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Current sensors
• No sensors available to consumer for capturing 

HDR content in a single shot 

• Some native HDR sensors exist, HDRc by Omron, 
but some issues: 

• too much noise 

• low resolution (around 1024x768) 

• expensive to manufacture



Exposure bracketing

• Capturing many LDR images (8-bit) of the same 
scene: 

• from the darkest area in the scene 

• to the brightest area in the scene 

• The scene has to be static!!!



Exposure bracketing

t = 1/8st = 1/32st = 1/128s



Exposure bracketing
• Required equipment: 

• camera with the possibility to vary the exposure 

• tripod (avoid camera shake) 

• Optional equipment: 

• luminance meter 

• colorchecker chart 

• remote control for the camera



How many exposures?
• Brute force approach: 

• Select an exposure for the darkest/brightest area 
in the scene and take a shot 

• Double/half exposure and take a shot 

• Repeat until brightest/darkest are in the scene is 
captured



How many exposures?

• Some issue with this approach: 

• time consuming, especially if the camera is not 
programmable 

• we are making micro movements at every click! 

• over-sampling, maybe there is no need



• Exposure metering [Gallo et al. 2012]: 

• capturing histograms from the viewfinder (picture 
preview in a camera) - free! 

• computing CDF for each histogram 

• obtaining the global CDF 

• differentiation —> HDR histogram

Exposure Metering

F (n) =

Pn
i=0 H(i)

PN
i=0 H(i)



Exposure Metering: 
LDR Histograms
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Exposure Metering: 
LDR CDFs
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Exposure Metering

Gallo et al. / Metering for Exposure Stacks

On the other hand, the Cumulative Distribution Function
(CDF) domain seems the natural choice for this combina-
tion. In this domain, the LDR histograms defined on the dig-
ital domain can be merged by simply computing, for each of
the J exposures, the LDR CDFs; these can be then converted
to irradiance CDFs, FL

j , and the HDR CDF can be built by
taking the maximum value at each location, see Figure 3.
Contrary to the case of histograms, taking the envelope of
the LDR CDFs requires no explicit re-binning, which will
simply result from taking the derivative of the HDR CDF.
Formally, using Eq. 2, we can compute the set of quanti-
zation boundaries which forms the support, or baseline, of
each log-irradiance histogram; note that these are also the
baselines for the corresponding FL

j . Their union forms the
baseline of the full cumulative distribution function, FH :

{Bk}=
[

j

n

bẼ
i, j

o

. (3)

With this baseline we can use Algorithm 2.1, where K is the
number of bins in FH , J is the number of exposures used,
and I is the number of bins in FL

j .

Algorithm 2.1: COMPFULLCDF({Bk},{bẼ
i, j},FL

1 ,FL
2 , ...,FL

J )

for k 0 to K�1
do FH(Bk) 0

for j 0 to J�1

do

8

>

<

>

:

for i 0 to I�2

do

(

for each k : Bk 2 (bẼ
i, j,b

Ẽ
i+1, j]

do FH(Bk) max(FH(Bk),FL
j (b

Ẽ
i, j))

return (FH)

As is apparent from Figure 3, the first bins of the CDFs
provide an inaccurate reading of the irradiance values. Be-
cause of noise, some of the pixels that should fall in the first
bins, i.e., whose digital value should be zero, may spread
to the neighboring bins; for this reason, the first bins of the
CDF in general start from a smaller value than they should,
see Figure 3. To overcome this bias, instead of averaging the
functions, we retain the envelope, that is, at each location Bk,
we retain the maximum value of the CDFs that are defined in
Bk. The same problem affects the last bins of FL

j , however,
the noise contribution in the upper segment of the range is
drastically smaller, and the dominant factor becomes satura-
tion; this is why Algorithm 2.1 disregards the last bin of each
FL

j . One last comment pertains to the number of LDR his-
tograms that we need for our estimate: during the metering
stage, the exposure times can be selected to ensure a mini-
mal overlap of the bins of different histograms. Because of
this, the number of collected histograms is limited.

It is worth noticing that, by construction, FH is a proper
cumulative distribution function; it is the envelope of mono-
tonically non-decreasing functions so it is itself mono-

log-irradiance

f’

Figure 4: The derivative of the camera response function for
the Canon XSi, here shown for t = 1s, for the three channels.

tonically non-decreasing. Also limx!�1 FH(x) = 0 and
limx!1 FH(x) = 1. Additionally, it is right-continuous,
again, by construction.

Finally, the HDR histogram of the full scene can be com-
puted simply by differentiating FH , using {Bk} to account
for the non-homogeneous bin size.

3. Exposure Selection
The knowledge of the full histogram of the scene irradiance
allows us to make an educated choice for the number of pic-
tures that are necessary and which exposure times should be
used. On one hand we want to minimize the number of pic-
tures that need to be taken, on the other we want to optimize
the quality of the final result. Consider the simple case of
a linear camera response function and an example such as
that depicted in Figure 2; because the distribution of the ir-
radiance is roughly bimodal, we might decide to avoid using
an unnecessary extra picture that covers the middle of the
range.

