |                               | 0                  |                 |             |        |   |
| > 🕶 17 B003                 | 0%                |              |                               | 0                  |                 |             |        |   |
| > 🕶 18 B004                 | 0::               |              |                               | 0                  |                 |             |        |   |
| > 🕶 19 B005                 | Ø                 | Ø            |                               | 0                  |                 |             |        |   |
| > 🕶 20 B006                 | <b>1</b>          |              |                               | 0                  |                 |             |        |   |
| > 😻 21 C000                 | 0%                |              |                               | 0                  |                 |             |        |   |
| > 😻 22 C001                 | 0                 | Ø            |                               | 0                  |                 |             |        |   |
| > 🥶 23 C002                 | í                 |              |                               | 0                  |                 |             |        |   |
| > 😻 24 C003                 | <b>1</b>          | Ø            | 11 💋                          | 0                  |                 |             |        |   |
| > 🥶 25 C004                 | 00                | 网            |                               | 0                  |                 |             |        |   |
| > 💌 26 C005                 | 00                | Ø            |                               | 0                  |                 |             |        |   |
| /0005 -h-                   |                   |              |                               |                    |                 |             |        | ~ |
| /C005.ply                   |                   |              |                               |                    |                 |             |        |   |
|                             | . 🖾               |              | U                             |                    | G               |             |        |   |
| Shading                     |                   |              |                               | Vert               | Face No         | ne          |        |   |
| <b>y</b>                    |                   |              |                               | Fore               |                 |             |        |   |
| Color                       |                   |              |                               | Mesh               | User-Def        | F           |        |   |
| Back-Face                   |                   |              |                               | Single             | Double          | Fancy       | Cull   |   |
|                             |                   |              |                               |                    |                 |             |        |   |
|                             |                   |              |                               |                    |                 |             |        |   |
|                             |                   |              |                               |                    | apply to        | all visible | layers |   |
|                             |                   |              |                               |                    |                 |             |        |   |
| Scanning_pip<br>Opened mesh | peline/<br>C:/Use | lau:<br>rs/0 | rana/C<br>Gianpa              | 000.ply<br>blo/Des | in 418<br>ktop⁄ | msec        |        | ^ |
| Scanning_pip<br>Opened mesh | peline/<br>C:/Use | lau<br>rs⁄0  | rana⁄C<br>Gianpa              | 001.ply<br>blo/Des | in 337<br>ktop⁄ | msec        |        |   |
| Scanning_pip<br>Opened mesh | peline/<br>C:/Use | lau:<br>rs⁄( | rana <sup>7</sup> C<br>Gianpa | 002.ply<br>blo/Des | in 326<br>ktop/ | msec        |        |   |
| Scanning_pi                 | peline/           | lau:         | rana/C                        | 003.ply            | in 415          | msec        |        |   |

Opened mesh C:/Users/Gianpaolo/Desktop/ Scanning\_pipeline/laurana/C005.ply in 330 msec

Opened mesh C:/Users/Gianpaolo/Desktop/ Scanning\_pipeline/laurana/C004.ply in 560 msec

# Rendering Modes

- Visualization of different data globally and for each single layer
  - Bounding box
  - Point
  - Edge M
  - Triangle
  - Selection data
  - Edge decorators



#### Decorator

- Visualization of additional information
  - Normal
  - Camera position
  - Quality information
  - Axis
  - Bounding box

## Advanced Shading

• Render  $\rightarrow$  Shader  $\rightarrow$  xray

MeshLab 2016.12 - [Project\_2]

File Edit Filters Render View Windows Tools Help D 🖆 🖻 🗞 🧇 🖻 🌒 🗊 🗊 🔟 📜 🖤 🚸 🗇 🗛 🗖 🖊 💣 🖌 🦉 🏂 🤽 🎘 🏹 🏹 💥 🗶 🛠 FOV: 60 FPS: 84.7 BO\_RENDERING

## Advanced Shading

#### • Render $\rightarrow$ Shader $\rightarrow$ Radiance Scaling



### Selection

- Interactive tool to select
  - Point
  - Triangles
  - Connected Component
- Selection of all the element on the frustum of the selection area
- Keep pressed CTRL to add to the current selection
- Keep pressed SHIFT to remove from the current selection
- Keep pressed ALT to select only visible elements