The problem is more complicated for non-linear cam-
era response functions. The non-linearity of the camera re-
sponse function f makes the size of the quantization bins
vary across the range. Usually, f has a sigmoid-like shape
which is roughly linear at the center of the range and which
performs some compression towards the ends. This can be
seen in terms of resolution with which the irradiance val-
ues are quantized, as shown in Figure 4. This means that
two different exposure times, both of which cover the whole
range, might not be equivalent in terms of quantization error:
a method which seeks to simply “tile” exposures to cover the
range may produce sub-optimal results in terms of SNR.

Quantization, however, is not the only source of noise in-
volved in this process. To account for this we use the model
proposed by Foi et al. [FTKE08] which comprises a Poisso-
nian component, accounting for Photon Shot Noise (PSN),
and a Gaussian component, capturing other disturbances,
such as readout and thermal noise.

3.1. Maximizing the Peak SNR for a Single Picture
The quantized digital value Z recorded by a camera system
at a given pixel is given by Z = Q(g(X)), where Q is the
quantization operator, and X denotes the exposure value at
the given pixel. The exposure X = E t is a measure of the
scene irradiance E integrated over the exposure time t.

c� 2012 The Author(s)
c� 2012 The Eurographics Association and Blackwell Publishing Ltd.



Exposure Metering: 
HDR CDF
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Exposure Metering: 
HDR Histogram
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• Selection of exposure times based on: 

• HDR histogram 

• Noise model of the camera

Exposure Metering



Exposure Metering: 
sampling
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Exposure Metering: 
sampling
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Exposure Metering: 
sampling
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Exposure Metering: 
sampling
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Exposure Metering: 
sampling
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Exposure Metering: 
sampling
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Linear Images
• What is a linear value? 

I = a E 

• where: 

• I the value recorded by the sensor 

• E is the radiance of the real value 

• a is a constant



Linear Images

• High-end or prosumer camera can save RAW: 

• advantage: storing linear values 

• disadvantage: a lot of memory; no 
compression and 12-14bit per color channel



meanwhile in the 
real-word…



Linear Images
• Consumer cameras, smartphones, tables save 

typically JPEG at high quality (in the best case): 

• advantage: images are stored in little memory 

• disadvantage: 

• no linear values 

• images are stored applying an unknown 
function, f, called Camera Response Function 
(CRF)



Linear Images: example
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Linear Images: example
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Estimating CRF
• What can we do? 

• We can estimate the CRF or perform a  
radiometric calibration 

• What can we do? 

• Taking a photograph with colorchecker and 
controlled environment 

• Taking photographs at different exposure times



Estimating CRF



Estimating CRF

smoothing term

function to minimize



Estimating CRF
• To minimize the objective function, a dense linear 

system needs to be solved using SVD: 

• (Nexposures x Nsamples + D + 1) x (Nsamples + D + 1) 

• where D = 256 (discretization levels) 

• We cannot use all pixels in the image: 

• too large system



Estimating CRF

• To minimize the objective function, a dense linear 
system needs to be solved using SVD 

• We cannot use all pixels in the image: 

• too large system



Estimating CRF

• To minimize the objective function, a dense linear 
system needs to be solved using SVD 

• We cannot use all pixels in the image: 

• too large system



Estimating CRF: 
samples selection

• Idea1: sampling in spatial domain 



Estimating CRF: 
samples selection

• For each spatial sample  

• Collect values at each exposure,    , to obtain a 
sample vector: 

[Z0(i, j), ..., Zn(i, j)]

(i, j)

Zi



Estimating CRF: 
samples selection

• Idea2: in histogram domain, to randomly 
subsample the image 
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Exposure 1
Exposure 2
Exposure 3
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Exposure 1
Exposure 2
Exposure 3

Estimating CRF: 
samples selection

• Idea2: sampling in histogram domain 
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Exposure 1
Exposure 2
Exposure 3

Estimating CRF: 
samples selection

• Idea2: sampling in histogram domain 
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Exposure 1
Exposure 2
Exposure 3

Estimating CRF: 
samples selection

• Idea2: sampling in histogram domain 
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Exposure 1
Exposure 2
Exposure 3

Estimating CRF: 
samples selection

• Idea2: sampling in histogram domain 
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Exposure 1
Exposure 2
Exposure 3

Estimating CRF: 
samples selection

• Idea2: sampling in histogram domain 
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Exposure 1
Exposure 2
Exposure 3

Estimating CRF: 
samples selection

• Idea2: sampling in histogram domain 
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Exposure 1
Exposure 2
Exposure 3

Estimating CRF: 
samples selection

• Idea2: sampling in histogram domain 
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Exposure 1
Exposure 2
Exposure 3

Estimating CRF: 
samples selection

• Idea2: sampling in histogram domain 



Estimating CRF: 
weighting function

• weighting function: 

• to avoid outliers during the estimate 

• shapes: tent, box with cut-off, Gaussian, etc. 

• outliers:  

• over-exposed pixels 

• under-exposed pixels



Estimating CRF: 
samples selection
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Estimating CRF: 
samples selection
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Estimating CRF: 
samples selection
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Estimating CRF: 
samples selection

• Other methods? 