## Selection

- Automatic filter (Filter->Selection)
  - Dilate
  - Erosion
  - Invert, None, All
  - Border
  - By view angle
  - By quality

## **Delete Selection**

- Delete the current selection
  - Only selected points and the incident faces  $\frac{1}{3}$
  - Only the selected faces but no the unreferenced vertices
  - The selected faces and the referenced vertices by the selected faces

## Snapshot

- Save the current rendering as png image
- Save high resolution images using tiling

| Save snapshot                                                            | ?         | ×      |
|--------------------------------------------------------------------------|-----------|--------|
| Output folder                                                            |           |        |
| Base name snapshot Counter 0 🖨 🗌 Snap All Layers                         | Tileo     | d Save |
| Background MeshLab Gradient 🔻 Screen Multiplier 1 🖨 🗌 Add Snapshot as no | ew Raster | Layer  |
| Cancel                                                                   | Sav       | /e     |



Take measure on your mesh



## Smoothing

- Filter  $\rightarrow$  Smoothing, Fairing, Deformation  $\rightarrow$ 
  - Laplacian smooth
  - Scale dependent laplacian smooth
  - Taubin smooth
  - Laplacian smooth (surface preserve)

## Alignment Tools

- Glue the first mesh
- For each other mesh, use Point Based Glueing to find the rough alignment
- Launch Process

| Align Tool                                                                                                                                                                                                                                | ×                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 1   2   3   4     > 0   *   /A000.ply     > 1   *   /A001.ply     2   *   /A002.ply     3   *   /A003.ply     4   *   /A004.ply     5   *   /A005.ply     6   *   /A006.ply     7   *   /A007.ply     8   *   /A008.ply     9   /SS000.pl | Rectangular Snip                           |
| Glue Here Mesh                                                                                                                                                                                                                            | Edit Defaults ICP Parameters               |
| Glue Here Visible Meshes                                                                                                                                                                                                                  | Set ICP params for mm Set ICP params for m |
| Manual Rough Glueing                                                                                                                                                                                                                      | Are Creation Baremeters                    |
| Point Based Glueing                                                                                                                                                                                                                       | Arc Creation Parameters                    |
| Set as Base Mesh                                                                                                                                                                                                                          | Show Bad Arc                               |
| Hide/Reveal Unglued Mesh                                                                                                                                                                                                                  | ICP Params Current Arc                     |
| Process                                                                                                                                                                                                                                   | Recalc Current Arc                         |
| Arc with good overlap                                                                                                                                                                                                                     | 1 (on 1)                                   |

## Alignment Tools

Point based Glueing

- Select by double click the correspondences, the order is important
- Keep pressed CTRL to remove a point



## Alignment Tools

#### Launch Process

Adjust the parameters (Edit Default ICP Parameters)

| Ø Default Alignment Pa      | ?      | ×    |  |  |
|-----------------------------|--------|------|--|--|
|                             |        |      |  |  |
| Sample Number               | 2000   |      |  |  |
| Minimal Starting Distance   | 10     |      |  |  |
| Target Distance             | 0.0005 |      |  |  |
| Max Iteration Num           | 100    |      |  |  |
| ✓ Normal Equalized Sampling |        |      |  |  |
| MSD Reduce Factor           | 0.8    |      |  |  |
| Sample Cut High             | 0.75   |      |  |  |
| Rigid matching              |        |      |  |  |
| Reset OK                    | Cancel | Help |  |  |

## Alignment with scale

- Measure a common feature between the mesh
- Compute the scale and apply the scale Filter  $\rightarrow$  Normal, Curvature, Orientation  $\rightarrow$  Transform: Scale, Normalize (uniform scale)
- Run the alignment procedure with no-rigid-option



#### **3D Reconstruction**

 Weighted average of per-scan distance field Filter → Remeshing,Simplificatio n, Reconstruction → Surface reconstruction:VCG

#### Surface Reconstruction: VCG

The surface reconstrction algorithm that have been used for a long time inside the ISTI-Visual Computer Lab. It is mostly a variant of the Curless et al. e.g. a volumetric approach with some original weighting schemes, a different expansion rule, and another approach to hole filling through volume dilation/ relaxations.

The filter is applied to **ALL** the visible layers. In practice all the meshes/point clouds that are currently visible are used to build the volumetric distance field.

| Voxel Side (abs and %) | world unit | perc on(0 25 | 0.281)<br>0 🌲 | VoxelSide                                                                                                                                                                                                                                                                                                                           |
|------------------------|------------|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SubVol Splitting       | 1          |              |               | The level of recursive splitting of the subvolume<br>reconstruction process. A value of '3' means that a<br>3x3x3 regular space subdivision is created and the<br>reconstruction process generate 8 matching meshes. It<br>is useful for reconstruction objects at a very high<br>resolution. Default value (1) means no splitting. |
| Geodesic Weighting     | 2          |              |               | The influence of each range map is weighted with its<br>geodesic distance from the borders. In this way when<br>two (or more ) range maps overlaps their contribution<br>blends smoothly hiding possible misalignments.                                                                                                             |
| Show Result            |            |              |               | if not checked the result is only saved into the current directory                                                                                                                                                                                                                                                                  |
| Volume Laplacian iter  | 1          |              |               | How many volume smoothing step are performed to<br>clean out the eventually noisy borders                                                                                                                                                                                                                                           |
| Widening               | 3          |              |               | How many voxel the field is expanded. Larger this value more holes will be filled                                                                                                                                                                                                                                                   |
| Vertex Splatting       |            |              |               | This option use a different way to build up the volume,<br>instead of using rasterization of the triangular face it<br>splat the vertices into the grids. It works under the<br>assumption that you have at least one sample for each<br>voxel of your reconstructed volume.                                                        |
| Post Merge simplifica  | ation      |              |               | After the merging an automatic simplification step is<br>performed.                                                                                                                                                                                                                                                                 |
| PreSmooth iter         | 3          |              |               | How many times, before converting meshes into<br>volume, the normal of the surface are smoothed. It is<br>useful only to get more smooth expansion in case of<br>noisy borders.                                                                                                                                                     |
| Default                |            |              |               | Help                                                                                                                                                                                                                                                                                                                                |
| Cla                    | 20         |              |               | Apply                                                                                                                                                                                                                                                                                                                               |

## **3D Reconstruction**

- Screened Poisson Surface Reconstruction
  Filter → Remeshing,Simplification, Reconstruction → Screened
  Poisson Surface reconstruction
- If "Iterpolation Weight" is zero then Classical Poisson reconstruction
- "Reconstruction Depth", maximum level of the octree



"Screened Poisson surface reconstruction" ACM Trans. Graphics, 32(3), 2013

| Merge all visible layers |        |
|--------------------------|--------|
| Reconstruction Depth     | 8      |
| Minimum Number of Sample | es 1.5 |
| Interpolation Weight     | 4      |
| Confidence Flag          |        |
| Pre-Clean                |        |
|                          |        |
| •                        | •      |
| Default                  | Help   |
| Close                    | Apply  |

#### Cleaning Poisson Reconstruction

• Filter  $\rightarrow$  Selection  $\rightarrow$  Selection by vertex quality



## Cleaning and Repairing

- Filter  $\rightarrow$  Cleaning and Repairing
- Filter  $\rightarrow$  Selection

## Simplification

- Filter → Remeshing,Simplification, Reconstruction → Simplification: Clustering Decimation
- Filter → Remeshing, Simplification, Reconstruction → Simplification: Quadric Edge Collapse

| Simplification: Clustering                                                                                                            | Decimation ×                                     |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|
| Collapse vertices by creating a three dimensional grid<br>enveloping the mesh and discretizes them based on the<br>cells of this grid |                                                  |  |  |  |  |
| Cell Size (abs and %)                                                                                                                 | orld unit perc on(0 216.751)<br>2.1675 🔹 1.000 🜲 |  |  |  |  |
| Default                                                                                                                               | Help                                             |  |  |  |  |
| Close Apply                                                                                                                           |                                                  |  |  |  |  |
|                                                                                                                                       |                                                  |  |  |  |  |

Simplification: Quadric Edge Collapse Decim...