• To fit a N-dimensional polynomial 

• How to chose N? Brute force: trying different fits, 
from N=1 to N=10 and chose the one with the 
smallest error

f(x) =
NX

i=0

cix
i



Estimating CRF: 
colorchecker based



Estimating CRF: 
colorchecker based



Estimating CRF: 
colorchecker based



Estimating CRF: 
colorchecker based
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Estimating CRF: 
colorchecker based

• This method is computationally cheap, and it offers 
a ground truth but: 

• Color checker 

• Luminance meter or photometer 

• Better to have controlled lighting 

• Few points… interpolation



Where are we?

• We know how to capture enough images 

• We know how to compute the CRF 

• We need to build the HDR image from the LDR 
ones



HDR merge

E(x) =

Pn
i=1

1
ti
w(Zi(x))f�1(Zi(x))Pn
i=1 w(Zi(x))



HDR merge: noise reduction

E(x) =

Pn
i=1 w(Zi(x))t2i

f�1(Zi(x))
tiPn

i=1 w(Zi(x))t2i

Note: this gives more weight to  long-exposure 
images (less noise) than short-exposure images 
(more noise)



Exposure time

• Exposure time how is it computed? 

• Typically using shutter speed, but we need to take 
into account of: 

• ISO 

• Aperture



Exposure time
• Keeping shutter and ISO constant, and varying the 

aperture the image gets brighter or darker: 

F/8 F/5.6 F/4



Exposure time
• Keeping shutter speed and aperture constant, and 

varying the ISO the image gets brighter or darker: 

ISO 200 ISO 400 ISO 800



Exposure time

• I is the ISO value 

• A is the aperture value 

• t_i is the shutter speed (time) 

• K is a camera manufacturer constant in [10.6, 13.4]

tei =
Iti
KA2



Example

t = 1/8st = 1/32st = 1/128s



Example

t = 1/8st = 1/32st = 1/128s



Example

t = 1/8st = 1/32st = 1/128s
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HDR Formats

• Once, an HDR image is merged, it has to be stored 

• 8-bit unsigned char encoding per color channels is 
not enough —> limited range [0,255] 

• The range of values for natural scenes can be very 
large —> [10-7 109] cd/m2



HDR Formats: floating point
• Typically, HDR pixels are stored using 32-bit 

floating point numbers per color channel: 

• This means four times the amount of memory for an 
uncompressed LDR pixel! 

• Moreover, IEEE 754 encoding is a bit wasted, more 
values that what is needed

32-bit32-bit32-bit



HDR Formats: RGBE

• Idea: red, green, and blue color channel for a given 
error may have a very similar exponent, only 
mantissa is changing! 

• A standard integrated in some OS, e.g. OS X 

• It can not encode negative values



HDR Formats: RGBE
Em =

⇠
log2 max(R,G,B) + 128

⇡

Rm =

�
256R

2

Em�128

⌫

Gm =

�
256G

2

Em�128

⌫

Bm =

�
256B

2

Em�128

⌫

Rm Gm Bm Em 32-bit
8-bit 8-bit 8-bit 8-bit



HDR Formats: LogLuv

• Idea: convert RGB colors in the LogLuv color 
space; colors require less precision than intensity 
values 

• Advantage: intensity and color values are 
separated good for post-processing 

• Two versions: 24-bit and 32-bit



HDR Formats: LogLuv
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HDR Formats: 
LogLuv 32-bit

Le =
⌅
(256 log2 Y + 64)

⇧

ue =
⌅
410u0⇧

ve =
⌅
410v0

⇧

Le ue ve 32-bit
15-bit 8-bit 8-bit

±

1-bit



HDR Formats: 
LogLuv 24-bit

Le ue ve±

Le =
⌅
(64 log2 Y + 12)

⇧

ue =
⌅
410u0⇧

ve =
⌅
410v0

⇧

10-bit 7-bit 7-bit1-bit
24-bit



HDR Formats: OpenEXR
• Standard de facto for HDR “digital negative” values 

• Proposed by ILM in 2002 as a digital negative for 
movies and CGI productions 

• Half format (16-bit) for each color channel: 

• Dynamic range: [0.000061 , 65504] 

• OpenSource on github: 

• https://github.com/openexr/openexr

https://github.com/openexr/openexr


HDR Formats: OpenEXR

H =

8
>>>>>>><

>>>>>>>:

0 if
�
M = 0 ^ E = 0

�
,

(�1)S2E�15 + M
1024 if E = 0,

(�1)S2E�15

✓
1 + M

1024

◆
if 1  E  30,

(�1)S1 if
�
E = 31 ^M = 0

�
,

NaN if
�
E = 31 ^M > 0

�
,

Exp±

1-bit 10-bit

Mantissa

5-bit

16-bit



HDR Formats: comparisons

Encoding Color Space Bpp Dynamic 
Range (log10)

Relative Error 
(%)

IEEE RGB full RGB 96 79 0.000003

RGBE positive RGB 32 76 1.0

LogLuv24 logY + (u,v) 24 4.8 1.1

LogLuv32 logY + (u,v) 32 38 0.3

Half RGB RGB 48 10.7 0.1



Questions?