Simplify a mesh using a Quadric based Edge Collapse Strategy; better than clustering but slower

| Target number of faces     | 90415           |
|----------------------------|-----------------|
| Percentage reduction (01)  | 0               |
| Quality threshold          | 0.3             |
| Preserve Boundary of the   | e mesh          |
| Boundary Preserving Weight | 1               |
| Preserve Normal            |                 |
| Preserve Topology          |                 |
| Optimal position of simp   | lified vertices |
| Planar Simplification      |                 |
| Weighted Simplification    |                 |
| Post-simplification clean  | ing             |
| Simplify only selected fa  | ces             |

## Surface Comparison

 Hausdorff distance – Measure distance between two meshes
Filter → Sampling→ Hausdorff Distance

| Hausdorff Distance                                                                        | ×                                                             |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Compute the Hausdorff Distan<br>sampling one of the two and<br>point over the other mesh. | nce between two meshes,<br>finding foreach sample the closest |
| Sampled Mesh                                                                              | Poisson mesh 🔻                                                |
| Target Mesh                                                                               | Poisson mesh(1)                                               |
| Save Samples                                                                              |                                                               |
| Sample Vertexes                                                                           |                                                               |
| Sample Edges                                                                              |                                                               |
| Sample FauxEdge                                                                           |                                                               |
| Sample Faces                                                                              |                                                               |
| Number of samples                                                                         | 1444563                                                       |
| May Distance (abs and %)                                                                  | world unit perc on(0 ., 604.462)                              |
| Max Distance (abs and 70)                                                                 | 236.9419 🖨 39.200 🖨                                           |
| Default                                                                                   | Help                                                          |
| Close                                                                                     | Apply                                                         |

# Quality Mapper

Colorize the mesh according the quality value





## **Camera** Calibration

Raster Layers •

raster

View mesh from the point of view of the current



| MeshLab 2016.12 - [D:\devel\corso\Color_p        | ojection\Gargoyle_res\gargoyle_initial.mlp]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0                                                                |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| e Ed <mark>i</mark> t Filters Render View Window | s Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1          | 🗍 🗰 🚳 📶 📕 🏶 👫  🕀 🗛 🗖 🖊 🂕 🚇 🖊                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 🌆 👯 🐔 🌺 🛼 🕷 🔹 💥 *                                                  |
| 1917) - Alfred Maria                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D:\devel\corso\Color_projection\Gargoyle_res\gargoyle_i            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > 💽 0 gargo3M * 🗐 💭 🕅 🚺 🕼                                          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gargo3M.ply                                                        |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shading                                                            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Back-Face Single Double Fancy Cull                                 |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | apply to all visible layers                                        |
|                                                  | and the second s | ✓ 0 DSC_0033.JPG                                                   |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ 1 DSC_0034JPG                                                    |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ 3 DSC_0036JPG                                                    |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ 4 DSC_0037.JPG                                                   |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 DSC_0038JPG                                                      |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • 0 D2C_00237kg                                                    |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Step 2 of 3.<br>Step 3 of 3.                                       |
| FOV: 16.2053<br>FPS: 34.0                        | Mesh: gargo3M.ply<br>Vertices: 1,499,961<br>Forem: 2,009,014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Applied filter Image alignment: Mutual<br>Information in 3106 msec |

## Camera Calibration

 Filter → Camera→ Image Alignment: Mutual Information

| Image alignment: Mutual Information                                                                                                                                                                                                                              |                              |       |   |      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|---|------|--|--|
| Register an image on a 3D model using Mutual Information.<br>This filter is an implementation of Corsini et al. 'Image-to-<br>geometry registration: a mutual information method exploiting<br>illumination-related geometric properties', 2009, <u>Get link</u> |                              |       |   |      |  |  |
| Rendering Mode:                                                                                                                                                                                                                                                  | Combined 🔻                   |       |   |      |  |  |
| Starting shot                                                                                                                                                                                                                                                    | Current Trackball 🔻 Get Shot |       |   |      |  |  |
| Estimate focal le                                                                                                                                                                                                                                                | Estimate focal length        |       |   |      |  |  |
| Fine Alignment                                                                                                                                                                                                                                                   |                              |       |   |      |  |  |
| Max iterations                                                                                                                                                                                                                                                   | 100                          |       |   |      |  |  |
| Tolerance                                                                                                                                                                                                                                                        | 0.1                          |       |   |      |  |  |
| Expected Variance                                                                                                                                                                                                                                                | 2.0                          |       |   |      |  |  |
| BackgroundWeight                                                                                                                                                                                                                                                 | BackgroundWeight 2           |       |   |      |  |  |
| Default                                                                                                                                                                                                                                                          |                              |       | Н | lelp |  |  |
| Close                                                                                                                                                                                                                                                            |                              | Apply |   |      |  |  |

## Color Projection

Render → Raster-to-Geometry projection



## **Color Projection**

- Per-vertex color
- Filter → Camera → Project active raster color to current mesh

| Project active rasters color to current mesh ×                                                                         |       |  |
|------------------------------------------------------------------------------------------------------------------------|-------|--|
| Color information from all the active rasters is<br>perspective-projected on the current mesh using basic<br>weighting |       |  |
| depth threshold                                                                                                        | 0.5   |  |
| Only on selecton                                                                                                       |       |  |
| ✓ use angle weight                                                                                                     |       |  |
| ✓ use distance weight                                                                                                  |       |  |
| ✓ use image borders weight                                                                                             |       |  |
| ✓ use depth discontinuities weight                                                                                     |       |  |
| use image alpha weight                                                                                                 |       |  |
| Color for unprojected areas (#000000)                                                                                  |       |  |
| Preview                                                                                                                |       |  |
| Default                                                                                                                | Help  |  |
| Close                                                                                                                  | Apply |  |

## Color Projection

- Texture
- Filter → Texture → Parametrization + texturing from registered rasters
  Parameterization + texturing from registered rasters

The mesh is parameterized and textured by creating some patches that correspond to projection of portions of surfaces onto the set of registered rasters.

| Texture size               | 1024        | Specifies the dimension of the generated texture                                                                                                                                                                                                                                                                          |
|----------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Texture name               | texture.png | Specifies the name of the file into which the texture<br>image will be saved                                                                                                                                                                                                                                              |
| Color correction           |             | If true, the final texture is corrected so as to ensure<br>seamless transitions                                                                                                                                                                                                                                           |
| Color correction filter    | 1           | It is the radius (in pixel) of the kernel that is used to<br>compute the difference between corresponding texels<br>in different rasters. Default is 1 that generate a 3x3<br>kernel. Highest values increase the robustness of the<br>color correction process in the case of strong image-to-<br>geometry misalignments |
| ✓ Use distance weight      |             | Includes a weight accounting for the distance to the<br>camera during the computation of reference images                                                                                                                                                                                                                 |
| ✓ Use image border weight  |             | Includes a weight accounting for the distance to the<br>image border during the computation of reference<br>images                                                                                                                                                                                                        |
| Use image alpha weight     |             | If true, alpha channel of the image is used as additional<br>weight. In this way it is possible to mask-out parts of<br>the images that should not be projected on the mesh.<br>Please note this is not a transparency effect, but just<br>influences the weigthing between different images                              |
| ✓ Clean isolated triangles |             | Remove all patches compound of a single triangle by<br>aggregating them to adjacent patches                                                                                                                                                                                                                               |
| UV stretching              |             | If true, texture coordinates are stretched so as to cover<br>the full interval [0,1] for both directions                                                                                                                                                                                                                  |
| Texture gutter             | 4           | Extra boundary to add to each patch before packing in texture space (in pixels)                                                                                                                                                                                                                                           |
| Default                    |             | Help                                                                                                                                                                                                                                                                                                                      |
| Close                      |             | Apply                                                                                                                                                                                                                                                                                                                     |
|                            |             |                                                                                                                                                                                                                                                                                                                           |

#### Texture

Render → Show UV Tex Param

